NXP Semiconductors

Data Sheet Summary for MC33772

Battery cell controller IC

The 33772 is a SMARTMOS lithium ion Battery Cell Controller IC designed for automotive applications, such as hybrid electric (HEV) and electric vehicles (EV) along with industrial applications, such as energy storage systems (ESS), and uninterruptible power supply (UPS) systems. The device performs ADC conversions of the differential cell voltages and current, as well as battery Coulomb counting and battery temperature measurements. The information is digitally transmitted through SPI or transformer isolation to a microcontroller for processing.

Features

- 5.0 V \leq V_{PWR} \leq 30 V operation, 40 V transient
- 3 to 6 cells management
- · Isolated 2.0 Mbps differential communication or 4.0 Mbps SPI
- Addressable on initialization
- · Synchronized cell voltage/current measurement with Coulomb count
- Total stack voltage measurement
- Seven GPIO/temperature sensor inputs
- 5.0 V at 5.0 mA reference supply output
- · Automatic over/undervoltage & temperature detection routable to fault pin
- Integrated Sleep mode over/undervoltage & temperature monitoring
- Onboard 300 mA passive cell balancing with diagnostics
- · Hot plug capable
- Detection of internal and external faults, as open lines, shorts, and leakages
- Single chip ASIL C capable
- · Fully compatible with the MC33771 for max 14 cells

BATTERY CELL CONTROLLER IC

48-PIN LQFP-EP

Applications

- Automotive: 12 V and high-voltage battery packs
- E-bikes, e-scooters
- · Energy storage systems
- Uninterruptible power supply (UPS)

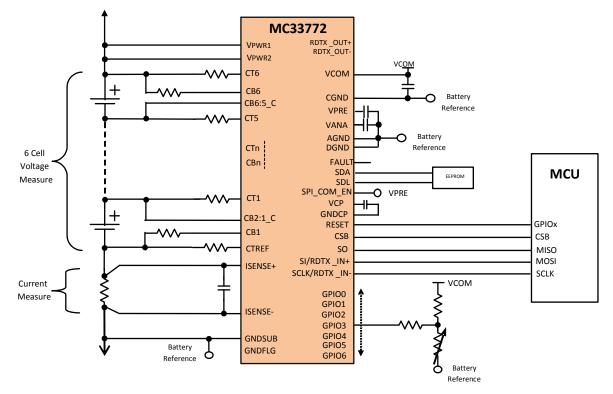


Figure 1. Simplified application diagram of SPI communication context

* This document contains certain information on a new product. Specifications and information herein are subject to change without notice.

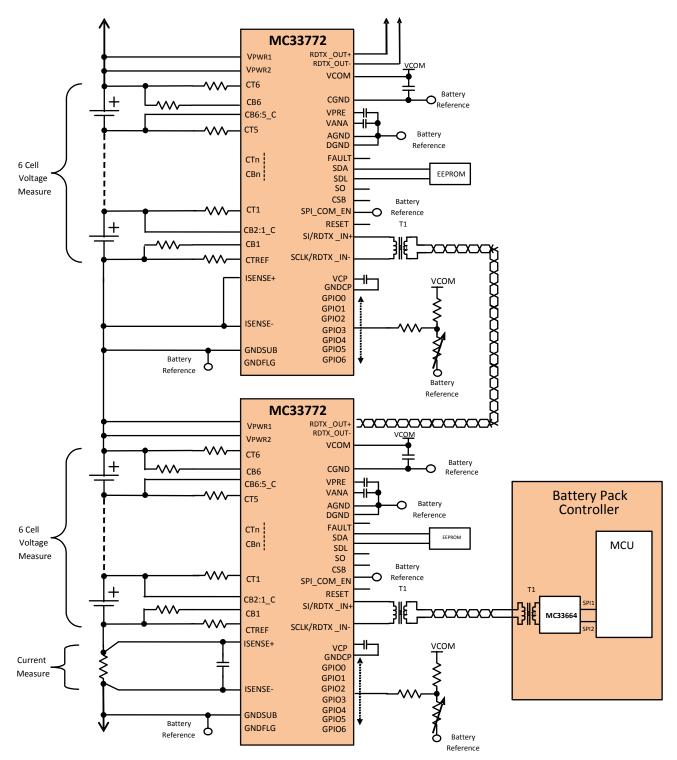


Figure 2. Simplified application diagram of twisted pair line communication with isolation transformers

