Data Sheet: Advance Information

### Document Number: MC33MR2001T

Rev. 6.0, 8/2016

# 76-77 GHz RF transmitter front-end for W-band radar applications

The MR2001 is an expandable three package solution for automotive radar modules. The chipset consists of a VCO (voltage controlled oscillator), a two-channel Tx transmitter, and a three-channel Rx receiver.

The MR2001T is a high performance, highly integrated, two-channel, transmitter (TX) ideally suited for automotive radar applications. In conjunction with the MR2001V, a four-channel voltage controlled oscillator, and the MR2001R, a three-channel receiver, it provides an expandable three package solution for automotive radar modules.

The chips are connected together via the LO signal around 38 GHz. The individual control of each chip is realized by SPI. The main controller and modulation master is a single microprocessor (MCU) with integrated high-speed analog to digital converters (ADC) and appropriate signal processing capability such as fast fourier transforms.

The front-end solution is specifically architected to be controlled by NXP's Qorivva MPC5775 MCU. Especially the baseband functionality (high-pass filters, variable gain amplifiers, anti-aliasing filters) on the receiver chips has been designed to work with the MPC5775 MCU.

#### Features

- · Scalable to 4 TX channels and 12 RX channels
- · Advanced packaging technology
- High performance supports fast modulation with simultaneous active channels
- Excellent spatial resolution and detection accuracy
- Local oscillator at 38 GHz to lower the distribution loss and reduce impact on antenna pattern
- Best phase noise < -75 dBc/Hz at 100 kHz offset
- Low power consumption of 2.5 W for the total transceiver
- Integrated system level calibration when combined with Qorivva MPC577xK MCU
- · Compatible with all leading MCUs
- Optimized for the NXP Qorivva MPC577xK MCU
- Scalable approach to support SRR, MRR and LRR applications
- Reduced number of external components due to higher integration level
- Baseband integration on receiver suitable to work with the MPC577xK Qorivva MCU
- · Bi-phase modulator on the transmitter chip

### MR2001T

#### ADVANCED DRIVER ASSISTANCE SYSTEM



#### **Applications**

- · Automotive proximity radar
- LRR, MRR and SRR
- ADAS
- · Industrial surveillance and security systems

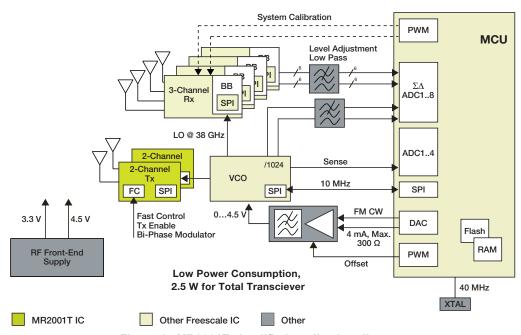



Figure 1. MR2001T simplified application diagram



<sup>\*</sup> This document contains certain information on a new product. Specifications and information herein are subject to change without notice.

# **Table of contents**

| 1  | Orderable parts                                             | 3    |
|----|-------------------------------------------------------------|------|
| 2  | Internal block diagram                                      | . 4  |
| 3  | Pin connections                                             | . 5  |
|    | 3.1 Pinout diagram                                          | . 5  |
|    | 3.2 Pin definitions (ball)                                  | . 5  |
| 4  | General product characteristics                             | . 10 |
|    | 4.1 Maximum ratings                                         | . 10 |
| 5  | General IC function description and application information | . 11 |
|    | 5.2 Electrical characteristics                              | . 11 |
| 6  | Functional block requirements and behaviors                 | . 15 |
|    | 6.1 SPI communication                                       | . 15 |
|    | 6.2 External address solder balls ADR0 and ADR1             | . 17 |
|    | 6.3 System partitioning                                     | . 18 |
|    | 6.4 Identification key                                      | . 19 |
|    | 6.5 Access protocol                                         | . 19 |
| 7  | Memory map                                                  | 20   |
|    | 7.1 Generic memory map                                      | 20   |
|    | 7.2 TX memory map                                           | 20   |
|    | 7.3 State machine                                           | 26   |
| 8  | Typical applications                                        | . 27 |
|    | 8.1 Introduction                                            | . 27 |
|    | 8.2 Typical application                                     | . 27 |
|    | 8.3 Measurement results                                     | . 28 |
|    | 8.4 External components                                     | . 33 |
| 9  | Packaging                                                   | . 35 |
|    | 9.1 Package mechanical dimensions                           | 35   |
|    | 9.2 PCB and RCP environment                                 | . 37 |
|    | 9.3 Assembly conditions                                     | 40   |
| 10 | Revision history                                            | 42   |

