NXP Semiconductors

Technical Data

Power Amplifier Module for LTF and

Power Amplifier Module for LTE and 5G

The A3M37TL039 is a fully integrated Doherty power amplifier module designed for wireless infrastructure applications that demand high performance in the smallest footprint. Ideal for applications in massive MIMO systems, outdoor small cells and low power remote radio heads. The field-proven LDMOS power amplifiers are designed for TDD and FDD LTE systems.

3600-3800 MHz

 Typical LTE Performance: P_{out} = 7 W Avg., V_{DD} = 26 Vdc, 1 × 20 MHz LTE, Input Signal PAR = 8 dB @ 0.01% Probability on CCDF. (1)

Carrier Center Frequency	Gain (dB)	ACPR (dBc)	PAE (%)
3610 MHz	28.2	-27.6	39.2
3700 MHz	28.2	-30.0	39.5
3790 MHz	28.2	-30.7	38.8

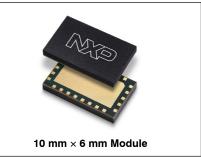
3700-4100 MHz

• Typical LTE Performance: P_{out} = 1.6 W Avg., V_{DD} = 30 Vdc, 1 × 20 MHz LTE, Input Signal PAR = 8 dB @ 0.01% Probability on CCDF. (1)

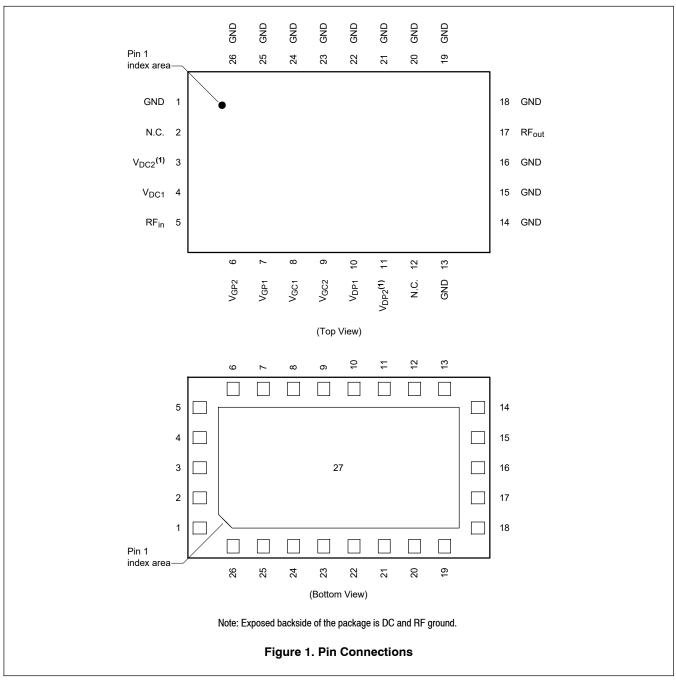
Carrier Center Frequency	Gain (dB)	ACPR (dBc)	PAE (%)
3710 MHz	28.8	-35.9	19.9
3900 MHz	28.3	-38.2	19.6
4090 MHz	27.9	-35.0	18.0

^{1.} All data measured with device soldered in NXP reference circuit.

Features


- Frequency: 3600–3800 MHz
- · Advanced high performance in-package Doherty
- Fully matched (50 ohm input/output, DC blocked)
- · Designed for low complexity analog or digital linearization systems

Document Number: A3M37TL039 Rev. 2, 12/2020


VRoHS

A3M37TL039

3600-3800 MHz, 28 dB, 7 W Avg. AIRFAST POWER AMPLIFIER MODULE

1. V_{DC2} and V_{DP2} are DC coupled internal to the package and must be powered by a single DC power supply.

Table 1. Functional Pin Description

Pin Number	Pin Function	Pin Description
1, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27	GND	Ground
2, 12	N.C.	No Connection
3	V _{DC2}	Carrier Drain Supply, Stage 2
4	V _{DC1}	Carrier Drain Supply, Stage 1
5	RF _{in}	RF Input
6	V _{GP2}	Peaking Gate Supply, Stage 2
7	V _{GP1}	Peaking Gate Supply, Stage 1
8	V _{GC1}	Carrier Gate Supply, Stage 1
9	V _{GC2}	Carrier Gate Supply, Stage 2
10	V _{DP1}	Peaking Drain Supply, Stage 1
11	V _{DP2}	Peaking Drain Supply, Stage 2
17	RF _{out}	RF Output