Table 1. Orderable part variations

Part number ⁽¹⁾	Communication type	Calibration type	Temperature	Number of cells	Package
PC33772ASP1	SPI version	Type N			
PC33772ATP1	TPL version	Type F	-40 °C to 125 °C Three to six ce		
PC33772ASP3	SPI version			Three to giv calls	48 Pin LQFP-EP
PC33772ATP3	TPL version			Three to six cens	40 PIII LQFP-EP
PC33772ASP5	SPI version				
PC33772ATP5	TPL version	Туре Т			

Notes

1. To order parts in Tape & Reel, add the R2 suffix to the part number.

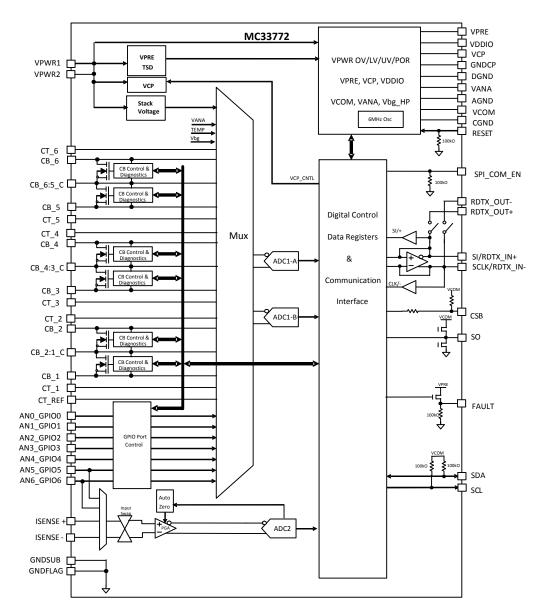


Figure 3. Simplified internal block diagram

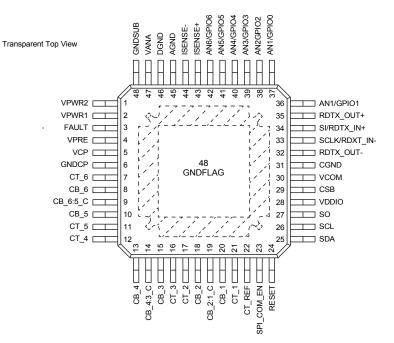


Figure 4. 33772 pinout diagram

Table 2. 33772 pin definitions

Pin number	Pin name	Definition
1	VPWR2	Power input to the 33772
2	VPWR1	Power input to the 33772
3	FAULT	Fault output dependent on user defined internal or external faults. If not used, it must be left open.
4	VPRE	Pre-regulator voltage. Connect to a 470 nF capacitor
5	VCP	Charge pump capacitor. Connect to a 10 nF
6	GNDCP	Charge pump capacitor ground
7	CT_6	Cell pin 6 input. Terminate to LPF resistor
8	CB_6	Cell balance driver. Terminate to cell 6 cell balance load resistor
9	CB_6:5_C	Cell balance 6:5 common. Terminate to cell 6 & 5 common pin
10	CB_5	Cell balance driver. Terminate to cell 5 cell balance load resistor
11	CT_5	Cell pin 5 input. Terminate to LPF resistor
12	CT_4	Cell pin 4 input. Terminate to LPF resistor
13	CB_4	Cell balance driver. Terminate to cell 4 cell balance load resistor
14	CB_4:3_C	Cell balance 4:3 common. Terminate to cell 4 & 3 common pin
15	CB_3	Cell balance driver. Terminate to cell 3 cell balance load resistor
16	CT_3	Cell pin 3 input. Terminate to LPF resistor

