Document Number: A3G26H502W17S Rev. 1, 01/2021

RF Power GaN Transistor

This 80 W asymmetrical Doherty RF power GaN transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 2496 to 2690 MHz.

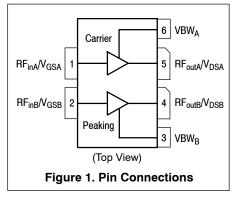
This part is characterized and performance is guaranteed for applications operating in the 2496 to 2690 MHz band. There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

2600 MHz

• Typical Doherty Single-Carrier W-CDMA Characterization Performance: V_{DD} = 48 Vdc, I_{DQA} = 370 mA, V_{GSB} = -4.6 Vdc, P_{out} = 80 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.⁽¹⁾

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
2496 MHz	14.4	48.4	7.8	-32.6
2590 MHz	15.0	49.3	8.2	-35.2
2690 MHz	14.8	51.2	7.8	-34.0

1. All data measured in fixture with device soldered to heatsink.


Features

- · High terminal impedances for optimal broadband performance
- Advanced high performance in-package Doherty
- Improved linearized error vector magnitude with next generation signal
- Able to withstand extremely high output VSWR and broadband operating conditions

A3G26H502W17S 2496–2690 MHz, 80 W Avg., 48 V AIRFAST RF POWER GaN TRANSISTOR

VRoHS

Table 1. Maximum Ratings

Rating				
	V _{DSS}	1:	25	Vdc
	V _{GS}	-8	3, 0	Vdc
	V _{DD}	5	55	Vdc
	I _{GMAX}	6	6	mA
	T _{stg}	-65 to	o +150	°C
Case Operating Temperature Range			o +150	°C
Maximum Channel Temperature				°C
	Symbol	Va	lue	Unit
	V _{DD}	4	8	Vdc
	1			1
	Symbol	Va	lue	Unit
Thermal Resistance by Infrared Measurement, Active Die Surface-to-Case Case Temperature 74° C, P _D = 110 W				°C/W
Thermal Resistance by Finite Element Analysis, Channel-to-Case Case Temperature 90° C, P _D = 83 W				°C/W
		Cla	ass	
	1C			
	C3			
əd)				
Symbol	Min	Тур	Max	Unit
V _{(BR)DSS}	150 150		_	Vdc
-			T	T
V _{GS(th)}	-3.5	-2.6	-2.3	Vdc
				V/de
V _{GSA(Q)}	-3.1	-2.6	-2.1	Vdc
V _{GSA(Q)} I _{GSS}	-3.1 -9.9	-2.6 —	-2.1	mAdc
	ed) Symbol V _{(BR)DSS}	V _{GS} V _{DD} I _{GMAX} T _{stg} T _C T _C T _C VDD Symbol VDD Symbol VDD Sase R _θ CHC (FEA) Symbol Symbol VDD	V V 1 V V -6 V D -6 IGMAX 6 -65 IGMAX 6 -65 T T -65 T C -55 T T -65 T C -55 T C -55 VDD 4 4 VDD 4 4 VDD 4 4 Symbol Va 4 VDD 4 4 VDD 4 4 Symbol Va 0.7 R R 0.7 1.2 R CIR 1.2 1 Ca CIR 1 0.7 Symbol Min Typ 1 V Symbol Min Typ V 150 1	VDSS 125 VGS -8, 0 VDD 55 IGMAX 66 Tstg -65 to +150 TC -55 to +150 TCH 225 Symbol Value VDD 48 VDD 48 VDD 48 Symbol Value VDD 48 R0CHC 1.23 (2) R0CHC 1.23 (2) Class 1C C3 C3 ed) Min Typ V(BR)DSS 150 150

1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

2. $R_{\theta CHC}$ (FEA) must be used for purposes related to reliability and limitations on maximum channel temperature. MTTF may be estimated by the expression MTTF (hours) = $10^{[A + B/(T + 273)]}$, where *T* is the channel temperature in degrees Celsius, A = -11.1 and B = 8366.

3. Each side of device measured separately.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic		Min	Тур	Мах	Unit	
Functional Tests — 2496 MHz ⁽¹⁾ (In NXP Doherty Production Test Fixture, 50 ohm system) Vpp = 48 Vdc, Ipp = 370 mA						

Functional lests — 2496 MHz (7) (in NXP Donerty Production lest Fixture, 50 onm system) $V_{DD} = 48$ Vdc, $I_{DQA} = 370$ mA, $V_{GSB} = -4.6$ Vdc, $P_{out} = 80$ W Avg., f = 2496 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. [See note on correct biasing sequence.]