# 1 Orderable parts

### Table 1. Orderable part variations

| Part number   | Temperature (temp) | Package                                          | Notes   |
|---------------|--------------------|--------------------------------------------------|---------|
| MC33MR2001TVK | -40 °C to 125 °C   | 6.0 x 6.0 mm RCP<br>(10 x 11 array) 0.5 mm pitch | (1) (2) |

#### Notes

- 1. To order parts in Tape & Reel, add R2 to the suffix of the part number.
- 2. The device is packaged inside a 6.0 mm x 6.0 mm RCP with 10 x 11 solder balls. The pitch of the solder balls is 0.5 mm.

# 2 Internal block diagram

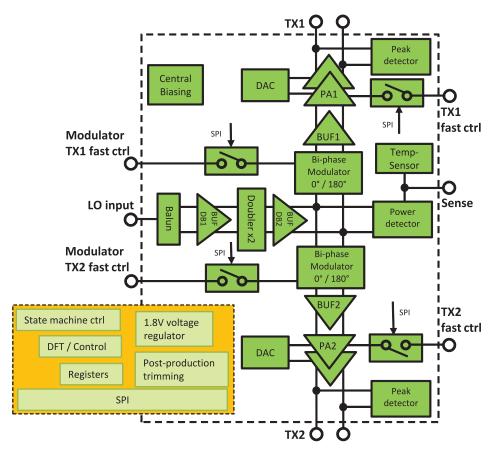



Figure 2. MR2001T two-channel transmitter block diagram

# 3 Pin connections

### 3.1 Pinout diagram

The layout and arrangement of the signal pads are shown in Figure 3.

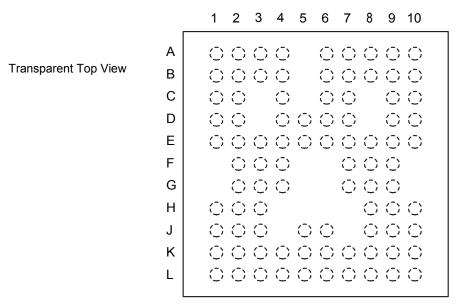



Figure 3. MR2001T pinout (ball) diagram

# 3.2 Pin definitions (ball)

A functional description of each pin for the MR2001T can be found in Table 2. Equivalent I/O schematics is found in Table 3

Table 2. MR2001T pin definitions

| Ball location                                                                                                         | Pin name            | Pin function                                                  | Pin type      | Level      | Description |
|-----------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------|---------------|------------|-------------|
| A1, A2, B2, C2                                                                                                        | VCC2 (3)            | 3.3 V Power Supply                                            | Power         | 3.3 V      |             |
| A3, B3, B7, B8, C7, D1, D2, D7, D9, D10, E7, F4, F7, G4, G7, J2, J3, J8, J9, K2, K3, K4, K7, K8, K9, L1, L10          | GND <sup>(4)</sup>  | DC Ground                                                     | Power         | 0.0 V      |             |
| A4, A6, B4, B6, C4, C6, D4, D6,<br>E1, E2, E3, E4, E5, E6, E8, E9,<br>E10, F3, F8, G3, G8, H1, H2, H3,<br>H8, H9, H10 | GND1 <sup>(4)</sup> | RF Ground                                                     | Power         | 0.0 V      |             |
| A7                                                                                                                    | TEST                | Output to monitor internal bias nodes via ASCAN               | Analog Output | 0 to 3.3 V |             |
| A8                                                                                                                    | ADR0                | Chip key bit [0]                                              | Digital Input | 0 to 3.3 V |             |
| A9, A10, B9, C9                                                                                                       | VCC3 (3)            | 3.3 V Power Supply                                            | Power         | 3.3 V      |             |
| B1                                                                                                                    | SENS                | Sensor output<br>(temperature and<br>power peak detector)     | Analog output | 0 to 3.3 V |             |
| B10                                                                                                                   | RN                  | Bandgap reference<br>resistor (negative<br>temperature slope) | Analog Input  | 0 to 3.3 V | See Table 6 |