Table 2. Maximum Ratings

Rating	Symbol	Value	Unit
Gate-Bias Voltage Range	V _G	-0.5 to +10	Vdc
Operating Voltage Range	V_{DD}	24 to 30	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	125	°C
Peak Input Power (3700 MHz, Pulsed CW, 10 μsec(on), 10% Duty Cycle)	P _{in}	25	dBm

Table 3. Lifetime

Characteristic	Symbol	Value	Unit
Mean Time to Failure	MTTF	>10	Years
Case Temperature 125°C, 7 W Avg., 30 Vdc			

Table 4. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	1B
Charge Device Model (per JS-002-2014)	СЗ

Table 5. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 6. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Тур	Range	Unit
Carrier Stage 1 — On Characteristics				
Gate Threshold Voltage (1) $(V_{DS} = 10 \text{ Vdc}, I_D = 2 \mu\text{Adc})$	V _{GS(th)}	1.3	±0.4	Vdc
Gate Quiescent Voltage (V _{DS} = 26 Vdc, I _{DQ1A} = 23 mAdc)	V _{GS(Q)}	2.0	±0.4	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 26 Vdc, I _{DQ1A} = 23 mAdc, Measured in Functional Test)	$V_{GG(Q)}$	5.6	±1.4	Vdc
Carrier Stage 2 — On Characteristics				
Gate Threshold Voltage (1) $(V_{DS} = 10 \text{ Vdc}, I_D = 19 \mu\text{Adc})$	V _{GS(th)}	1.3	±0.4	Vdc
Gate Quiescent Voltage (V _{DS} = 26 Vdc, I _{DQ2A} = 72 mAdc)	V _{GS(Q)}	1.8	±0.4	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 26 Vdc, I _{DQ2A} = 72 mAdc, Measured in Functional Test)	$V_{GG(Q)}$	2.8	±1.2	Vdc
Peaking Stage 1 — On Characteristics ⁽¹⁾		•		•
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 4 \mu\text{Adc})$	V _{GS(th)}	1.3	±0.4	Vdc
Gate Quiescent Voltage (V _{DS} = 26 Vdc, I _{DQ1A} = 19 μAdc)	V _{GS(Q)}	1.3	±0.4	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 26 Vdc, I _{DQ1A} = 355 μAdc, Measured in Functional Test)	$V_{GG(Q)}$	1.3	±0.4	Vdc
Peaking Stage 2 — On Characteristics ⁽¹⁾				
Gate Threshold Voltage $(V_{DS}=10~Vdc,~I_{D}=38~\mu Adc)$	V _{GS(th)}	1.3	±0.4	Vdc
Gate Quiescent Voltage (V _{DS} = 26 Vdc, I _{DQ2A} = 19 μAdc)	V _{GS(Q)}	1.3	±0.4	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 26 Vdc, I _{DQ2A} = 355 μAdc, Measured in Functional Test)	$V_{GG(Q)}$	1.3	±0.4	Vdc

^{1.} Each side of device measured separately.

(continued)

Table 6. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Functional Tests — 3600 MHz ⁽¹⁾ (In NXP Doherty Production ATE ⁽²⁾ Test Fixture, 50 ohm system) V _{DD} = 26 Vdc, I _{DQ1A} = 23 mA,					
$I_{DQ2A} = 72 \text{ mA}, V_{GS1B} = (V_t - 0.31) \text{ Vdc}, V_{GS2B} = (V_t - 0.3) \text{ Vdc}, P_{out} = 7 \text{ W Avg.}, 1 - \text{tone CW}, f = 3600 \text{ MHz}.$					
Gain	G	26.1	28.1		dB
Drain Efficiency	η_{D}	34.7	41.0	_	%

P3dB

Functional Tests — 3800 MHz ⁽¹⁾ (In NXP Doherty Production ATE ⁽²⁾ Test Fixture, 50 ohm system) V_{DD} = 26 Vdc, I_{DQ1A} = 23 mA, I_{DQ2A} = 72 mA, V_{GS1B} = (V_t – 0.31) Vdc, V_{GS2B} = (V_t – 0.3) Vdc, P_{out} = 7 W Avg., 1-tone CW, f = 3800 MHz.

