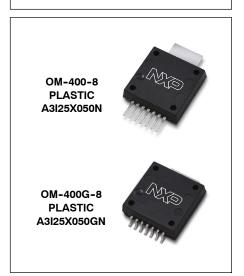
**VRoHS** 

# **RF LDMOS Wideband Integrated Power Amplifiers**

The A3I25X050N integrated Doherty circuit is designed with on-chip matching that makes it usable from 2300 to 2700 MHz. This multi-stage structure is rated for 20 to 32 V operation and covers all typical cellular base station modulation formats.

### 2600 MHz

• 5.6 W Avg. — Typical Doherty Single-Carrier W-CDMA Characterization Performance:  $V_{DD} = 28$  Vdc,  $I_{DQ(Carrier)} = 130$  mA,  $V_{GS(Peaking)} = 3.75$  Vdc,  $P_{out} = 5.6$  W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.


| Frequency | G <sub>ps</sub><br>(dB) | PAE<br>(%) | ACPR<br>(dBc) |
|-----------|-------------------------|------------|---------------|
| 2496 MHz  | 28.5                    | 38.2       | -35.3         |
| 2590 MHz  | 28.8                    | 39.0       | -35.5         |
| 2690 MHz  | 28.5                    | 37.0       | -35.9         |

 8.7 W Avg. — Typical Doherty Single-Carrier W-CDMA Characterization Performance: V<sub>DD</sub> = 28 Vdc, I<sub>DQ(Carrier)</sub> = 130 mA, V<sub>GS(Peaking)</sub> = 3.0 Vdc, P<sub>out</sub> = 8.7 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

| Frequency | G <sub>ps</sub> PAE<br>(dB) (%) |      | ACPR<br>(dBc) |
|-----------|---------------------------------|------|---------------|
| 2496 MHz  | 27.8                            | 44.4 | -32.1         |
| 2590 MHz  | 28.0                            | 44.8 | -31.9         |
| 2690 MHz  | 28.0                            | 43.7 | -30.8         |

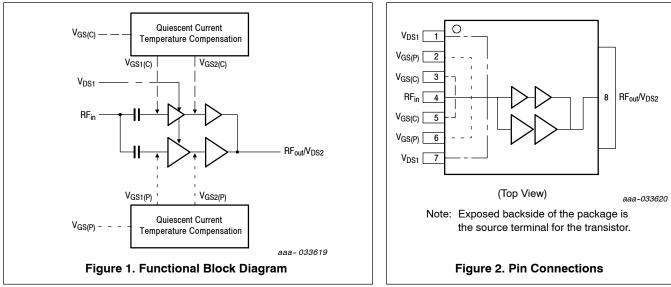


2300–2700 MHz, 5.6 W AVG., 28 V AIRFAST RF LDMOS INTEGRATED POWER AMPLIFIERS



### 2300 MHz

 8.9 W Avg. — Typical Doherty Single-Carrier W-CDMA Performance: V<sub>DD</sub> = 28 Vdc, I<sub>DQ(Carrier)</sub> = 130 mA, V<sub>GS(Peaking)</sub> = 3.5 Vdc, P<sub>out</sub> = 8.9 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.


| Frequency | G <sub>ps</sub><br>(dB) | PAE<br>(%) | ACPR<br>(dBc) |
|-----------|-------------------------|------------|---------------|
| 2300 MHz  | 29.2                    | 44.5       | -30.6         |
| 2350 MHz  | 28.6                    | 45.0       | -31.5         |
| 2400 MHz  | 28.3                    | 44.7       | -33.0         |

### Features

- Integrated Doherty splitter and combiner
- On-chip matching (50 ohm input, DC blocked)
- Integrated quiescent current temperature compensation with enable/disable function <sup>(1)</sup>

1. Refer to AN1977, *Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family*, and to AN1987, *Quiescent Current Control for the RF Integrated Circuit Device Family*. Go to <a href="http://www.nxp.com/RF">http://www.nxp.com/RF</a> and search for AN1977 or AN1987.