Power Gain	G _{ps}	11.3	13.1	14.7	dB
Drain Efficiency	η_D	38.0	45.6	_	%
P _{sat} , Pulsed CW	Psat	55.6	56.6	_	dBm
Adjacent Channel Power Ratio	ACPR	—	-35.6	-26.0	dBc

Functional Tests — 2690 MHz ⁽¹⁾ (In NXP Doherty Production Test Fixture, 50 ohm system) V_{DD} = 48 Vdc, I_{DQA} = 370 mA,

V_{GSB} = -4.6 Vdc, P_{out} = 80 W Avg., f = 2690 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. **[See note on correct biasing sequence.]**

Power Gain	G _{ps}	11.4	13.2	14.8	dB
Drain Efficiency	η _D	37.0	45.0	_	%
P _{sat} , Pulsed CW	P _{sat}	56.0	56.7	_	dBm
Adjacent Channel Power Ratio	ACPR	—	-30.8	-24.0	dBc

Wideband Ruggedness (In NXP Doherty Production Test Fixture, 50 ohm system) I_{DQA} = 370 mA, V_{GSB} = -4.6 Vdc, f = 2590 MHz, Additive White Gaussian Noise (AWGN) with 10 dB PAR

ISBW of 400 MHz at 55 Vdc, 140 W Avg. Modulated Output Power	No Device Degradation
(3 dB Input Overdrive from 80 W Avg. Modulated Output Power)	

1. Part internally matched both on input and output.

(continued)

NOTE: Correct Biasing Sequence for GaN Depletion Mode Transistors in a Doherty Configuration

Bias ON the device

- 1. Set gate voltage V_{GSA} and V_{GSB} to –5 V.
- 2. Set drain voltage V_{DSA} and V_{DSB} to nominal supply voltage (+48 V).
- 3. Increase V_{GSA} (carrier side) until I_{DQA} current is attained.
- 4. Increase V_{GSB} (peaking side) to target bias voltage.
- 5. Apply RF input power to desired level.

Bias OFF the device

- 1. Disable RF input power.
- 2. Adjust gate voltage V_{GSA} and V_{GSB} to –5 V.
- 3. Adjust drain voltage V_{DSA} and V_{DSB} to 0 V. Allow adequate time for drain voltage to reduce to 0 V from external drain capacitors.
- 4. Disable $V_{\mbox{GSA}}$ and $V_{\mbox{GSB}}.$

Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Мах	Unit

Typical Performance ⁽¹⁾ (In NXP Doherty Characterization Test Fixture, 50 ohm system) V_{DD} = 48 Vdc, I_{DQA} = 370 mA, V_{GSB} = -4.6 Vdc, 2496–2690 MHz Bandwidth

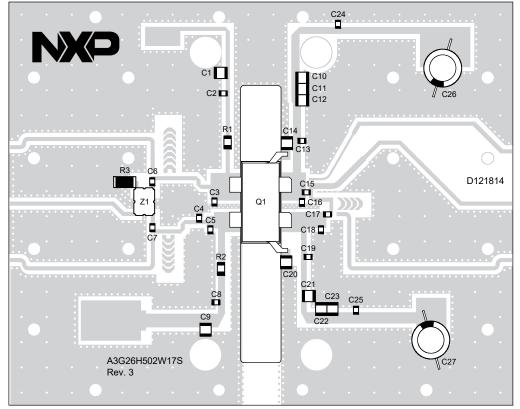
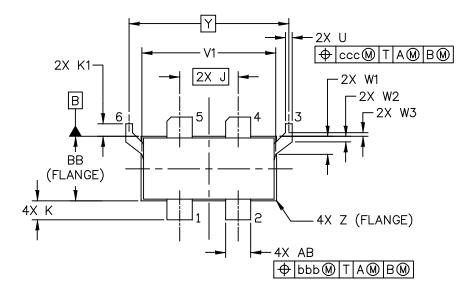

Pout @ 3 dB Compression Point ⁽²⁾	P3dB	_	500	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 2496–2690 MHz bandwidth)	Φ	_	8	_	0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	250	_	MHz
Gain Flatness in 194 MHz Bandwidth @ P _{out} = 80 W Avg.	G _F	_	0.5	_	dB
Gain Variation over Temperature (-40°C to +85°C)	ΔG	_	0.033	_	dB/°C
Output Power Variation over Temperature (–40°C to +85°C)	∆P1dB		0.023	_	dB/°C

Table 6. Ordering Information

Device	Tape and Reel Information	Package
A3G26H502W17SR3	R3 Suffix = 250 Units, 44 mm Tape Width, 13-inch Reel	NI-780S-4S2S

1. All data measured in fixture with device soldered to heatsink.

2. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.


Note: All data measured in fixture with device soldered to heatsink. Production fixture does not *aaa-039549* include device soldered to heatsink.

