NXP Semiconductors

Technical Data

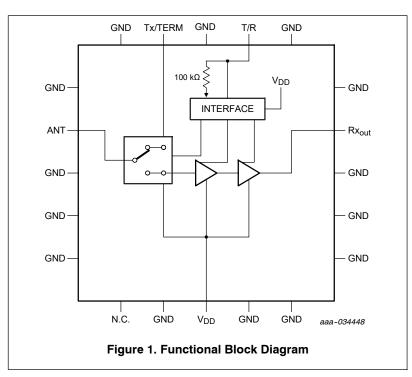
RF Front-End Receiver Module

The AFRX5G372 is an integrated multi-chip module designed for TD-LTE and 5G mMIMO applications. It consists of a T/R switch, a two-stage low noise amplifier and support circuitry to work from a 5 V supply and a 1.8 V logic-level T/R control.

The device has Tx and Rx modes, which are controlled via T/R logic signaling. In Tx mode, internal RF switches direct the signal from the antenna port to an external termination resistor. In Rx mode, internal RF switches direct the signal from the antenna port to internal LNAs. While in Tx mode, the LNA is in idle mode with minimized current consumption.

Features

- Frequency: 3300–5000 MHz
- Rx mode (3300–4200 MHz)
 - Gain: 34.0 dB
 - IIP3: –2 dBm
 - NF: 1.4 dB
- Rx mode (4400–5000 MHz)
 - Gain: 34.0 dB
 - IIP3: -4 dBm
 - NF: 1.6 dB
- Tx mode
 - Robustness short-term incidents: 39.0 dBm (Avg.), 47.0 dBm (Peak)
 - Robustness indefinitely incidents: 37.0 dBm (Avg.), 45.0 dBm (Peak)
- ANT port return loss:
 - Rx mode: -18 dB
 - Tx mode: -18 dB
- Reverse isolation: 60 dB
- Insertion loss ANT to Tx/TERM port: -0.85 dB
- 1.8 V logic JEDEC-compliant control interface
- 5 V supply
- Power consumption:
 - Rx mode: 500 mW
 - Tx mode: 75 mW
- · 50 ohm operation with no external matching
- Compact 6.2 mm × 6.2 mm LGA package, which is compatible with QFN 6 × 6 footprint



3300–5000 MHz, 34 dB, 1.4 dB NF AIRFAST RX MODULE

Document Number: AFRX5G372 Rev. 0, 05/2020

Table 1. Maximum Ratings

Symbol	Value	Unit
V _{DD}	5.25	Vdc
T _{stg}	–65 to +150	°C
T _C	-40 to +105	°C
TJ	150	°C
Pin	20	dBm
P _{in}	39.0	dBm
	V _{DD} T _{stg} T _C T _J P _{in}	V _{DD} 5.25 T _{stg} -65 to +150 T _C -40 to +105 T _J 150 P _{in} 20

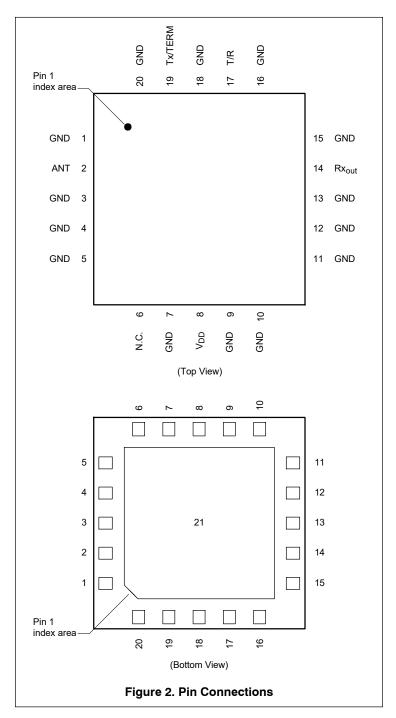
Table 2. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	2
Charge Device Model (per JS-002-2014)	СЗ