Note: V<sub>DS1</sub> must be decoupled on the same pin as it is supplied. Do not supply voltage on Pin 1 and decouple on Pin 7 or supply voltage on Pin 7 and decouple on Pin 1. Maximum current allowed between Pin 1 and Pin 7 inside the device is 1.8 A.

# Table 1. Maximum Ratings

| Rating                                     | Symbol           | Value       | Unit |
|--------------------------------------------|------------------|-------------|------|
| Drain-Source Voltage                       | V <sub>DSS</sub> | -0.5, +65   | Vdc  |
| Gate-Source Voltage                        | V <sub>GS</sub>  | -0.5, +10   | Vdc  |
| Operating Voltage                          | V <sub>DD</sub>  | 32, +0      | Vdc  |
| Storage Temperature Range                  | T <sub>stg</sub> | -65 to +150 | °C   |
| Case Operating Temperature Range           | T <sub>C</sub>   | -40 to +150 | °C   |
| Operating Junction Temperature Range (1,2) | TJ               | -40 to +225 | °C   |
| Input Power                                | P <sub>in</sub>  | 20          | dBm  |

#### Table 2. Thermal Characteristics

| Characteristic                                                                                                                                                                                                                             | Symbol           | Value <sup>(2,3)</sup> | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|------|
| Thermal Resistance, Junction to Case<br>Case Temperature 77°C, 8.9 W Avg., W-CDMA, 28.5 Vdc, I <sub>DQ1(Carrier)</sub> = 30 mA,<br>I <sub>DQ2(Carrier)</sub> = 100 mA, V <sub>GS(Peaking)</sub> = 3.75 Vdc, 2593 MHz<br>Stage 1<br>Stage 2 | R <sub>θJC</sub> | 8.3<br>2.0             | °C/W |

#### **Table 3. ESD Protection Characteristics**

| Test Methodology                      | Class |
|---------------------------------------|-------|
| Human Body Model (per JS-001-2017)    | 1C    |
| Charge Device Model (per JS-002-2014) | Сз    |

#### Table 4. Moisture Sensitivity Level

| Test Methodology                     | Rating | Package Peak Temperature | Unit |
|--------------------------------------|--------|--------------------------|------|
| Per JESD22-A113, IPC/JEDEC J-STD-020 | 3      | 260                      | °C   |

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.nxp.com.

3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

| Unit | Max | Тур  | Min  | Symbol                | Characteristic                                                                                                     |
|------|-----|------|------|-----------------------|--------------------------------------------------------------------------------------------------------------------|
|      |     |      |      | 1                     | Carrier Stage 1 and Stage 2 — Off Characteristics                                                                  |
| μAdc | 10  | —    | —    | I <sub>DSS(1+2)</sub> | Zero Gate Voltage Drain Leakage Current $(V_{DS1} = V_{DS2} = 65 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$             |
| nAdc | 1   |      | —    | I <sub>DSS(1+2)</sub> | Zero Gate Voltage Drain Leakage Current $(V_{DS1} = V_{DS2} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$             |
|      |     |      |      | •                     | Carrier Stage 1 and Stage 2 — On Characteristics                                                                   |
| Vdc  | 2.4 | 1.7  | 0.7  | V <sub>GSC(th)</sub>  | Gate Threshold Voltage ( $V_{DS}$ = 10 Vdc, $I_D$ = 16 $\mu$ Adc)                                                  |
| Vdc  |     | 2.0  | —    | V <sub>GSC(Q)</sub>   | Gate Quiescent Voltage<br>(V <sub>DS</sub> = 28 Vdc, I <sub>DQ(Carrier)</sub> = 130 mAdc)                          |
| Vdc  | 8.1 | 7.3  | 6.6  | V <sub>GGC(Q)</sub>   | Fixture Gate Quiescent Voltage<br>( $V_{DD}$ = 28 Vdc, $I_{DQ(Carrier)}$ = 130 mAdc, Measured in Functional Test)  |
|      |     |      |      |                       | Peaking Stage 1 and Stage 2 — Off Characteristics                                                                  |
| μAdc | 10  | —    | —    | I <sub>DSS(1+2)</sub> | Zero Gate Voltage Drain Leakage Current<br>(V <sub>DS1</sub> = V <sub>DS2</sub> = 65 Vdc, V <sub>GS</sub> = 0 Vdc) |
| nAdc | 1   | —    | —    | I <sub>DSS(1+2)</sub> | Zero Gate Voltage Drain Leakage Current<br>(V <sub>DS1</sub> = V <sub>DS2</sub> = 32 Vdc, V <sub>GS</sub> = 0 Vdc) |
|      |     |      |      |                       | Peaking Stage 1 and Stage 2 — On Characteristics                                                                   |
| Vdc  | 2.4 | 1.7  | 0.7  | V <sub>GSP(th)</sub>  | Gate Threshold Voltage $(V_{DS1} = V_{DS2} = 10 \text{ Vdc}, I_D = 32 \mu\text{Adc})$                              |
| Vdc  | 0.5 | 0.25 | 0.05 | V <sub>DS(on)</sub>   | Drain-Source On-Voltage<br>(V <sub>GS2(Peaking)</sub> = 10 Vdc, I <sub>D</sub> = 320 mAdc) Stage 2                 |
|      |     |      |      |                       | $(V_{GS2(Peaking)} = 10 \text{ Vdc}, I_D = 320 \text{ mAdc})$ Stage 2                                              |