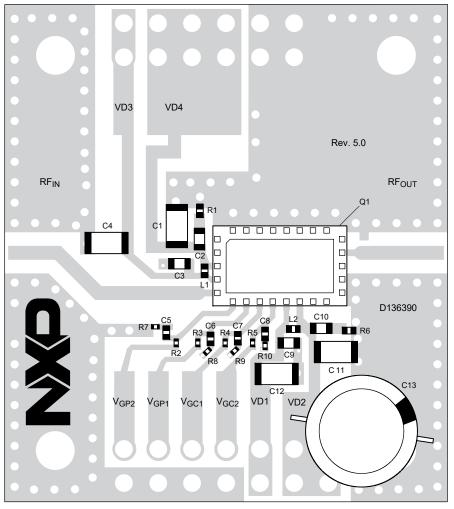
Gain	G	26.1	27.4	_	dB
Drain Efficiency	η _D	33.9	38.7	_	%
Pout @ 3 dB Compression Point	P3dB	45.9	46.7	_	dBm

Wideband Ruggedness $^{(3)}$ (In NXP Doherty Power Amplifier Module Reference Circuit, 50 ohm system) $I_{DQ1A} = 23$ mA, $I_{DQ2A} = 72$ mA, $V_{GSP1} = 1.35$ Vdc, $V_{GSP2} = 1.28$ Vdc, f = 3700 MHz, Additive White Gaussian Noise (AWGN) with 10 dB PAR

ISBW of 400 MHz at 30 Vdc, 3 dB Input Overdrive from 7 W Avg.	No Device Degradation
Modulated Output Power	

Typical Performance (3) (In NXP Doherty Power Amplifier Module Reference Circuit, 50 ohm system) $V_{DD} = 26$ Vdc, $I_{DQ1A} = 23$ mA, $I_{DQ2A} = 72$ mA, $V_{GSP1} = 1.35$ Vdc, $V_{GSP2} = 1.28$ Vdc, $P_{out} = 7$ W Avg., 3700 MHz

VBW Resonance Point, 2-tone, 1 MHz Tone Spacing (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	290	_	MHz
Quiescent Current Accuracy over Temperature (4) with 2.2 kΩ Gate Feed Resistors (–40 to 85°C) Stage 1	ΔI_{QT}		6.7		%
with 2.2 k Ω Gate Feed Resistors (–40 to 85°C) Stage 2		_	7.8	_	
1-carrier 20 MHz LTE, 8 dB Input Signal PAR			I	I	l.
Gain	G	_	28.2	_	dB
Power Added Efficiency	PAE	_	39.5	_	%
Adjacent Channel Power Ratio	ACPR	_	-30.0	=	dBc
Adjacent Channel Power Ratio	ALT1	_	-39.6	=	dBc
Adjacent Channel Power Ratio	ALT2	_	-50.1	=	dBc
Gain Flatness (5)	G _F	_	0.1	_	dB
Fast CW, 27 ms Sweep	<u> </u>				
Pout @ 3 dB Compression Point	P3dB	_	47.2	=	dBm
AM/PM @ P3dB	Φ	_	-26	_	٥
Gain Variation @ Avg. Power over Temperature (-40°C to +105°C)	ΔG	=	0.026	_	dB/°C
P3dB Variation over Temperature (–40°C to +105°C)	P3dB	_	0.006	_	dB/°C


Table 7. Ordering Information

Pout @ 3 dB Compression Point

Device	Tape and Reel Information	Package
A3M37TL039T2	T2 Suffix = 2,000 Units, 24 mm Tape Width, 13-inch Reel	10 mm × 6 mm Module

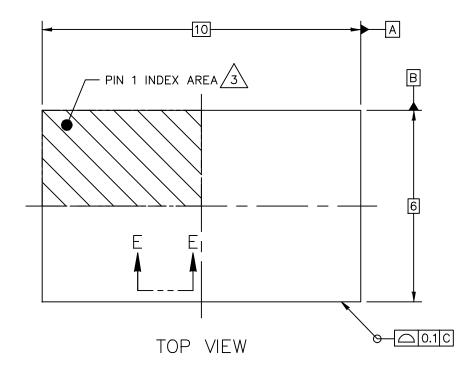
- 1. Part input and output matched to 50 ohms.
- 2. ATE is a socketed test environment.
- 3. All data measured in fixture with device soldered in NXP reference circuit.
- 4. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to https://www.nxp.com/RF and search for AN1977 or AN1987.
- 5. Gain flatness = $Max(G(f_{Low} \text{ to } f_{High})) Min(G(f_{Low} \text{ to } f_{High}))$