Table 2. MR2001T pin definitions (continued)

| Ball location          | Pin name | Pin function                                                  | Pin type       | Level      | Description |
|------------------------|----------|---------------------------------------------------------------|----------------|------------|-------------|
| C1                     | TREG     | 1.8 V Regulator Output                                        | Analog Output  | 0 to 3.3 V |             |
| C10                    | RP       | Bandgap reference<br>resistor (positive<br>temperature slope) | Analog Input   | 0 to 3.3 V | See Table 6 |
| D5                     | LO       | 38 GHz LO input                                               | RF<br>Input    | 0.0 V      |             |
| F2                     | TX1N     | 77 GHz differential output channel 1                          | RF Output      | 0 V        |             |
| F9                     | TX2N     | 77 GHz differential output channel 2                          | RF Output      | 0 V        |             |
| G2                     | TX1P     | 77 GHz differential output channel 1                          | RF Output      | 0 V        |             |
| G9                     | TX2P     | 77 GHz differential output channel 2                          | RF Output      | 0 V        |             |
| J1                     | PH1F     | Bi-Phase modulator TX channel 1                               | Digital Input  | 0 to 3.3 V |             |
| J10                    | PH2F     | Bi-Phase modulator TX channel 2                               | Digital Input  | 0 to 3.3 V |             |
| K1                     | TX1F     | Fast on/off activation of TX channel 1                        | Digital Input  | 0 to 3.3 V |             |
| K10                    | TX2F     | Fast on/off activation of TX channel 2                        | Digital Input  | 0 to 3.3 V |             |
| L2                     | SCLK     | SPI serial clock                                              | Digital Input  | 0 to 3.3 V |             |
| L3                     | MISO     | SPI MISO (master in, slave out)                               | Digital Output | 0 to 3.3 V |             |
| L4                     | MOSI     | SPI MOSI (master out, slave in)                               | Digital Input  | 0 to 3.3 V |             |
| L5, L6, K5, K6, J5, J6 | VCC1 (3) | 3.3 V Power Supply                                            | Power          | 3.3 V      |             |
| L7                     | SCANB    | Digital scan test                                             | Digital Input  | 0 to 3.3 V |             |
| L8                     | RSETB    | Digital hard reset signal                                     | Digital Input  | 0 to 3.3 V |             |
| L9                     | SEB      | SPI enable (chip enable)                                      | Digital Input  | 0 to 3.3 V |             |

#### Notes

- 3. VCC1, VCC2, VCC3 are only connected via the on-chip metal layers. It is mandatory for each supply domain to be connected to the common power supply.
- 4. GND and GND1 are connected together in the package via the interconnection layer. GND1 is mandatory to be connected, to realize a suitable RF PCB to package transition.

# 3.3 Equivalent schematics

Table 3. Equivalent I/O schematics for pin descriptions

| Ball location                                                                                                    | Pin function                    | Equivalent I/O schematic       |
|------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|
| L5, L6, K5, K6, J5, J6<br>A1, A2, B2, C2<br>A9, A10, B9, C9                                                      | 3.3V Power Supply               | PAD  ESD  transient rail clamp |
| A4, A6, B4, B6, C4, C6, D4, D6, E1, E2, E3, E4, E5, E6, E8, E9, E10, F3, F8, G3, G8, H1, H2, H3, H8, H9, H10     | RF Ground                       |                                |
| A3, B3, B7, B8, C7, D1, D2, D7, D9, D10, E7, F4, F7, G4, G7, J2, J3, J8, J9, K2, K3, K4, K5, K7, K8, K9, L1, L10 | DC Ground                       | PAD ESD                        |
| D5                                                                                                               | 38 GHz LO input                 |                                |
| G2, F2                                                                                                           | 77 GHz RF Output channel 1      | PAD TL + TL                    |
| F9, G9                                                                                                           | 77 GHz RF Output channel 2      |                                |
| L3                                                                                                               | SPI MISO (master in, slave out) | PAD PAD PAD PAD PAD            |
| L4                                                                                                               | SPI MOSI (master out, slave in) | 1000 010                       |
| L2                                                                                                               | SPI serial clock                | PAD 100kΩ                      |