#### Table 5. Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted) (continued)

| Characteristic | Symbol | Min | Тур | Max | Unit |
|----------------|--------|-----|-----|-----|------|

**Functional Tests** <sup>(1,2)</sup> (In NXP Production Test Fixture, 50 ohm system)  $V_{DD} = 28$  Vdc,  $I_{DQ(Carrier)} = 130$  mA,  $V_{GS(Peaking)} = 3.55$  Vdc,  $P_{out} = 5.6$  W Avg., f = 2590 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @  $\pm 5$  MHz Offset.

| Power Gain                        | G <sub>ps</sub> | 28.0 | 28.8  | 33.0  | dB  |
|-----------------------------------|-----------------|------|-------|-------|-----|
| Power Added Efficiency            | PAE             | 38.0 | 39.5  | —     | %   |
| Adjacent Channel Power Ratio      | ACPR            | _    | -35.6 | -32.5 | dBc |
| Pout @ 3 dB Compression Point, CW | P3dB            | 42.7 | 48.6  | —     | W   |

Wideband Ruggedness (In NXP Characterization Test Fixture, 50 ohm system)  $I_{DQ(Carrier)} = 130 \text{ mA}, V_{GS(Peaking)} = 3.75 \text{ Vdc}, f = 2600 \text{ MHz},$ Additive White Gaussian Noise (AWGN) with 10 dB PAR

| ISBW of 400 MHz at 32 Vdc, 17.4 W Avg. Modulated Output Power | No Device Degradation |
|---------------------------------------------------------------|-----------------------|
| (3 dB Input Overdrive from 9 W Avg. Modulated Output Power)   |                       |

**Typical Performance** (In NXP Characterization Test Fixture, 50 ohm system)  $V_{DD}$  = 28 Vdc,  $I_{DQ(Carrier)}$  = 130 mA,  $V_{GS(Peaking)}$  = 3.75 Vdc, 2496–2690 MHz Bandwidth

| P <sub>out</sub> @ 3 dB Compression Point (3)                                                                                   | P3dB               | _ | 55.0  | — | W     |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------|---|-------|---|-------|
| AM/PM<br>(Maximum value measured at the P3dB compression point across<br>the 2496–2690 MHz frequency range.)                    | Φ                  | _ | -12.5 |   | 0     |
| VBW Resonance Point<br>(IMD Third Order Intermodulation Inflection Point)                                                       | VBW <sub>res</sub> | — | 180   | — | MHz   |
| Quiescent Current Accuracy over Temperature <sup>(4)</sup><br>with 3.6 kΩ Gate Feed Resistors (–30 to 85°C) Stage 1+2 (Carrier) | Δl <sub>QT</sub>   | _ | 6.5   | _ | %     |
| Gain Flatness in 194 MHz Bandwidth @ P <sub>out</sub> = 5.6 W Avg.                                                              | G <sub>F</sub>     | — | 0.3   | — | dB    |
| Gain Variation over Temperature<br>(-40°C to +85°C)                                                                             | ΔG                 | — | 0.031 | — | dB/°C |
| Output Power Variation over Temperature<br>(-40°C to +85°C)                                                                     | ∆P3dB              | — | 0.018 | — | dB/°C |