dBm

aaa-037621

Figure 2. A3M37TL039 Reference Circuit Component Layout

Table 8. A3M37TL039 Reference Circuit Component Designations and Values


Part	Description	Part Number	Manufacturer
C1, C4, C11, C12	10 μF Chip Capacitor	GRM31CR61H106KA12	Murata
C2, C3, C9, C10	1 μF Chip Capacitor	GRM188R61H105KAAL	Murata
C5, C6, C7, C8	0.1 μF Chip Capacitor	GRM155R61H104KE19	Murata
C13	220 μF, 100 V Electrolytic Capacitor	MCGPR100V227M16X26	Multicomp
L1, L2	30 Ω Ferrite Bead	BLM15PD300SN1	Murata
Q1	Power Amplifier Module	A3M37TL039	NXP
R1, R6	5.1 Ω, 1/10 W Chip Resistor	ERJ-2GEJ5R1X	Panasonic
R2, R3, R4, R5	2.2 kΩ, 1/20 W Chip Resistor	ERJ-1GNJ222C	Panasonic
R7, R8, R9, R10	0 Ω, 1/20 W Chip Resistor	ERJ-1GN0R00C	Panasonic
PCB	Rogers RO4350B, 0.020", $\epsilon_r = 3.66$	D136390	MTL

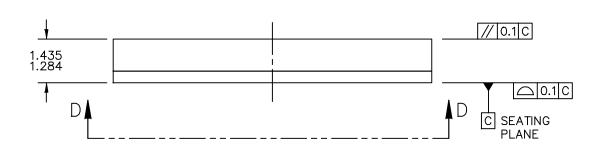
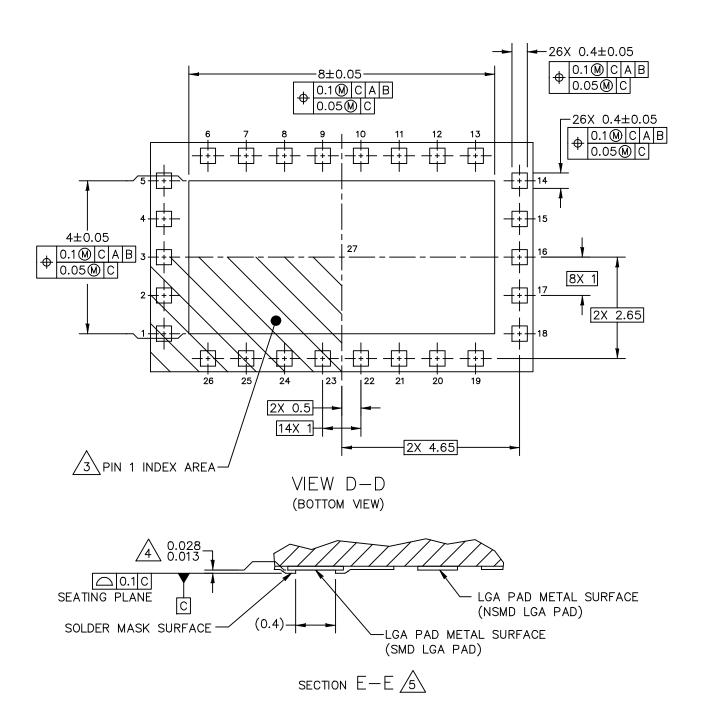
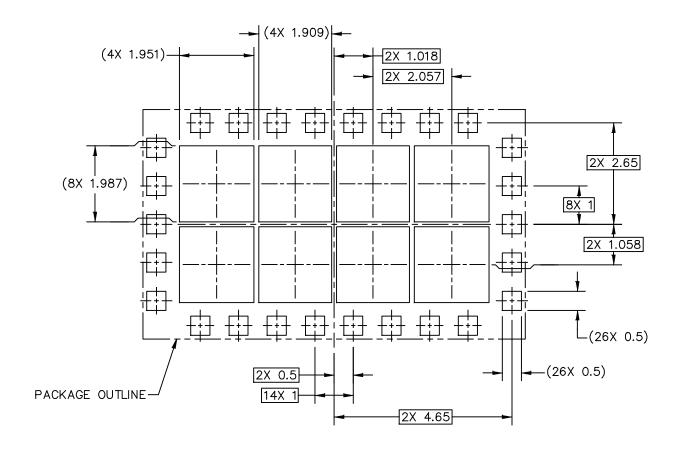