Table 3. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

1. Continuous use at maximum temperature will affect MTTF.


Characteristic	Symbol	Min	Тур	Max	Unit
Rx Mode					
Gain (ANT to Rx _{out})	Gp	—	34.0	—	dB
Third Order Input Intercept Point	IIP3	—	-2	_	dBm
P _{in} @ 1 dB Compression Point	P1dBi	—	-15	_	dBm
Noise Figure ANT to Rx _{out} 100°C 25°C	NF	_	2.0 1.4		dB
Return Loss ANT Port Rx _{out} Port	RL	—	-18 -20		dB
Reverse Isolation	S ₁₂ ²	—	60	_	dB
Tx Mode					
Return Loss ANT Port Tx Port	RL		-18 -17		dB
Insertion Loss ANT to Tx/TERM	IL	—	-0.85	—	dB
Pout @ 0.1 dB Compression Point (ANT to Tx)		—	44	_	dBm
Power Handling — Derating and Incidence					
Tx Port, Normal Operation: 3500 MHz, -40°C to +100°C, P _{avg} , 20 MHz LTE, 8 dB PAR Incident on ANT P _{in}			37.0	—	dBm
Tx Port, Short-Term Incident (10S): 3500 MHz, -40° C to $+100^{\circ}$ C, P _{avg} , 20 MHz LTE, 8 dB PAR Incident on ANT P _{in}	—		39.0	_	dBm
Rx Port, Normal Operation: 3500 MHz, -40°C to +100°C, P _{avg} , CW, Incident on ANT P _{in}			20.0		dBm
- Timing					
ANT to Rx_{out} Gain Setting Time to within 0.3 dB of Final after T/R Command, $-10^{\circ}C$ to $+105^{\circ}C$	—	_	< 1.0	—	μsec
ANT to Termination Path Insertion Loss Setting Time to within 0.3 dB of Final after T/R Command, -10°C to +105°C	_		0.5	_	μsec
Γ/R Interface		1	1	1	
	VIL	_	_	0.6825	V
JEDEC T/R Interface Voltage	V _{IH}	1.0725			V

Characteristic	Symbol	Min	Тур	Max	Unit
Rx Mode			•	•	
Gain (ANT to Rx _{out})	Gp		34.0	_	dB
Third Order Input Intercept Point	IIP3		-4	_	dBm
P _{in} @ 1 dB Compression Point	P1dBi	_	-16	_	dBm
Noise Figure ANT to Rx _{out} 100°C 25°C	NF		2.2 1.6	_	dB
Return Loss ANT Port Rx _{out} Port	RL		18 20	_	dB
Reverse Isolation	S ₁₂ ²	_	60	_	dB
x Mode					
Return Loss ANT Port Tx Port	RL		-18 -18	_	dB
Insertion Loss ANT to Tx/TERM			-0.85	_	dB
ower Handling — Derating and Incidence					
Tx Port, Normal Operation: 4700 MHz, -40°C to +100°C, P _{avg} , 20 MHz LTE, 8 dB PAR Incident on ANT P _{in}	—	—	37.0	_	dBm
Tx Port, Short-Term Incident (10S): 4700 MHz, -40° C to $+100^{\circ}$ C, P _{avg} , 20 MHz LTE, 8 dB PAR Incident on ANT P _{in}		_	39.0	_	dBm
Rx Port, Normal Operation: 4700 MHz, -40°C to +100°C, P _{avg} , CW, Incident on ANT P _{in}			20.0	_	dBm
iming					
ANT to Rx_{out} Gain Setting Time to within 0.3 dB of Final after T/R Command, $-10^{\circ}C$ to $+105^{\circ}C$	_	_	< 1.0	_	μsec
ANT to Termination Path Insertion Loss Setting Time to within 0.3 dB of Final after T/R Command,10°C to +105°C			0.5	_	μsec
/R Interface	-	-	•	·	-
	VIL	—	_	0.6825	V
JEDEC T/R Interface Voltage	V _{IH}	1.0725		—	V
able 6. Ordering Information		-	•	•	
Device Tape and Reel Informat	tion			Package	