Pin number	Pin name	Definition	
17	CT_2	Cell pin 2 input. Terminate to LPF resistor	
18	CB_2	Cell balance driver. Terminate to cell 2 cell balance load resistor	
19	CB_2:1_C	Cell Balance 2:1 common. Terminate to cell 2 & 1 common pin	
20	CB_1	Cell balance driver. Terminate to cell 1 cell balance load resistor	
21	CT_1	Cell pin 1 input. Terminate to LPF resistor	
22	CT_REF	Cell pin REF input. Terminate to LPF resistor	
23	SPI_COM_EN	SPI communication enable, pin must be high SPI to be active.	
24	RESET	RESET is an active high input. RESET has an internal pull-down. If not used, it can be tied to GND.	
25	SDA	I ² C data	
26	SCL	I ² C clock	
27	SO	SPI serial output	
28	VDDIO	IO voltage for I ² C and SPI interfaces. Voltage level corresponding to Logic 1 are the same as VDDIO	
29	CSB	SPI chip select	
30	VCOM	Communication regulator output, decouple with 2.2 μF ceramic	
31	CGND	Communication decoupling ground, terminate to GNDSUB	
32	RDTX_OUT-	Receive/transmit output negative	

Table 2. 33772 pin definitions (continued)

Pin number	Pin name	Definition
33	SCLK/RDTX_IN-	SPI clock or receive/transmit input negative
34	SI/RDTX_IN+	SPI serial input or receiver/transmit input positive
35	RDTX_OUT+	Receive/transmit output positive
36	AN0/GPIO0	General purpose analog input or GPIO
37 AN1/GPIO1 General purpose analog input or GPIO		General purpose analog input or GPIO
38	38 AN2/GPIO2 General purpose analog input or GPIO	
39	39 AN3/GPIO3 General purpose analog input or GPIO	
40 AN4/GPIO4 General purpose analog input or GPIO		General purpose analog input or GPIO
41	AN5/GPIO5	General purpose analog input or GPIO

VCOM Sleep Mode Pull-down Resistor

Pin number	Pin name	Definition
42	AN6/GPIO6	General purpose analog input or GPIO
43	ISENSE+	Current measurement input+
44	ISENSE-	Current measurement input-
45	AGND	Analog ground, terminate to GNDSUB
46	DGND	Digital ground, terminate to GNDSUB
47	VANA	Precision ADC analog supply. Decouple with ceramic 47 nF ceramic capacitor to AGND
48	GNDSUB	Ground reference for device, terminate to reference of battery cluster. Note: GNDREF is an alias of it.
49	GNDFLAG	Device flag, terminate to lowest potential of battery cluster

Table 3. Key parameters

Characteristics noted under SPI mode conditions 5.0 V \leq V_{PWR} \leq 30 V, TPL mode: 7.0 V \leq V_{PWR} \leq 30 V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise stated. Typical values refer to V_{PWR} = 24 V, T_A = 25 °C, unless otherwise noted. Before starting any development, it is recommended to request a copy of the full 33772 data sheet.

Symbol	Characteristic	Тур.	Unit	Notes
Power manageme	nt		1	
I _{VPWR}	Supply Current (base value) Normal mode, Cell Balance OFF, ADC Inactive, Communication Inactive, I_{VCOM} = 0 mA 	5.8	mA	
I _{VPWR(CBON)}	Supply Current adder to set all 6 Cell Balance switches ON	0.97	mA	
I _{VPWR(ADC)}	Delta Supply Current to perform ADC conversions (addend) ADC1-A,B continuously converting ADC2 continuously converting 	2.9 1.17	mA	
I _{VPWR(SS)}	Supply Current in Sleep mode, Communication Inactive, Cell Balance OFF, Oscillator Monitor ON • SPI mode • TPL mode	32 50	μΑ	
t _{VPWR(FILTER)}	V _{PWR} OV, LV, UV Filter	50	μs	
VPRE power supp	i Jy			-
V _{VPRE(UV_TH)}	Undervoltage Threshold for V _{CP} minus V _{PRE}	4.25	V	
/CP power supply	ý –		. <u>.</u>	
V _{CP(UV_TH)}	Undervoltage Threshold for V _{CP} minus V _{PRE}	1.5	V	
/COM power sup	ply			
V _{COM}	VCOM Output Voltage	5.0	V	
V _{COM(UV)}	VCOM Undervoltage Fault Threshold	4.5	V	
V _{COM_HYS}	VCOM Undervoltage Hysteresis	100	mV	
VDDIO power sup	ply			
$t_{VCOM(FLT_TIMER)}$	VCOM Undervoltage Fault Timer	10	μs	
t _{VCOM(RETRY)}	VCOM Fault Retry Timer	10	ms	