#### Table 6. Ordering Information

| Device        | Tape and Reel Information                             | Package   |
|---------------|-------------------------------------------------------|-----------|
| A3I25X050NR1  |                                                       | OM-400-8  |
| A3I25X050GNR1 | R1 Suffix = 500 Units, 32 mm Tape Width, 13-inch Reel | OM-400G-8 |

1. Part internally input and output matched.

2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

3. P3dB = P<sub>avg</sub> + 7.0 dB where P<sub>avg</sub> is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

4. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to <a href="http://www.nxp.com/RF">http://www.nxp.com/RF</a> and search for AN1977 or AN1987.

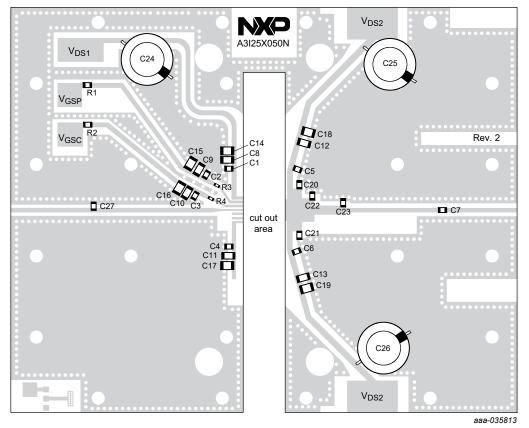



Figure 3. A3I25X050N Production Test Circuit Component Layout

| Part                         | Description                                   | Part Number        | Manufacturer |
|------------------------------|-----------------------------------------------|--------------------|--------------|
| C1, C2, C3, C4, C5, C6, C7   | 10 pF Chip Capacitor                          | 600F100JT250XT     | ATC          |
| C8, C9, C10, C11, C12, C13   | 1 μF Chip Capacitor                           | GRM31CR72A105KA01L | Murata       |
| C14, C15, C16, C17, C18, C19 | 10 μF Chip Capacitor                          | GRM32EC72A106KE05L | Murata       |
| C20                          | 1.5 pF Chip Capacitor                         | 600F1R5BT250XT     | ATC          |
| C21                          | 1.6 pF Chip Capacitor                         | 600F1R6BT250XT     | ATC          |
| C22                          | 0.5 pF Chip Capacitor                         | 600F0R5BT250XT     | ATC          |
| C23                          | 0.7 pF Chip Capacitor                         | 600F0R7BT250XT     | ATC          |
| C24, C25, C26                | 330 µF, 63 V Electrolytic Capacitor           | MCRH63V337M13X21RH | Multicomp    |
| C27                          | 0.6 pF Chip Capacitor                         | 600F0R6BT250XT     | ATC          |
| R1, R2                       | 0 Ω, 1/8 W Chip Resistor                      | CRCW08050000Z0EA   | Vishay       |
| R3, R4                       | 3.57 kΩ, 1/10 W Chip Resistor                 | RG1608P-3571-B-T5  | Susumu       |
| PCB                          | Rogers RO4350B, 0.020″, ε <sub>r</sub> = 3.66 | D122762            | MTL          |