T4 Suffix = 2,500 Units, 16 mm Tape Width, 13-inch Reel

AFRX5G372T4

6.2 mm × 6.2 mm Module

Table 7. Functional Pin Description

Pin Number	Pin Function	Pin Description
1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 18, 20, 21	GND	Ground
2	ANT	Antenna Port/RF Input Port
6	N.C.	No Connection
8	V _{DD}	DC Bias Voltage
14	Rx _{out}	RF Output for LNA
17(1)	T/R	Digital Control for Transmit/Receive Switch (100 $k\Omega$ pulldown is integrated internally)
19	Tx/TERM	50 Ω Termination Port (user will need to provide 50 Ω termination externally)

1. T/R = Low, ANT to Tx. T/R = High, ANT to $Rx_{out.}$

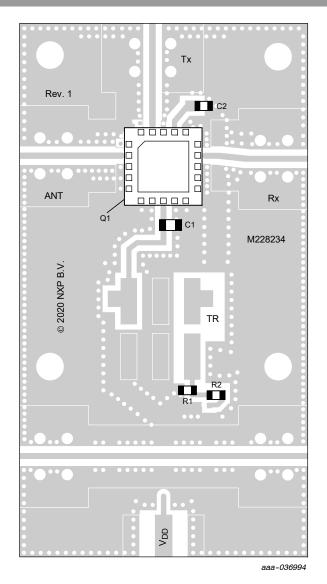
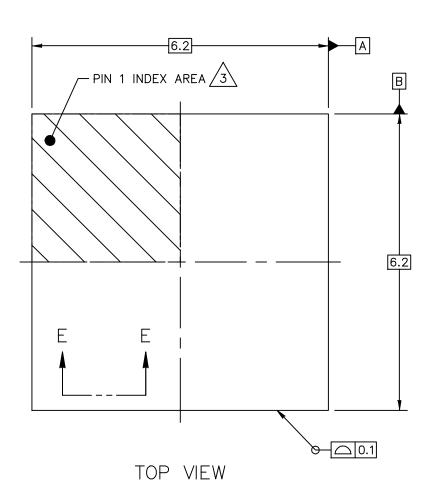


Figure 3. AFRX5G372 Application Circuit Component Layout

Part	Description	Part Number	Manufacturer
C1	10 µF Chip Capacitor	GRM188R61A106ME69	Murata
C2	10 pF Chip Capacitor	GRM1555C1E100JA01	Murata
Q1	Receiver Module	AFRX5G372	NXP
R1	10 kΩ, 1/16 W Chip Resistor	RC0402JR-0710KL	Yageo
R2	20 kΩ, 1/16 W Chip Resistor	RC0402JR-0720KL	Yageo
PCB	Rogers R04350B, 0.010", $\epsilon_r = 3.66$	M228234	MTL


NOTE: R1 and R2 components are needed only when the NXP application circuit (Figure 3) is used in conjunction with a jumper for the convenient application of a T/R control voltage. R1 and R2 are not required in customer end application board designs.

