
Metrowerks CodeWarrior™ Development Studio is a complete integrated development

environment for hardware bring-up through programming embedded applications. By

combining state-of-the-art debugging technology with the simplicity of a robust devel-

opment environment, Metrowerks CodeWarrior Development Studio takes C/C++

source-level debugging and embedded application development to a new level.

The development studio provides a highly visual and automated framework that

accelerates the development of even the most complex applications, so creating

applications is fast and easy for developers of all experience levels.

It is a single development environment that is consistent across all supported

workstations and personal computers. On each of the supported platforms, the

features and uses are identical. There is no need to worry about host-to-host

incompatibilities.

The CodeWarrior Development Studio contains all of the tools needed to complete

a major embedded development project:

• Project Manager: Handles top-level file management for the software developer;
organizes project items by major group, such as files and targets; tracks state
information (such as file modification dates); determines build order and inclu-
sion of specific files in each build; coordinates with plug-ins to provide services
like version-control and RTOS support.

• Text Editor: Enables the creation and manipulation of source code and other
text files. Completely integrated with other IDE functions.

• Search Engine: Finds a specific text string replaces found text with substitute
text; allows use of regular expressions; provides file-comparison and differenc-
ing functionality

• Source Browser: Maintains a symbolics database for the program; examples
of symbols include names and values of variables and functions; uses the
symbolics database to assist code navigation; links every symbol to other
locations in the code related to that symbol; processes both object-oriented
and procedural languages

• Build System: Uses the compiler to generate relocatable object code from
source code and uses the linker to generate a final executable image from
object code

° CodeWarrior C/C++* Compiler suite – Includes the industry-leading
C/C++* language CodeWarrior Compiler, including a Standard Template
Library (STL) and a variety of other tools

• Source-Level Debugger – Provides a high-performance windowed source-level
debugger equipped with the latest productivity enhancing graphical features to
shorten board bring-up and application development time; Uses the symbolics
database to provide source-level debugging; supports symbol formats such as
CodeView, Debug With Arbitrary Records Format (DWARF), and STABS

• Instruction Set Simulator – Integrated instruction set simulator for jump-start-
ing application development (Available for specific architectures only)

Embedded Systems
Development Tools
from Metrowerks

Version 2Development Studio

www.metrowerks.com

*C++ not available for all architectures

Project Manager File Editor

Preference Panel

Class Browser

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CodeWarrior Project Manager

The CodeWarrior Development Studio’s Project Manager provides a powerful

framework to simplify organizing, configuring, and building complex development

projects; automating many aspects of managing a project.

The Project Manager component performs automatic dependency analysis and gen-

erates the appropriate project context. The powerful graphical user interface enables

the user to configure a project by selecting from menus of options covering everything

from optimization level, debugging level, and language-specific features to target type

(executable or library) and much more. The Project Wizard takes the developer step-

by-step through a series of questions to create a working project. Example stationery

(a template) is provided as a starting place for the application.The stationery includes

a linker command file and project files that makes it possible to associate debug con-

nections easily. Stationery is provided for every supported CPU and programming lan-

guage supported by the CodeWarrior Compiler.

CodeWarrior Text Editor

CodeWarrior Development Studio includes a full-featured, user-configurable, win-

dowed text editor with features such as syntax coloring and auto-indenting. Syntax

coloring helps quickly identify language keywords and constructs, including com-

ments, strings, constants, and more. The CodeWarrior Text Editor implements all of

the standard functions that are expected from an editor, including a powerful

search feature that can find values within multiple files. The CodeWarrior Text Editor

is fully configurable, so the developer can change the key bindings, font type, font

size, color scheme, syntax coloring, and more. The CodeWarrior Text Editor also pro-

vides a single, consistent editor interface for all host and target development com-

binations. It's an integral part of the overall CodeWarrior Development Studio and

can be invoked and controlled as an object from other components within the

CodeWarrior Development Studio.

Search Engine

Industry observers estimate that software developers spend nearly half their time

searching for basic information buried in application code. As applications grow in

complexity, the time required to find, analyze, and modify code grows as a proportion

of total engineering effort. The CodeWarrior Search Engine reduces this largely unpro-

ductive time by integrating code browsing and searching into a single tool.