Table 3. Equivalent I/O schematics for pin descriptions

| Ball location | Pin function                                            | Equivalent I/O schematic |
|---------------|---------------------------------------------------------|--------------------------|
| L8            | Digital hard reset signal                               |                          |
| L9            | SPI enable (chip enable)                                | VCC_3V3                  |
| К1            | Fast on/off activation of TX channel 1                  | PAD                      |
| K10           | Fast on/off activation of TX channel 2                  |                          |
| A8            | Chip key bit [0]                                        |                          |
| L7            | Digital scan test                                       | PAD                      |
| B10           | Bandgap reference resistor (negative temperature slope) | VCC_3V3                  |
| C10           | Bandgap reference resistor (positive temperature slope) | PAD 50Ω                  |
| C1            | 1.8 V Regulator Output                                  | PAD ESD                  |

Table 3. Equivalent I/O schematics for pin descriptions

| Ball location | Pin function                                        | Equivalent I/O schematic |
|---------------|-----------------------------------------------------|--------------------------|
| J1            | Bi-Phase Modulator TX channel 2                     | VCC_3V3                  |
| J10           | Bi-Phase Modulator TX channel 2                     | PAD 100kΩ                |
| B1            | Sensor output (temperature and power peak detector) | VCC_3V3                  |
| A7            | Output to monitor internal bias nodes via ASCAN     | PAD                      |

# 4 General product characteristics

# 4.1 Maximum ratings

Table 4. Maximum ratings

All voltages are with respect to ground, unless otherwise specified. Exceeding these ratings may cause a malfunction or permanent damage to the device.

| Symbol                  | Ratings                                                               | Min.  | Max.  | Unit | Notes |
|-------------------------|-----------------------------------------------------------------------|-------|-------|------|-------|
| V <sub>STATIC_MAX</sub> | Supply Voltage (static)                                               | -0.30 | 3.63  | V    |       |
| V <sub>DYN_MAX</sub>    | Supply Voltage (dynamic)  • allowed < 10% of product total llifetime. | -0.30 | 4.00  | V    |       |
| $V_{DIG\_MAX}$          | Digital Supply Voltage (static, dynamic)                              | -0.30 | 3.63  | V    |       |
| V <sub>IN_MAX</sub>     | Voltage Applied to All Used I/O Pins                                  | -0.30 | 3.63  | V    |       |
| SD                      |                                                                       |       | •     | •    | •     |
| ESD_HBM                 | ESD for Human Body Model (HBM) Digital I/O, Analog, RF                | -2000 | 2000  | V    |       |
| ESD_MM                  | ESD for Machine Model (MM)                                            | -200  | 200   | V    |       |
| R1                      | HBM Circuit Description I                                             | -     | ±1500 | W    |       |
| С                       | HBM Circuit Description II                                            | _     | ±100  | pF   |       |
|                         | ESD for human body model (HBM) digital I/O                            | -1000 | 1000  | V    |       |
|                         | ESD HBM, RF I/O                                                       | -100  | 100   | V    | 1     |

# 4.2 General operating conditions

#### Table 5. General operation conditions

Temp = -40 °C to +125 °C,  $f_{OUT}$  = 76 to 77 GHz, and  $V_{CC3P3}$  = 3.3 V  $\pm$ 5.0%, unless otherwise noted.

| Symbol               | Parameter                                                            | Min. | Тур. | Max. | Unit | Notes                                          |
|----------------------|----------------------------------------------------------------------|------|------|------|------|------------------------------------------------|
| dpack                | Package Thickness (mounted condition)                                | _    | 950  | 1200 | μm   |                                                |
| Temp                 | Ambient Package Temperature                                          | -40  | 27   | 125  | °C   |                                                |
| LU                   | Latch Up (LU) for DC and Bias Pads • Pulsed current injection method | -100 | _    | +100 | mA   |                                                |
| Pitch                | BGA Pitch                                                            | _    | 500  | _    | μm   |                                                |
| dchip                | Chip Thickness                                                       | 113  |      | 143  | μm   |                                                |
| St_temp              | Storage Temperature                                                  | -55  |      | 150  | °C   |                                                |
| I <sub>PAD_MAX</sub> | Pad withstanding                                                     | _    |      | 150  | mA   |                                                |
| Number of pulses     | per pad                                                              |      |      |      |      | <u>,                                      </u> |
|                      | Number of positive pulses (HBM)                                      | _    | _    | 1    |      |                                                |
|                      | Number of negative Pulses (HBM)                                      | _    | _    | 1    |      |                                                |
|                      | Interval of Pulses                                                   | _    |      | 1    | s    |                                                |

# 5 General IC function description and application information

NXP provides a total system solution with next-generation embedded radar-based products that include the Qorivva MPC577xK MCU and 77 GHz packaged radar front-end chipset for both low- and high-end radar modules. This pairing delivers a complete embedded radar system for automotive designs. Our total solution advances automotive safety by enabling vehicles to sense potential crash situations. This radar solution provides long- and mid-range functionality, allowing automotive systems to monitor the environment around the vehicle to help prevent crashes.