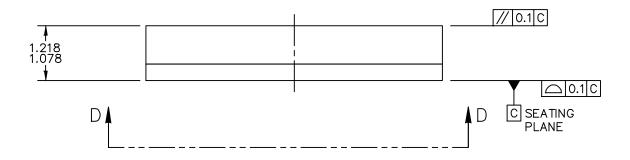
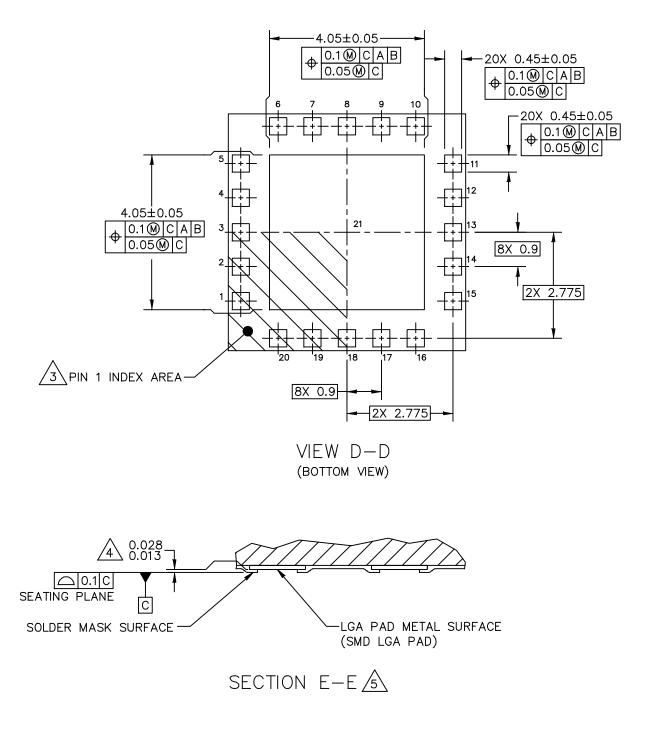
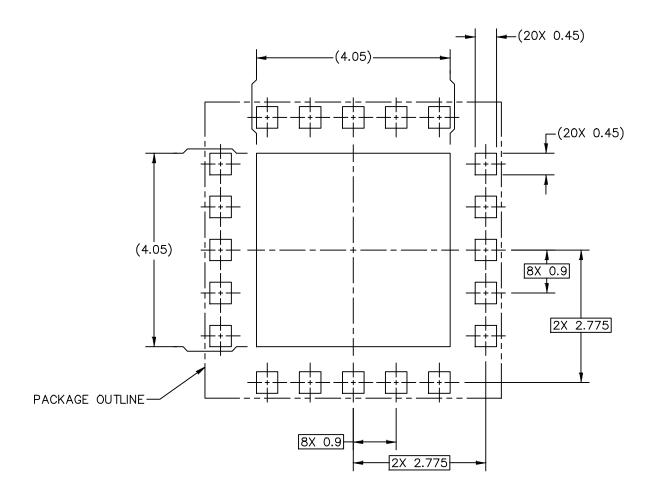

AFRX5G372

Figure 4. Product Marking


SOT1996-1

_	C NXP B.V.	ALL RIGHTS RESERVED		DATE: 2	9 AUG 2018
	MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
	PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01306D	0	1 OF 6

AFRX5G372


NXP B.V	. ALL RIGHTS RESERVED		DATE: 2	9 AUG 2018
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01306D	0	2

PACKAGE OUTLINE

PCB DESIGN GUIDELINES - SOLDER MASK OPENING PATTERN

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

• NXP B.V.	ALL RIGHTS RESERVED		DATE: 2	9 AUG 2018
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01306D	0	3

PCB DESIGN GUIDELINES - I/O PADS AND SOLDERABLE AREAS

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

S NXP B.V.	ALL RIGHTS RESERVED		DATE: 2	9 AUG 2018
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01306D	0	4

PACKAGE OUTLINE

RECOMMENDED STENCIL THICKNESS 0.125

PCB DESIGN GUIDELINES - SOLDER PASTE STENCIL

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

_	C NXP B.V. ALL RIGHTS RESERVED			DATE: 2	9 AUG 2018
	MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
	PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01306D	0	5

NOTES:

5.

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.
- 4. DIMENSION APPLIES TO ALL LEADS AND FLAG.
 - THE BOTTOM VIEW SHOWS THE SOLDERABLE AREA OF THE PADS. THE CENTER PAD (PIN 21) AND THE PERIPHERAL PADS ARE SOLDER MASK DEFINED (SMD).

S NXP B.V.	S NXP B.V. ALL RIGHTS RESERVED			9 AUG 2018
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01306D	0	6

PRODUCT TOOLS

Refer to the following resource to aid your design process.

Development Tools

Printed Circuit Boards

FAILURE ANALYSIS

At this time, because of the physical characteristics of the part, failure analysis is limited to electrical signature analysis. In cases where NXP is contractually obligated to perform failure analysis (FA) services, full FA may be performed by third party vendors with moderate success. For updates contact your local NXP Sales Office.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description	
0	May 2020	Initial release of data sheet	

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions.

NXP, the NXP logo, Freescale, the Freescale logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2020 NXP B.V.