R_{VCOM(SS)}

5

2.0

kΩ

Characteristics noted under SPI mode conditions 5.0 V \leq V_{PWR} \leq 30 V, TPL mode: 7.0 V \leq V_{PWR} \leq 30 V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise stated. Typical values refer to V_{PWR} = 24 V, T_A = 25 °C, unless otherwise noted. Before starting any development, it is recommended to request a copy of the full 33772 data sheet.

Symbol	Characteristic	Тур.	Unit	Notes				
VANA power supp	ANA power supply							
V _{ANA}	VANA Output Voltage (NOT USED BY EXTERNAL CIRCUITS) Decouple with 47 nF X7R 0603 or 0402 	2.65	V					
V _{ANA(UV)}	VANA Undervoltage Fault Threshold	2.4	V					
V _{ANA_HYS}	VANA Undervoltage Hysteresis	50	mV					
t _{VANA(FLT_TIMER)}	VANA Undervoltage Fault Timer	11	μs					
V _{ANA (OV)}	VANA Overvoltage Fault Threshold	2.8	V					
t _{VANA(RETRY)}	VANA Fault Retry Timer	10	ms					
R _{VANA_RPD}	VANA Sleep Mode Pull-down Resistor	1.0	kΩ					

ADC1-A, ADC1-B

CTn _(LEAKAGE)	Cell Terminal Input Leakage Current	10	nA	
CTn _(FV)	Cell Terminal Input Current - Functional Verification	1.0	mA	
CT _N	Cell Terminal Input Current During Conversion	100	nA	
R _{PD}	Cell Terminal Open Load Detection Pull-down Resistor	950	Ω	
V _{VPWR_RES}	VPWR Terminal Measurement Resolution	2.4415	mV/LSB	
V _{CT_ANx_RES}	Cell Voltage and ANx Resolution in 15-bits MEAS_xxxx registers	152.5925	μV/LSB	
t _{VCONV}	Single Channel Net Conversion Time 16-Bit Resolution 	25.36	μs	
V _{V_NOISE}	16-Bit Resolution	400	μVrms	

ADC2/current sense module

IISENSE_OL	ISENSE Open Load injected current	130	μA	
V _{ISENSE_OL}	ISENSE Open Load detection threshold	460	mV	
V _{2RES}	ADC Resolution	0.6	μV/LSB	
V _{PGA_SAT}	PGA saturation half-range • Gain = 256 • Gain = 64 • Gain = 16 • Gain = 4	4.9 19.5 78.1 150.0	mV	
V _{PGA_ITH}	Voltage threshold for PGA gain increase • Gain = 256 • Gain = 64 • Gain = 16 • Gain = 4	- 2.344 9.375 37.50	mV	
V _{PGA_DTH}	Voltage threshold for PGA gain decrease • Gain = 256 • Gain = 64 • Gain = 16 • Gain = 4	4.298 17.188 68.750 -	mV	
t _{PGA_SETTLE}	PGA settling time after a chopper event	14.0	μs	
t _{ICONV}	ADC Conversion Time including PGA settling time • 16-Bit Resolution	37.67	μs	
V _{I_NOISE}	Noise at 16-bit Conversion	3.01	μVrms	

Characteristics noted under SPI mode conditions 5.0 V \leq V_{PWR} \leq 30 V, TPL mode: 7.0 V \leq V_{PWR} \leq 30 V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise stated. Typical values refer to V_{PWR} = 24 V, T_A = 25 °C, unless otherwise noted. Before starting any development, it is recommended to request a copy of the full 33772 data sheet.