A typical radar module consists of a transmit solution (Tx), VCO and three-channel receiver IC (Rx), along with an MCU. The chips are connected via the local oscillator signal, around 38 GHz. The individual control of each chip is implemented by a serial peripheral interface (SPI) bus. The main controller and modulation master is a single MCU with integrated high-speed analog-to-digital converters (ADCs) and appropriate signal processing capability, such as fast Fourier transforms (FFTs).

### 5.1 Features

- 76 GHz to 77 GHz TX output and 38 GHz to 38.5 GHz LO input
- Supply voltage 3.3 V ±5.0%
- · Supply current typ. 260 mA
- Power dissipation typ. 0.86 W
- Power Control (6-bit)
- Tx Power typ. 2 x 10 dBm
- · Bi-Phase Modulation
- SPI (slow, 10 MHz) and dedicated control (fast, 100 MHz)

### 5.2 Electrical characteristics

#### 5.2.1 Transmitter Tx

Table 6. Interface levels

Temp = -40 °C to +125 °C,  $f_{OUT}$  = 76 to 77 GHz, and  $V_{CC3P3}$  = 3.3 V ±5.0%, unless otherwise noted.

| Symbol               | Parameter                                     | Min.  | Тур. | Max.  | Unit | Notes |
|----------------------|-----------------------------------------------|-------|------|-------|------|-------|
| V <sub>CC</sub>      | Supply Voltage • Nominal supply ±5% variation | 3.135 | 3.3  | 3.465 | V    |       |
| I <sub>CC</sub>      | Supply Current • Measured at PACODE 35        | _     | 260  | 350   | mA   | (5)   |
| P <sub>DIS_1CH</sub> | Power consumption (one Tx channel on)         | -     | 0.86 | 1.21  | W    |       |
| P <sub>DIS_2CH</sub> | Power Consumption (two Tx channels on)        | -     | 1.16 | 1.84  | W    |       |

#### Frequency and # of channels

| n_ch_LO         | Number of LO Input Channels (at 38 GHz)  • Single-ended input          | _  | - | 1    |     |  |
|-----------------|------------------------------------------------------------------------|----|---|------|-----|--|
| n_ch_TX         | Number of TX Output Channels (at 76 GHz)  • Differential configuration | _  | - | 2    |     |  |
| f <sub>LO</sub> | LO Input Frequency Range                                               | 38 | _ | 38.5 | GHz |  |
| f <sub>TX</sub> | TX Output Frequency Range at 76 to 77 GHz                              | 76 | _ | 77   | GHz |  |

#### Notes

5. All PACODE values are decimal unless otherwise noted.

Table 6. Interface levels

Temp = -40 °C to +125 °C,  $f_{OUT}$  = 76 to 77 GHz, and  $V_{CC3P3}$  = 3.3 V  $\pm$ 5.0%, unless otherwise noted.