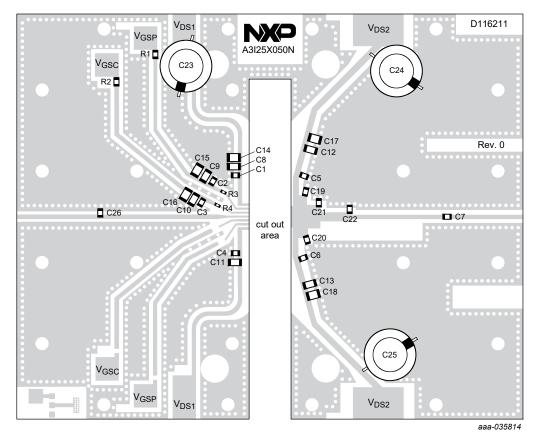
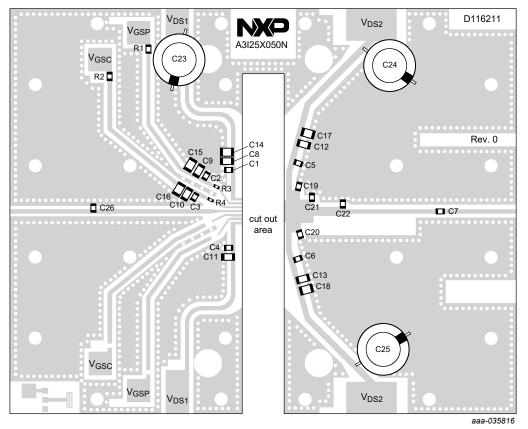
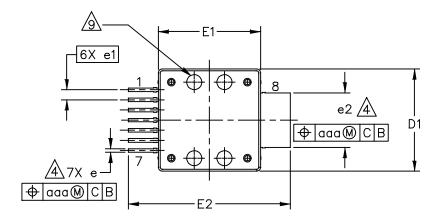
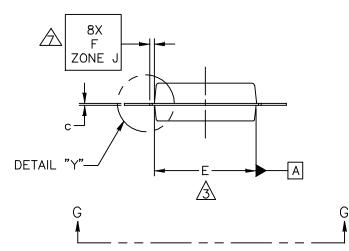


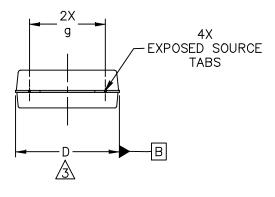

Figure 4. A3I25X050N Characterization Test Circuit Component Layout — 2496–2690 MHz

| Part                                | Description                                   | Part Number        | Manufacturer |
|-------------------------------------|-----------------------------------------------|--------------------|--------------|
| C1, C2, C3, C4, C5, C6, C7          | 10 pF Chip Capacitor                          | 600F100JT250XT     | ATC          |
| C8, C9, C10, C11, C12, C13          | 1 μF Chip Capacitor                           | GRM31CR72A105KA01L | Murata       |
| C14, C15, C16, C17, C18             | 10 μF Chip Capacitor                          | GRM32EC72A106KE05L | Murata       |
| C19                                 | 1.5 pF Chip Capacitor                         | 600F1R5BT250XT     | ATC          |
| C20                                 | 1.6 pF Chip Capacitor                         | 600F1R6BT250XT     | ATC          |
| C21 (P <sub>out</sub> = 5.6 W Avg.) | 0.5 pF Chip Capacitor                         | 600F0R5BT250XT     | ATC          |
| C21 (P <sub>out</sub> = 8.7 W Avg.) | 0.3 pF Chip Capacitor                         | 600F0R3BT250XT     | ATC          |
| C22                                 | 0.7 pF Chip Capacitor                         | 600F0R7BT250XT     | ATC          |
| C23, C24, C25                       | 330 µF, 63 V Electrolytic Capacitor           | MCRH63V337M13X21RH | Multicomp    |
| C26                                 | 0.6 pF Chip Capacitor                         | 600F0R6BT250XT     | ATC          |
| R1, R2                              | 0 Ω, 1/8 W Chip Resistor                      | CRCW08050000Z0EA   | Vishay       |
| R3, R4                              | 3.57 kΩ, 1/10 W Chip Resistor                 | RG1608P-3571-B-T5  | Susumu       |
| PCB                                 | Rogers RO4350B, 0.020″, ε <sub>r</sub> = 3.66 | D116211            | MTL          |

Table 8. A3I25X050N Characterization Test Circuit Component Designations and Values — 2496–2690 MHz