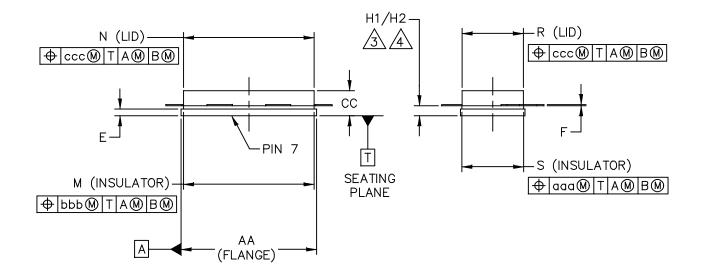

Figure 2. A3G26H502W17S Characterization Test Circuit Component Layout

Table 7. A3G26H502W17S Characterization Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer	
C1, C9, C10, C11, C12, C14, C20, C21, C22, C23	10 uF Chip Capacitor	GRM32EC72A106KE05L	Murata	
C2, C8, C13, C19	12 pF Chip Capacitor	GQM2195C2E120FB12D	Murata	
C3	0.3 pF Chip Capacitor	GQM2195C2ER30BB12D	Murata	
C4, C5	0.5 pF Chip Capacitor	GQM2195C2ER50BB12D	Murata	
C6, C7, C24, C25	10 pF Chip Capacitor	GQM2195C2E100FB12D	Murata	
C15, C17	3.9 pF Chip Capacitor	GQM2195C2E3R9BB12D	Murata	
C16, C18	0.6 pF Chip Capacitor	GQM2195C2ER60BB12D	Murata	
C26, C27	470 μF, 100 V Electrolytic Capacitor	MCGPR100V477M16X32	Multicomp	
Q1	RF Power GaN Transistor	A3G26H502W17S	NXP	
R1, R2	3.3 Ω, 1/4 W Chip Resistor	CRCW12063R30JNEA	Vishay	
R3	50 Ω, 4 W Chip Resistor	CW12010T0050GBK	ATC	
Z1	2300–2700 MHz Band, 5 dB Directional Coupler	X3C25P1-05S	Anaren	
PCB	Rogers RO3035, 0.020″, ε _r = 3.66	D121814	MTL	

PACKAGE INFORMATION

© NXP SEMICONDUCTORS N. V. ALL RIGHTS RESERVED MECHANICAL OU		TLINE	PRINT VERS	ION NOT TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASAO	1208D REV: O
NI-780S-4S2S			RD: NON-JEDEC	
	S0T1799	9–6	14 AUG 2018	

NOTES:

- 1. CONTROLLING DIMENSION: INCH.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

 $\overline{\cancel{3.}}$ DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B TO CLEAR EPOXY FLOW OUT. H1 APPLIES TO PINS 1, 2, 4 & 5. H2 APPLIES TO PINS 3 & 6.

	IN	СН	мі	LIMETER			INCH	MILLIM	ETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.805	.815	20.4	5 20.70	R	.365	.375	9.27	9.53
BB	.380	.390	9.65	9.91	S	.365	.375	9.27	9.53
СС	.125	.170	3.18	4.32	U	.035	.045	0.89	1.14
Е	.035	.045	0.89	1.14	V1	.795	.805	20.19	20.45
F	.004	.007	0.10	0.18	W1	.0975	.1175	2.48	2.98
H1	.057	.067	1.45	5 1.70	W2	.0225	.0425	0.57	1.08
H2	.054	.070	1.37	' 1.78	W3	.0125	.0325	0.32	0.83
J	.350	BSC	8	.89 BSC	Y	.9	56 BSC	24.28 BSC	
К	.0995	.1295	2.53	3.29	Z	R.000	R.040	R0.00	R1.02
K1	.070	.090	1.78	2.29	AB	.145	.155	3.68	3.94
М	.774	.786	19.66	19.96	aaa		.005	0.1	13
Ν	.772	.788	19.61	20.02	bbb		.010	0.2	25
					ccc		.015	0.3	38
C		NDUCTORS N.V. TS RESERVED		MECHANICA	L 0U1	JTLINE PRINT VERSION NOT TO SCALE			
TITLE:						DOCUMEN	NT NO: 98ASAC)1208D	REV: 0
		NI-7805	S-4S2	S		STANDARD: NON-JEDEC			
						SOT1799	-6	14 A	AUG 2018

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Software

.s2p File

Development Tools

Printed Circuit Boards

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Nov. 2020	Initial release of data sheet
1	Jan. 2021	 Table 1, Maximum Ratings: updated operating voltage for complete data sheet standardization, p. 2 Table 2, Recommended Operating Conditions: added to data sheet, p. 2

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2020–2021 NXP B.V.