| Symbol            | Parameter                                                                                                                                                         | Min.  | Тур.   | Max. | Unit          | Notes |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------|---------------|-------|
| Thermal parameter | ers                                                                                                                                                               |       |        |      |               |       |
| R <sub>TH</sub>   | Thermal Resistance                                                                                                                                                | -     | 15     | 22   | K/W           |       |
| Return loss       |                                                                                                                                                                   |       |        |      |               |       |
| G_LO              | LO-Input Return Loss (50 Ω at 38 to 38.5 GHz)                                                                                                                     | 12    | _      | _    | dB            |       |
| G_TX              | TX-Output Return Loss (50 $\Omega$ )  • Differential configuration, single-ended measurement not measured in production                                           | 8.0   | -      | -    | dB            |       |
| Power             |                                                                                                                                                                   |       |        |      |               |       |
| PINM              | TX Input Power                                                                                                                                                    | -6.0  | _      | _    | dBm           |       |
| POUTM             | TX Output Power  • Differential configuration, PACODE 35, one channel active                                                                                      | 2 x 7 | 2 x 10 | -    | dBm           |       |
| PDRIFT            | Output Power Variation Over Full Temperature Range at Fixed Frequency • single-ended, PACODE 35, for each chip, const. V <sub>CC</sub> , const. frequency         | 0.0   | -      | 3.0  | dB            |       |
| GC                | Power Control Range •  Pout@PAcode=35 - Pout@PAcode=08                                                                                                            | 10    | -      | _    | dB            |       |
| dP_1dB            | Power Control, Attenuation 1.0 dB  •  P at PAcode = 35 at chip(i) - P at PAcode = 30 at chip(i)  at T = T(j) at V <sub>CC</sub> = V <sub>CCN</sub> at f = 76.5GHz | 0     | 1.0    | 2.0  | dB            |       |
| dP_2.5dB          | Power Control, Attenuation 2.5 dB  •  P at PAcode = 35 at chip(i) - P at PAcode = 25 at chip(i)  at T = T(j) at V <sub>CC</sub> = V <sub>CCN</sub> at f = 76.5GHz | 0.7   | 2.5    | 4.0  | dB            |       |
| dP_4dB            | Power Control, Attenuation 4.0 dB  •  P at PAcode = 35 at chip(i) - P at PAcode = 21 at chip(i)  at T = T(j) at V <sub>CC</sub> = V <sub>CCN</sub> at f = 76.5GHz | 2.0   | 4.0    | 6.0  | dB            |       |
| dP_6dB            | Power Control, Attenuation 6.0 dB  •  P at PAcode = 35 at chip(i) - P at PAcode = 17 at chip(i)  at T = T(j) at V <sub>CC</sub> = V <sub>CCN</sub> at f = 76.5GHz | 4.0   | 6.0    | 8.5  | dB            |       |
| dP_10dB           | Power Control, Attenuation 10 dB  •  P at PAcode = 35 at chip(i) - P at PAcode = 12 at chip(i)  at T = T(j) at V <sub>CC</sub> = V <sub>CCN</sub> at f = 76.5GHz  | 7.0   | 10     | 12.2 | dB            |       |
| POUTM_V           | Pout variation due to VCC • For VCC ±5% PACODE 35                                                                                                                 | -1.0  | -      | 1.0  | dB            |       |
| POUT_SLOPE        | Output Power Frequency Slope • PACODE 35                                                                                                                          | -     | -      | 0.2  | dB/<br>100MHz |       |
| POUT_RIPPLE       | Output Power Ripple • PACODE 35                                                                                                                                   | -0.5  | -      | 0.5  | dB            |       |
| SW_FAST           | PA Switch Attenuation (fast switch)  • PACODE 35                                                                                                                  | 22    | -      | -    | dB            |       |
| PA_SW             | PA Switch Attenuation (enable switch)  • Controlled via SPI; one channel on, the other deactivated, for PACODE 35                                                 | 30    | _      | -    | dB            |       |
| PA_SUPP           | PA Channel to Channel Suppression  • Correlated, incl. bi-phase modulator                                                                                         | 30    | _      | -    | dB            |       |
| PA_S0             | PA Attenuation at S0 • For 38 and 77 GHz signals                                                                                                                  | 40    | -      | -    | dB            |       |
| <sup>t</sup> RISE | Rise Time  • Rise time definition of the external signal to switch between PA and dummy PA                                                                        | 30    | -      | 100  | ns            |       |

MR2001T

### Table 6. Interface levels

Temp = -40 °C to +125 °C,  $f_{OUT}$  = 76 to 77 GHz, and  $V_{CC3P3}$  = 3.3 V  $\pm 5.0\%$ , unless otherwise noted.