	Symbol	Characteristic	Тур.	Unit	Notes
_	ADC2/current sense	se module (continued)			
ſ	V _{I_NOISE}	Noise Error at 13-bit Conversion	8.33	μVrms	
Ī	ADC _{CLK}	ADC2 and ADC1-A,B Clocking Frequency	6.0	MHz	

Cell balance drivers

V _{DS(CLAMP)}	Cell Balance Driver VDS Active Clamp Voltage Clamp Energy tbd 	11	V	
V _{OUT(FLT_TH)}	Output Fault Detection Voltage Threshold • Balance OFF (Open Load) • Balance ON (Shorted Load)	0.55	V	
R _{PD_CB}	Output OFF Open Load Detection Pull-down Resistor Balance OFF, Open Load Detect Disabled 	2.0	kΩ	
R _{DS(on)}	Drain-to-Source ON Resistance • $I_{OUT} = 300 \text{ mA}, T_J = 105 ^{\circ}\text{C}$ • $I_{OUT} = 300 \text{ mA}, T_J = 25 ^{\circ}\text{C}$ • $I_{OUT} = 300 \text{ mA}, T_J = -40 ^{\circ}\text{C}$	_ 0.5 0.4	Ω	
t _{ON}	Cell Balance Driver Turn On • $R_L = 15 \Omega$	350	μs	
t _{OFF}	Cell Balance Driver Turn Off • R _L = 15 Ω	200	μs	
t _{BAL_DEGLICTH}	Short/Open Detect Filter Time	20	μs	

Internal temperature measurement

IC_TEMP1_RES	IC Temperature Resolution	0.032	K/LSB	
T _{SD_TH}	Thermal Shutdown	170	°C	
T _{SD_HYS}	Thermal Shutdown Hysteresis	10	°C	

General purpose input/output GPIOx

V _{OL(TH)}	Analog Input Open Pin Detect Threshold	0.15 V		
R _{OPENPU}	Internal Open detection Pull-down Resistor	5.0 kΩ		
	GPIO0 WU De-glitch Filter	50	μs	
	GPIO0 Daisy Chain De-glitch Filter both edges	20	μs	
	GPIO2 Convert Trigger De-glitch Filter	2.0	μs	

Reset input

t _{RESETFLT}	RESET De-glitch Filter		μs	
R _{RESET_PD}	R _{RESET_PD} Input Logic Pull-down (RESET)		kΩ	

SPI_COM_EN input

V _{HYS}	Input Hysteresis 125		mV	
R _{SPI_COM_EN_PD}	nput Pull-down Resistor (SPI_COM_EN) 100 kG		kΩ	
Bus switch for TPL communication				
RX _{TERM}	Bus Termination Resistor (open resistor when bus switch is closed)	300	Ω	

Remark: if the bus switch is closed, the termination resistor is open, else the termination resistor is connected. At the end of the daisy chain the switch must be open, so the transmission line is properly terminated.

Characteristics noted under SPI mode conditions 5.0 V \leq V_{PWR} \leq 30 V, TPL mode: 7.0 V \leq V_{PWR} \leq 30 V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise stated. Typical values refer to V_{PWR} = 24 V, T_A = 25 °C, unless otherwise noted. Before starting any development, it is recommended to request a copy of the full 33772 data sheet.