The CodeWarrior Search Engine provides fast, semantic code navigation that

makes it possible to find specific code structures, so finding a symbol or pattern

among hundreds of directories and files is fast and easy.

The seamless integration between the CodeWarrior Search Engine and the text edi-

tor means that all changes in the code are immediately reflected in the browser.

No recompilation is necessary. With the CodeWarrior Search Engine, the mouse

can be used to navigate between the different symbols. Just place the mouse cur-

sor on a symbol and right-click to invoke the text editor, which will open the file

and highlight the exact location of the selected symbol.

Plug-in Facility

The plug-in facility of the CodeWarrior Development Studio lets you extend it to

include new features or to replace existing features. For example, you can devel-

op a plug-in to create a new preference panel or you can write a plug-in that links

the CodeWarrior Development Studio to a different compiler or linker.

We provide standard plug-in options for code management system interfaces like

ClearCase and interfaces to other standard editors like Slik Edit, etc. Full docu-

mentation and source code is provided to assist you in creating your own plug-ins.

CodeWarrior Development Studio uses plug-ins to provide most of its services. For

example, the standard compiler consists of a compiler plug-in with a small num-

ber of panel plug-ins to let users control its settings.

CodeWarrior™ Development Studio

Register Window

Source Debugging

Register Details

Variables

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CodeWarrior Debugger

By combining a state-of-the-art IDE with the simplicity of a windowed environment,

Metrowerks CodeWarrior Debugger takes C/C++ source-level debugging to a new

level. The CodeWarrior Debugger assembles a wide array of high-powered compo-

nents and features into a powerful graphical user interface to help get projects com-

pleted and to market ahead of schedule and under budget.

All of the CodeWarrior Debugger hardware and software features provide simple

access and execution. Any debug operation desired is done through an intuitive

“point-and-click” interface to make debugging fast, flexible, and easy.

Window-based Workspace Environment

The CodeWarrior Debugger enables developers to operate more efficiently with user

friendly debugging, multiple windows, point-and-click capabilities and outline format.

CodeWarrior Debugger’s interface allows users to customize the workspace to fit their

needs: to create custom buttons, toolbars, and menus, and to “float” windows that are

an integral part of the debugger so that they become independent windows on the

workstation. This provides increased visibility and control over the display of informa-

tion in the debugger. Windows that have been separated from the debugger can also

be “docked” to rejoin the main debugger workspace controls.

The CodeWarrior Debugger’s workspace allows users to focus on complex debugging

tasks. Each workspace contains just the set of views needed for the task at hand. The

application workspace provides a high-level view of the target software, while the hard-

ware workspace provides a low-level view of the target hardware.

Seamless Integration

The CodeWarrior Debugger is fully integrated with a variety of run control devices like

Metrowerks PowerTAP PRO and CodeTAP PRO, resulting in optimized run control and

faster downloads.

Full-Featured Debugging

The CodeWarrior Debugger provides a rich set of debugging features designed to

help the developer quickly find and repair software defects, including:

• Breakpoints: Breakpoints are easily set in source code by clicking on a “code-dot”
in the window margin that indicates the point where breakpoint insertion is possi-
ble. Once the breakpoint has been set, the “code-dot” changes appearance to indi-
cate the setting. Removal of the breakpoint is just as easy; simply click the “dot”
and the breakpoint is automatically removed. Performing a right click on the break-
point enables the behavior of the breakpoint to be changed to make it conditional.
It can also be changed to a hardware breakpoint, or attached as an action to the
breakpoint that is performed once the breakpoint is hit.

• Eventpoints: Eventpoints are used to perform a task when program execution
arrives at a specific line of source code or when an associated conditional
expression evaluates to true. You can set an eventpoint that performs a task
such as running a script, playing a sound, or collecting trace data. An event-
point is equivalent to a breakpoint that performs a task other than halting pro-
gram execution. Eventpoints are:

° Log Point - Logs or speaks a string or expression and records messages to
the Log window

° Pause Point - Pauses execution just long enough to refresh debugger data

° Script Point - Runs a script, application, or other item

° Skip Point - Skips execution of a line of source code

° Sound Point - Plays a sound

° Trace Collection Off - Stops collecting trace data for the Trace Window

° Trace Collection On - Starts collecting trace data for the Trace Window

• Watchpoints: Watchpoints halt program execution when a specific location in
memory changes value. After you set a watchpoint at a key point in memory,
you can halt program execution when that point in memory changes value or,
for some devices, when the memory location is accessed, examine the call
chain, check register and variable values, and step through your code. You can
also change values and alter the flow of normal program execution. A watch-
point is equivalent to a memory breakpoint. Watchpoints states:

° Enabled - Indicates that the watchpoint is currently enabled. The debugger
halts program execution at an enabled watchpoint.