| Symbol                              | Parameter                                                                                                                                                      | Min.                       | Тур.        | Max.                       | Unit     | Notes |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|----------------------------|----------|-------|
| Spurious                            |                                                                                                                                                                |                            |             |                            | <u> </u> | 1     |
| SPUR_f <sub>LO</sub>                | Harmonic Spurious at f <sub>LO</sub> , Leakage                                                                                                                 | -                          | -           | -47                        | dBm      |       |
| SPUR_f <sub>TX</sub>                | Harmonic Spurious at f <sub>TX</sub> , Leakage  • All channels disabled, input stage on                                                                        | -                          | -           | -25                        | dBm      |       |
| NON_HARM                            | Nonharmonic Spurious • Referred to POUTM                                                                                                                       | _                          | _           | -85                        | dBc      |       |
| Bi-phase modulate                   | or                                                                                                                                                             |                            |             |                            |          |       |
| DPHASE                              | Phase Difference $ \bullet \  \   \text{Phase difference between two states. Measurement accuracy limited to } \pm 10 \text{deg in production} $               | 170                        | 180         | 190                        | degree   |       |
| DPOUTM                              | Power Variation Due to Phase Switching                                                                                                                         | -0.5                       | 0           | 0.5                        | dB       |       |
| t <sub>PHASE</sub>                  | Phase Shift Switching Time                                                                                                                                     | 0.0                        | _           | 30                         | ns       |       |
| Peak detector Tx o                  | output                                                                                                                                                         |                            |             |                            |          | l.    |
| V <sub>PPD_AT_PA_</sub><br>CO DE=35 | Peak Detector Output Voltage V <sub>PPD</sub> at PAcode = 35                                                                                                   | 70                         | -           | -                          | mV       |       |
| V <sub>PPD_AT_PA_</sub><br>CO DE=10 | Peak Detector Output Voltage V <sub>PPD</sub> at PAcode = 10                                                                                                   | _                          | -           | 40                         | mV       |       |
| t_DET_TX                            | Peak Detector Set-up Time                                                                                                                                      | -                          | 10          | -                          | μs       |       |
| Peak detector Tx i                  | nput                                                                                                                                                           |                            |             |                            |          | •     |
| V_DET_TX_RANGE                      | Peak Detector Output Voltage Range  • Two sequential readings required                                                                                         | 0.0                        | -           | V <sub>CC</sub>            | V        |       |
| $V_{DET\_TX}$                       | Peak Detector Threshold Voltage - two sequential readings required.  V_Det_Tx > min. value guarantees functionality of Tx  • at -40 °  • at 27 °C  • at 125 °C | 400<br>350<br>250          | -<br>-<br>- | -<br>-<br>-                | mV       |       |
| Control functional                  | ity                                                                                                                                                            |                            |             |                            |          |       |
| SPI                                 | SPI Functionality  • 10 MHz clock required                                                                                                                     |                            | Yes         |                            |          |       |
| DISABLE_CTRL_<br>SLOW               | Control Functionality, (TX slow enable, disable)                                                                                                               |                            | Via SPI     |                            |          |       |
| DISABLE_CTRL_<br>FAST               | Control Functionality, Disable (Phase switch, TX fast enable) - each channel individually controlled                                                           | -0.3                       | ı           | 20%<br>*V <sub>CC3P3</sub> | ٧        |       |
| ENABLE_CTRL_F<br>AST                | Control Functionality, Enable (Phase switch, TX fast enable) - each channel individually controlled                                                            | 80%<br>*V <sub>CC3P3</sub> | -           | V <sub>CC3P3</sub><br>+0.3 | V        |       |
| Amplitude noise                     |                                                                                                                                                                |                            |             |                            |          |       |
| AN_10kHz                            | Amplitude Noise at 10 kHz Offset at 77 GHz                                                                                                                     | 1                          | -           | -130                       | dBc/Hz   |       |
| AN_100kHz                           | Amplitude Noise at 100 kHz Offset at 77 GHz                                                                                                                    | 1                          | -           | -140                       | dBc/Hz   |       |
| AN_1MHz                             | Amplitude Noise at 1.0 MHz Offset at 77 GHz                                                                                                                    | -                          | -           | -145                       | dBc/Hz   |       |
| Sensor output                       |                                                                                                                                                                |                            |             |                            |          | _     |
| S_IMP_DIS                           | Sensor High Output Impedance (temp. sensor)  • If corresponding sensor is disabled the output should show high-impedance                                       |                            | Yes         |                            |          |       |
| R <sub>S_LOAD</sub>                 | Sensor Load Resistance To ground (temp, peak detector)                                                                                                         | 90                         | 100         | 110                        | kΩ       |       |
| C <sub>S_LOAD</sub>                 | Sensor Load Capacity To ground (temp, peak detector)                                                                                                           | -                          | -           | 30                         | pF       |       |

#### MR2001T

### Table 6. Interface levels

Temp = -40 °C to +125 °C,  $f_{OUT}$  = 76 to 77 GHz, and  $V_{CC3P3}$  = 3.3 V  $\pm$ 5.0%, unless otherwise noted.