Symbol	Characteristic Typ.		Unit	Notes
Digital interface				
	FAULT Output (High Active, I _{OH} = 1.0 mA)	4.9	V	
	FAULT Output Pull-down Resistance	100	kΩ	
V _{HYS}	Input Hysteresis • SI/RDTX_IN+, SCLK/RDTX_IN-, CSB, SDA, SCL	80	mV	
R _{SCLK_PD}	Input Logic Pull-down Resistance (SCLK/RDTX_IN-, SI/RDTX+)	20	kΩ	
R_PU	Input Logic Pull-up Resistance to V _{COM} (CSB, SDA, SCL)	100	kΩ	
CSB _{WU_FLT}	CSB Wake-up De-glitch Filter, Low to High Transition	50	μs	

System timing

System timing				
t _{CELL_CONV}	Time needed to acquire all 6 cell voltages and the current after an on demand conversion • 16-Bit Resolution	208	μs	
t _{SYNC}	V/I time synchronization • ADC1-A,B at 16-Bit, ADC2 at 16-Bit	113	μs	
twake_delay	Time between wake pulses	600	μs	
t _{IDLE}	Idle time out after POR 60		S	
t _{WAKE_INIT}	Wake-up signaling time out after POR	0.75	S	
t _{DIAG}	Diagnostic Mode Time-out	1.0	S	
t _{EOC}	SOC to Data Ready (includes post processing of data) 520 • 16-Bit Resolution 520		μs	
t _{SETTLE}	Time after SOC to begin converting with ADC1-A,b	12.28	μs	
t _{CLST_TPL}	Time needed to send a SOC command and read back 6 cell voltages, 7 temperatures, 1 current, 1 Coulomb counter with TPL communication working at 2.0 Mbps and ADC1-A,B configured as follows: • 16-Bit Resolution		ms	
t _{CLST_SPI}	Time needed to send a SOC command and read back 6 cell voltages, 7 temperatures, 1 current, 1 Coulomb counter with SPI communication working at 4.0 Mbps and ADC1-A,B configured as follows: • 16-Bit Resolution		ms	
t _{I2C_ACCESS}	EEPROM Access Time, EEPROM Write (depends on device selection)	ds on device selection) 5.0 ms		
t _{WAVE_DC_BITx}	Daisy Chain Duty Cycle OFF Time • t _{WAVE_DC_BITx} = 00		μs	
twave_dc_bitx	Daisy Chain Duty Cycle OFF Time • t _{WAVE_DC_BITx} = 01		ms	
t _{WAVE_DC_BITx}	Daisy Chain Duty Cycle OFF Time • t _{WAVE_DC_BITx} = 10		ms	
t _{WAVE_DC_BITx}	Daisy Chain Duty Cycle OFF Time twave_dc_bitx = 11		ms	
t _{WAVE_DC_ON}	Daisy Chain Duty Cycle ON Time	500	μs	
t _{SLEEP}	P Time out to enter Sleep Mode in the absence of TPL communication		ms	

Characteristics noted under SPI mode conditions 5.0 V \leq V_{PWR} \leq 30 V, TPL mode: 7.0 V \leq V_{PWR} \leq 30 V, -40 °C \leq T_A \leq 125 °C, GND = 0 V, unless otherwise stated. Typical values refer to V_{PWR} = 24 V, T_A = 25 °C, unless otherwise noted. Before starting any development, it is recommended to request a copy of the full 33772 data sheet.

Symbol	Characteristic	Тур.	Unit	Notes
Transformer inter	face	1	L	4
t _{RES}	Slave Response After Write Command (echo)	2.35	μs	
	Time Between Slave Response Messages (Q)	1.5	μs	
	Start of Message (S)	500	ns	
	Start of Message Delay (T)	250	ns	
	Bit Time (U)	250	ns	
	Bit Delay (V)	250	ns	
	Message Duration (R)	21.25	μs	
VRDTX _{INTH}	Differential Receiver Threshold	0.74	V	
VRDTX _{INHYS}	Differential Receiver Threshold Hysteresis	130	mV	
V _{RDTX(PK_DIFF)}	Amplifier Differential Output Voltage	2.5	V	
V _{RDTX_BIAS}	Transformer Bias Voltage Driver tri-state 	2.5	V	

Revision	Date	Description of changes
2.0	8/2016	Added revision history table.

How to Reach Us:

Home Page: NXP.com

Web Support: http://www.nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address:

http://www.nxp.com/terms-of-use.html.

NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. All rights reserved. © 2016 NXP B.V.

Document Number: MC33772SM Rev. 2.0 8/2016