° Disabled - Indicates the watchpoint is currently disabled. The debugger does
not halt program execution at a disabled watchpoint. Use the Condition col-
umn of the Breakpoints window to set a conditional watchpoint. A conditional
watchpoint has an associated conditional expression. The debugger evaluates
the expression to determine whether to halt program.

• Special Breakpoints: Special breakpoints halt program execution for very spe-
cific reasons:

° Program execution arrives at the beginning of the function main()

° A C++ or Java exception occurs

° An event occurs that the debugger plug-in defines as a break event You can-
not change or delete special breakpoints, but you can enable and disable
them.

CodeWarrior™ Development Studio

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CodeWarrior™ Development Studio

• Single-stepping: The CodeWarrior Debugger supports the following single-step-
ping mechanisms:

° Step Into – Traces execution of every individual instruction

° Step Over – Does not trace into the called function

° Step Out – Brings execution back to the calling function

• Tooltips – Enables the developer to view crucial information easily. Data Tooltips
display a quick, one-time view of a variable, while Icon Tooltips display an item's
function when the cursor is placed over it.

• Variable View on Mouse Over: Get the current value of a specific variable in
the source display

• Simple module and function browsing: Enables access to an internal table of
all modules, global variables, and functions in a given debug context. With a
single right-click, it’s possible to edit code, run it to a target address or set
breakpoints at entry or exit.

• Display stack trace: Provides an easy display of all procedures (functions)
active in the calling chain, and enables the developer to follow the progress of
a program through its hierarchical call structure. The trace information includes
the name of each procedure, module name, line number at source-level, physi-
cal address in memory and the name and value of each argument.

• Local variables display: Shows the variables local to the current function. As
running code moves from function to function, the contents of the local vari-
ables view change to display the local variables of the current function being
viewed.

• Displaying data: Offers three ways to view data:

° Data Tooltip – Displays the values of a variable directly from source code.

° Instant Watch – Provides a view of the variable’s data in a popup view that
allows pointers to be followed.

° Watch view – Allows for monitoring and updating data in a separate window.

• Memory view: Gives programmers the ability to display and modify the contents
of target memory. Features include automatic alignment, find in memory, the
ability to compare two memory regions or memory and a file, uploading memo-
ry contents to a file, filling memory with a known value, freezing the memory
view to prevent target access, invoking multiple memory views, cutting, pasting
and more. Memory can be formatted in a variety of ways, including hexadeci-
mal, decimal, octal, ASCII, binary, big/little endian among others.

• Register view: Provides extensive information on CPU core and peripheral regis-
ters, as well as up to 128 user-defined custom registers. All registers displayed
can also include bit level details on register contents. Bit level details are for-
matting details that break down and describe the contents of bit-mapped regis-
ters, making it easy to interpret the register contents. Bit field values are dis-
played as English-language equivalents of bit field patterns. Picking a value
from a pull-down list or manually entering the register value can result in bit
field value changes within the registers.

• Cache view: View cache information for the target processor.

• Object file format: Supports STABS and, ELF/DWARF 1 and 2 object file out-
put formats.

• Multi-core/CPU debugging: Enables debugging of multi-core System on Chip
(SoC) and multiple-CPU targets. Every core has its own independent register view,
memory view, stack view, disassembly view, source view and more. It's not neces-
sary to run multiple instances of the debugger (as other products require). And it’s
possible to debug a mixture of different types of cores. Features like “stop all
cores” and “run all cores,” as well as single-stepping some cores while the other
cores are running provide the power to synchronize and control debugging sessions

to match the target behavior. The CodeWarrior Debugger is designed to support
multiple debug sessions running on one or more hosts simultaneously.