Figure 3. Product Marking

H-PLGA-27 I/O 10 X 6 X 1.365 PKG, 1 PITCH

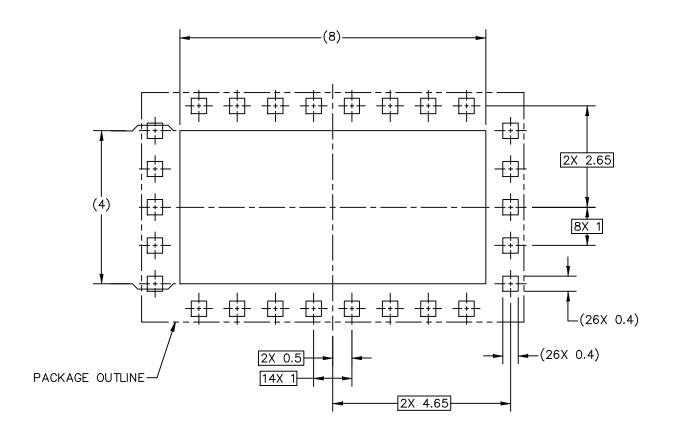

SOT1831-2



MXP B.V. ALL RIGHTS RESERVED			DATE: 2	6 SEP 2019
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01540D	0	1 OF 6

A3M37TL039

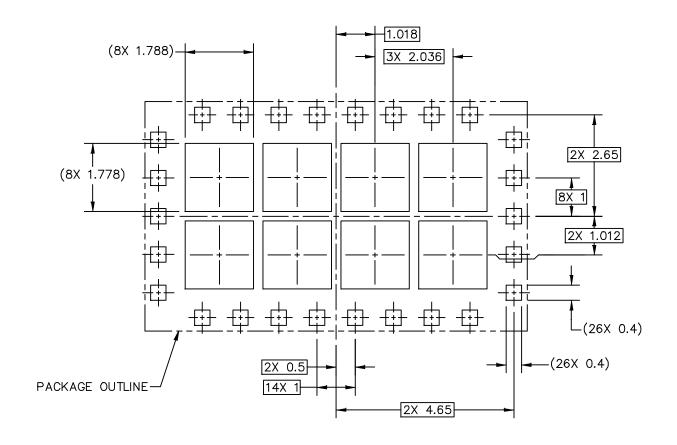
NXP B.V. ALL RIGHTS RESERVED			DATE: 2	6 SEP 2019
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01540D	0	2



PCB DESIGN GUIDELINES - SOLDER MASK OPENING PATTERN

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

NXP B.V.	ALL RIGHTS RESERVED		DATE: 2	6 SEP 2019
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01540D	0	3


A3M37TL039

PCB DESIGN GUIDELINES - I/O PADS AND SOLDERABLE AREAS

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

NXP B.V.	ALL RIGHTS RESERVED		DATE: 2	6 SEP 2019
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01540D	0	4

RECOMMENDED STENCIL THICKNESS 0.125

PCB DESIGN GUIDELINES - SOLDER PASTE STENCIL

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

■ NXP B.V.	ALL RIGHTS RESERVED		DATE: 2	6 SEP 2019
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01540D	0	5

A3M37TL039

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3.

PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

4.

DIMENSION APPLIES TO ALL LEADS AND FLAG.

THE BOTTOM VIEW SHOWS THE SOLDERABLE AREA OF THE PADS. THE CENTER PAD (PIN 27) IS SOLDER MASK DEFINED. SOME PERIPHERAL PADS ARE SOLDER MASK DEFINED (SMD) AND OTHERS ARE NON-SOLDERMASK DEFINED (NSMD).

NXP B.V. ALL RIGHTS RESERVED

DATE: 26 SEP 2019

I MECHANICAL OUTLINE I STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE NON—JEDEC	98ASA01540D	0	6

PRODUCT DOCUMENTATION AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- · AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- · AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family

Development Tools

· Printed Circuit Boards

FAILURE ANALYSIS

At this time, because of the physical characteristics of the part, failure analysis is limited to electrical signature analysis. In cases where NXP is contractually obligated to perform failure analysis (FA) services, full FA may be performed by third party vendors with moderate success. For updates contact your local NXP Sales Office.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Sept. 2020	Initial release of data sheet
1	Oct. 2020	Added 3700-4100 MHz performance table, p. 1
2	Dec. 2020	Table 4, ESD Protection Characteristics: updated Human Body Model ESD from Class 1A to 1B to reflect actual Qual Report results, p. 4

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, the Freescale logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2020 NXP B.V.

Document Number: A3M37TL039

Rev. 2, 12/2020