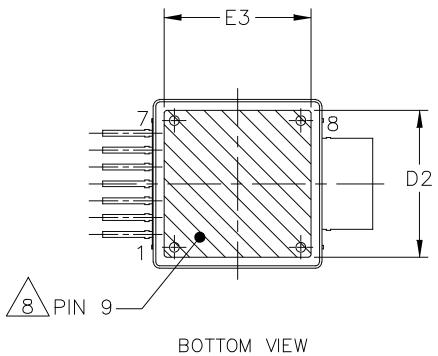


Figure 5. A3I25X050N Test Circuit Component Layout - 2300-2400 MHz


| Table 9. A3I25X050N Test Circuit Component Designations and Values — 2300–2400 MHz |             |                  |  |
|------------------------------------------------------------------------------------|-------------|------------------|--|
| Dent                                                                               | Description | David Maria Iana |  |

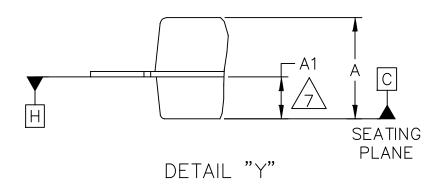
| Part                       | Description                                 | Part Number        | Manufacturer |
|----------------------------|---------------------------------------------|--------------------|--------------|
| C1, C2, C3, C4, C5, C6, C7 | 10 pF Chip Capacitor                        | 600F100JT250XT     | ATC          |
| C8, C9, C10, C11, C12, C13 | 1 μF Chip Capacitor                         | GRM31CR72A105KA01L | Murata       |
| C14, C15, C16, C17, C18    | 10 μF Chip Capacitor                        | GRM32EC72A106KE05L | Murata       |
| C19                        | 1.5 pF Chip Capacitor                       | 600F1R5BT250XT     | ATC          |
| C20                        | 1.8 pF Chip Capacitor                       | 600F1R8BT250XT     | ATC          |
| C21                        | 1 pF Chip Capacitor                         | 600F1R0BT250XT     | ATC          |
| C22                        | 0.9 pF Chip Capacitor                       | 600F0R9BT250XT     | ATC          |
| C23, C24, C25              | 330 µF, 63 V Electrolytic Capacitor         | MCRH63V337M13X21RH | Multicomp    |
| C26                        | 0.6 pF Chip Capacitor                       | 600F0R6BT250XT     | ATC          |
| R1, R2                     | 0 Ω, 1/8 W Chip Resistor                    | CRCW08050000Z0EA   | Vishay       |
| R3, R4                     | 3.57 kΩ, 1/10 W Chip Resistor               | RG1608P-3571-B-T5  | Susumu       |
| PCB                        | Rogers RO4350B, 0.020", $\epsilon_r = 3.66$ | D116211            | MTL          |

S0T1981-1









| ONXP B.V.                  | ALL RIGHTS RESERVED |                 | DATE: 29  | OCT 2019 |
|----------------------------|---------------------|-----------------|-----------|----------|
| MECHANICAL OUTLINE         | STANDARD:           | DRAWING NUMBER: | REVISION: | PAGE:    |
| PRINT VERSION NOT TO SCALE | NON-JEDEC           | 98ASA01217D     | С         | 1 OF 3   |

## A3I25X050N A3I25X050GN

RF Device Data NXP Semiconductors

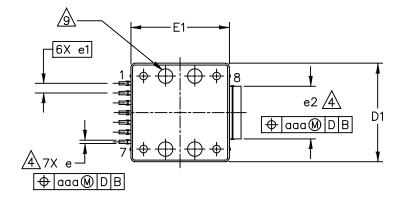


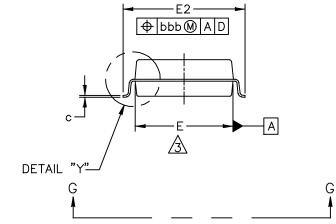
VIEW G-G

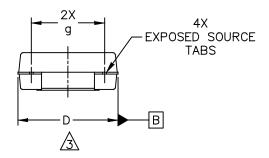


| <b>©</b> NXP B. V.         | ALL RIGHTS RESERVED |                 | DATE: 29  | 0CT 2019 |
|----------------------------|---------------------|-----------------|-----------|----------|
| MECHANICAL OUTLINE         | STANDARD:           | DRAWING NUMBER: | REVISION: | PAGE:    |
| PRINT VERSION NOT TO SCALE | NON-JEDEC           | 98ASA01217D     | С         | 2        |