• Mixed language debugging: Supports mixed language debugging in C, C++, and
Assembly Language. When moving between source modules written in different lan-
guages, the CodeWarrior Debugger automatically analyzes the language of the file
in view and adjusts the expression evaluation and data display accordingly.

• Target connection wizard: Simplifies and automates the task of defining new
connection definitions based on hardware and communication parameters.

• Profile Window: Examine profile data that you collect from executing code.
Examining this data helps you improve the performance of your project. You use
profiler API or #pragma directives in your source code to turn on the profiler,
collect profiling data and turn off the profiler.*

• Command-Line Window: Supports a command-line interface to some of its
features. You can use the command-line interface together with various scripting
engines, such as the Microsoft® Visual Basic® script engine, the Java™ script
engine, TCL, Python, and Perl. You can also issue a command line that saves a
log file of command-line activity.

Board bring-up

The CodeWarrior Debugger helps developers deal with the complexity of bringing up

a board by providing complete control over all board settings, including initial reg-

ister values and memory configuration. After initial target register values are

defined, the debugger restores these values each time the user connects to their

board. Then an assembler source file can be created from these settings as an

addition to the project. The CodeWarrior Debugger also includes a comprehensive

set of hardware diagnostics and robust flash programming to support an extensive

list of flash devices.

* Not available on all Architectures

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CodeWarrior™ Development Studio

Flash programming

Program on-board Flash devices from within the same graphical user interface used

to troubleshoot the application. No boot code is required to run on the target sys-

tem in order to use the programming features of the CodeWarrior Flash

Programmer.

Logic Analyzer

At the most complex of hardware development is the need to troubleshoot low-level

hardware components. This type of activity gives rise to the need for developers to

utilize the CodeWarrior Debugger in concert with a Logic Analyzer to understand

complex signals on an embedded hardware platform.

Metrowerks has implemented such an interface to seamlessly integrate Logic

Analyzer communications into the CodeWarrior Debugger. Features included are:

• Trace On/Off

• Trace Everything

• Trace History

• Start Trace Based on Specified Address

• Start Trace on Address Range

• Trace All in Address Range

• Breakpoint on Trigger

• Trigger Tracing on Breakpoint

• Support for: Tektronix and Agilent

Hardware Diagnostics

The CodeWarrior Development Studio comes with diagnostics that enable the

developer to determine if the basic hardware is functional. These tests include:

• Memory Read / Write: The Memory Read / Write component performs diagnos-
tic tests for performing memory reads and writes over the remote connection
interface

• Scope Loop: The Scope Loop component configures diagnostic tests for per-
forming repeated memory reads and writes over the remote connection inter-
face. The tests repeat until you stop them. By performing repeated read and
write operations, you can use a scope analyzer or logic analyzer to debug the
hardware device

• Memory Tests: The Memory Tests component lets you perform three different
tests on the hardware:

° Walking Ones

° Address

° Bus Noise

You can specify any combination of the tests and the number of passes to perform

them. For each pass, the hardware diagnostic tools perform the tests in turn, until all

passes are complete.The tools tally memory test failures and display them in a log win-

dow after all passes are complete. Errors resulting from memory test failures do not

stop the testing process; however, fatal errors immediately stop the testing process.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

© Copyright. 2003. Metrowerks Corp. All rights reserved. Metrowerks, the Metrowerks logo, and CodeWarrior are trademarks or registered trademarks
of Metrowerks Corp. in the U.S. and/or other countries. All other tradenames and trademarks are the property of their respective owners and are here-
by recognized. Printed in U.S.A.

DS91516A

CodeWarrior™ Development Studio

Metrowerks United States
7700 West Parmer Lane

Austin, TX 78729

Phone +1.512.996.5300

Fax: +1.512.996.4910

E-mail: info@metrowerks.com

Metrowerks Europe
Metrowerks GmbH

Schatzbogen 7, D-81829 München

Phone: +49 611 3611 850

Fax: +49 611 3611 85 1

E-mail: info_europe@Metrowerks.com

Metrowerks Japan
Shibuya Mitsuba Bldg. 5F Udagawa-cho 20-11

Shibuya-ku Tokyo 150-0042 Japan

Phone +81.3.3780.6091

Fax +81.3.3780.6092

E-mail: asia-sales@metrowerks.com

CodeWarrior Compiler

The Metrowerks CodeWarrior Development Studio combines industry leading com-

ponents to offer the embedded developer all the necessary tools to create, build,

and deploy quality products to their customers. One major component of the IDE

is the CodeWarrior Compiler. It combines industry-proven optimization technology

with the versatility and control needed to fully exploit today’s complex PC CPUs. The

CodeWarrior Compiler’s design is based on a partitioned architecture that results in

proven reliability and flexibility for embedded applications, as well as interoper-

ability with other CodeWarrior development products.