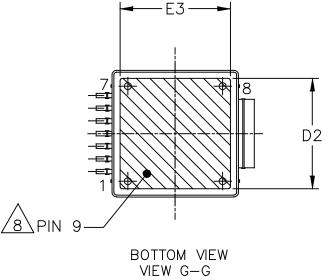
NOTES:

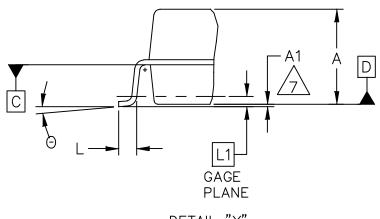

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- $\frac{3}{3}$  dimensions d & e does not reflect plastic or metal protrusions of package part line. Allowable protrusion is .006 inch (0.15 mm).
- A. DIMENSIONS e & e2, DO NOT INCLUDE DAMBAR PROTRUSIONS. ALLOWABLE PROTRUSIONS IS .005 INCH (0.13 MM).
- 5. DATUM PLANE H IS LOCATE AT THE BOTTOM OF THE LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- 6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.
- /7. DIMENSION A1 APPLIES WITHIN ZONE J ONLY.
- 8. HATCHING AREA REPRESENTS EXPOSED AREA OF THE HEATSINK. DIMENSIONS D1 AND E1 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF THE EXPOSED AREA OF HEAT SLUG.


9. DIMPLED HOLE REPRESENTS PIN 1.


|     | IN   | СН   | MILLIN | IETER  |               | IN   | СН   | MILLIN | IETER |  |  |
|-----|------|------|--------|--------|---------------|------|------|--------|-------|--|--|
| DIM | MIN  | MAX  | MIN    | MAX    | DIM           | MIN  | MAX  | MIN    | MAX   |  |  |
| А   | .147 | .153 | 3.73   | 3.89 e |               | .040 | BSC  | 1.02   | BSC   |  |  |
| A1  | .059 | .065 | 1.50   | 1.65   | e2            | .213 | .219 | 5.41   | 5.56  |  |  |
| D   | .398 | .402 | 10.11  | 10.21  | с             | .007 | .009 | 0.18   | 0.23  |  |  |
| D1  | .402 | .406 | 10.21  | 10.31  | g             | .295 | .305 | 7.49   | 7.75  |  |  |
| D2  | .343 | .353 | 8.71   | 8.97   | aaa .005 0.13 |      | .005 |        | 13    |  |  |
| E   | .398 | .402 | 10.11  | 10.21  |               |      |      |        |       |  |  |
| E1  | .402 | .406 | 10.21  | 10.31  |               |      |      |        |       |  |  |
| E2  | .636 | .644 | 16.15  | 16.36  |               |      |      |        |       |  |  |
| E3  | .343 | .353 | 8.71   | 8.97   |               |      |      |        |       |  |  |
| F   | .025 | BSC  | 0.635  | BSC    |               |      |      |        |       |  |  |
| е   | .011 | .017 | 0.28   | 0.43   |               |      |      |        |       |  |  |
|     |      |      |        |        |               |      |      |        |       |  |  |

| C NXP B.V.                 | ALL RIGHTS RESERVED |                 | DATE: 2   | 9 OCT 2019 |
|----------------------------|---------------------|-----------------|-----------|------------|
| MECHANICAL OUTLINE         | STANDARD:           | DRAWING NUMBER: | REVISION: | PAGE:      |
| PRINT VERSION NOT TO SCALE | NON-JEDEC           | 98ASA01217D     | С         | 3          |


S0T2000-1








| © NXP B.V.                 | ALL RIGHTS RESERVED |                 | DATE: 12  | JUN 2019 |
|----------------------------|---------------------|-----------------|-----------|----------|
| MECHANICAL OUTLINE         | STANDARD:           | DRAWING NUMBER: | REVISION: | PAGE:    |
| PRINT VERSION NOT TO SCALE | NON-JEDEC           | 98ASA01336D     | А         | 1 OF 3   |