The CodeWarrior Compiler provides language-specific front ends for C and C++ that

parse the original source code into a common token-based representation of the

source. Optimizations are applied to this intermediate language representation.

Also, the fully optimized code is converted into the appropriate machine code via a

robust, table-driven back-end module. Metrowerks’ close relationship with silicon

partners, combined with the CodeWarrior Compiler’s modular design, make it pos-

sible for the CodeWarrior portfolio to provide highly optimized compilers for new sil-

icon with very short lead times. The CodeWarrior compiler’s modular architecture

enables you to immediately gain maximum performance from your compiler/silicon

investment.

Proven Optimization Technology

Metrowerks CodeWarrior compiler produces exceptionally fast, compact, high-qual-

ity object code. A large number of highly refined, global, local, CPU-specific, and

application–specific (profile-driven) optimization techniques enable the program-

mer to fine-tune the compiler’s output to match the application’s requirements.

Programmers can select various optimizations to balance execution speed with

code size while intelligent defaults can generate optimal code out of the box.

Advanced C/C++ Compiler – Designed for highly embedded development support.

Key features include:

• Advanced optimization technology generates fast, compact, high-quality code

• Field-proven reliability to meet extreme embedded design constraints

• Compatibility with the latest ANSI C++ specs (ISO/IEC 14882:1998E) and the
ANSI C spec (X3.159-1989)

• Standards conformance (ANSI and EABI) for maximum tool interoperability

• Complete control of code and data memory allocation

• Options to pack or byte-swap structures to match existing data types

• Supports position independent code (PIC) and data (PID)

• Board support routines for bare board applications (no OS)

• Proven performance with industry leading RTOSes

Assembler – full-featured macro assembler that is invoked automatically by the

Project Manager or as a complete standalone assembler for generating object modules.

Key features include:

• Conditional macro assembler with over thirty directives

• Unlimited number of symbols

• Debug information for source level debugging of assembly programs

Linker – offers precise control over the allocation, placement, and alignment of

code and data in memory. Key features include:

• Links object modules into absolute or relocatable modules

• Reads/ writes/ mixes ELF and STABS object files

• Generates fully EABI compliant ELF/ DWARF 2.0 output for consumer tool inter-
operability

Libraries – the Metrowerks Standard Libraries is included:

• Complete C++ library (STL)

• Complete, reentrant C libraries compliant with ANSI/ISO, POSIX, and SVID
standards

• Multithreading

• Full complement of math libraries, including IEEE-754 Appendix functions

• Efficient floating-point libraries for fast execution of calculations

Profiler – profiling options contained in the compiler instrument application code,

which when executed save profile information that can be viewed by the profiler util-

ity. This profile data can also be automatically to the compiler for additional code

optimization based on execution paths.

Documentation – the IDE and CodeWarrior compiler ship with extensive docu-

mentation specific to your chosen architecture. Getting Started Guide enables

you to quickly get up-to-speed and enhances out-of-box experience. In addition

to hardcopy, all manuals are available in HTML and PDF formats.

CodeWarrior Instruction Set Simulator

The CodeWarrior Instruction Set Simulator provides a quick and easy way to begin

developing code without the requirement for access to hardware. The ability to

develop software without requiring hardware provides a number of significant bene-

fits to software engineers, including the ability to run code before custom hardware is

available, running/testing code when hardware resources are limited, and learning

how to use the development environment without first having to get hardware running.

The CodeWarrior ISS provides full instruction simulation and fully supports standard

C library I/O. It is fully integrated with the CodeWarrior IDE, and also provides a full

command-line interface. The CodeWarrior ISS is available for specific platforms.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