DETAIL "Y"

| <b>O</b> NXP B. V.         | ALL RIGHTS RESERVED |                 | DATE: 12  | 2 JUN 2019 |
|----------------------------|---------------------|-----------------|-----------|------------|
| MECHANICAL OUTLINE         | STANDARD:           | DRAWING NUMBER: | REVISION: | PAGE:      |
| PRINT VERSION NOT TO SCALE | NON-JEDEC           | 98ASA01336D     | А         | 2          |

SOT2000-1

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

 $\underline{3}$  DIMENSIONS D & E DOES NOT REFLECT PLASTIC OR METAL PROTRUSIONS OF PACKAGE PART LINE. ALLOWABLE PROTRUSION IS .006 INCH (0.15 MM).

- A. DIMENSIONS e & e2, DO NOT INCLUDE DAMBAR PROTRUSIONS. ALLOWABLE PROTRUSIONS IS .005 INCH (0.13 MM).
- 5. DATUM PLANE C IS LOCATE AT THE BOTTOM OF THE LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- 6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE C.

 $\overline{/2}$  DIMENSION A1 IS MEASURED WITH REFERENCE TO DATUM D. THE POSITIVE VALUE IMPLIES THAT THE BOTTOM OF THE PACKAGE IS HIGHER THAN THE BOTTOM OF THE LEAD.

8. HATCHING AREA REPRESENTS EXPOSED AREA OF THE HEATSINK. DIMENSIONS D1 AND E1 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF THE EXPOSED AREA OF HEAT SLUG.

9. DIMPLED HOLE REPRESENTS PIN 1.

|     | INCH     |      | MILLIMETER |       |     | INCH     |      | MILLIMETER |      |
|-----|----------|------|------------|-------|-----|----------|------|------------|------|
| DIM | MIN      | MAX  | MIN        | MAX   | DIM | MIN      | MAX  | MIN        | MAX  |
| A   | .147     | .153 | 3.73       | 3.89  | е   | .011     | .017 | 0.28       | 0.43 |
| A1  | .000     | .005 | 0.00       | 0.13  | e1  | .040 BSC |      | 1.02 BSC   |      |
| D   | .398     | .402 | 10.11      | 10.21 | e2  | .213     | .219 | 5.41       | 5.56 |
| D1  | .402     | .406 | 10.21      | 10.31 | с   | .007     | .009 | 0.18       | 0.23 |
| D2  | .343     | .353 | 8.71       | 8.97  | g   | .295     | .305 | 7.49       | 7.75 |
| E   | .398     | .402 | 10.11      | 10.21 | θ   | 1.       | 9.   | 1.         | 9.   |
| E1  | .402     | .406 | 10.21      | 10.31 | -   |          |      | 0.13       |      |
| E2  | .495     | .505 | 12.57      | 12.83 | aaa | .005     |      |            |      |
| E3  | .343     | .353 | 8.71       | 8.97  | bbb | .010     |      | 0.25       |      |
| L   | .026     | .032 | 0.66       | 0.81  |     |          |      |            |      |
| L1  | .010 BSC |      | 0.25 BSC   |       |     |          |      |            |      |
|     |          |      |            |       |     |          |      |            |      |

|     | C NXP B.V.           | ALL RIGHTS RESERVED |                 | DATE: 1   | 2 JUN 2019 |
|-----|----------------------|---------------------|-----------------|-----------|------------|
| MFC | CHANICAL OUTLINE     | STANDARD:           | DRAWING NUMBER: | REVISION: | PAGE:      |
|     | VERSION NOT TO SCALE | NON-JEDEC           | 98ASA01336D     | А         | 3          |

# PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

## **Application Notes**

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family

## Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

## **Development Tools**

Printed Circuit Boards

# **REVISION HISTORY**

The following table summarizes revisions to this document.

| Revision | Date      | Description                   |
|----------|-----------|-------------------------------|
| 0        | Dec. 2019 | Initial release of data sheet |

#### How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: <a href="https://www.nw.com/SalesTermsandConditions">nxp.com/SalesTermsandConditions</a>.

NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.