| Symbol             | Parameter                                                                                                                    | Min. | Тур. | Max. | Unit | Notes |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-------|--|--|--|
| Temperature sensor |                                                                                                                              |      |      |      |      |       |  |  |  |
| T_SLOPE            | Temperature Sensor Sensitivity  • Two sequential readings required                                                           | -    | 0.55 | -    | mV/K |       |  |  |  |
| T_SLOPE_VAR        | Temperature Sensor Tolerance  • Deviation from mean slope (T_slope) over temperature, max. precision at high temp. requested | -5.0 | 0.0  | 5.0  | К    |       |  |  |  |
| T_RANGE            | Temperature Sensor Output Voltage Range  • Max. value achieved at 150 °C                                                     | 0.4  | -    | 3.0  | V    |       |  |  |  |
| RP                 | External Resistor 1<br>• E96, $\pm 1.0\%$ , TK = $\pm 100$ ppm/K SMD, 0402 or smaller, 50 $\mu$ A current                    | -    | 2.15 | -    | kΩ   |       |  |  |  |
| RN                 | External Resistor 1<br>• E96, $\pm 1.0\%$ , TK = $\pm 100$ ppm/K SMD, 0402 or smaller, 50 $\mu$ A current                    | -    | 14.7 | -    | kΩ   |       |  |  |  |

MR2001T

# 6 Functional block requirements and behaviors

NXP millimeter wave and radar products enable advanced, high-performance, multi-channel systems for use in automotive radar, automotive advanced driver assistance systems (ADAS), automotive safety systems and other high-performance communication infrastructure and industrial systems.

The MR2001 is a high-performance 77 GHz radar transceiver chipset scalable for multi-channel operation enabling a single radar platform with electronic beam steering and wide field of view to support long-range radar (LRR), mid-range radar (MRR) and short-range radar (SRR) applications. This new radar chipset consists of a VCO (MR2001VC), a two-channel Tx transmitter (MR2001TX) and a three-channel Rx receiver (MR2001RX). This 77 GHz radar transceiver chipset is compatible with all leading MCUs, including the Qorivva MPC577xK MCU.

The MR2001 radar chipset is designed to support fast modulation with simultaneous active channels, enabling excellent spatial resolution and detection accuracy across a wide field of view. It supports a large variety of chirps in open loop VCO radar system architectures and consumes minimal power. An integrated BB filter and VGA saves on the total bill of materials. The MR2001 radar chipset uses advanced packaging technology to ensure the highest performance and minimum signal interference on the printed circuit board (PCB).

### 6.1 SPI communication

### 6.1.1 SPI interface

SPI read and write are illustrated in <u>Figure 4</u> and <u>Figure 5</u>. <u>Figure 6</u> shows the SPI read/write operation to ASCAN. a[5:0] is the SPI address to be written, as shown in the memory map.

d[7:2] is the data that is written to, or read from this address.Bit [1:0] are reserved.

rwb is the read write bit. Read is done when rwb is '1', write is done when rwb is '0'.

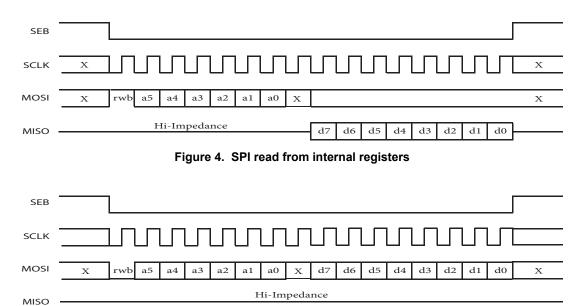



Figure 5. SPI write to internal registers

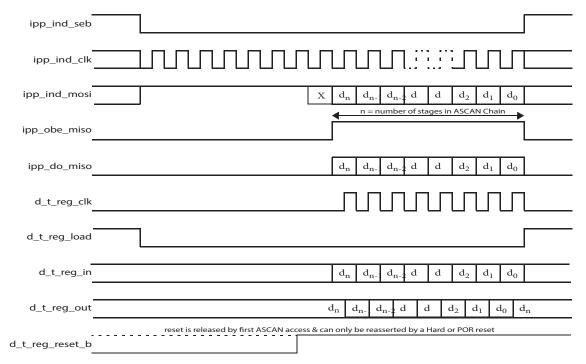



Figure 6. SPI write/read to ASCAN

### **6.1.2** Timing

SPI timings are described in Table 7 and illustrated in Figure 7. The SPI timing diagram, with the temperature and supply voltage conditions described in this document, and a maximum load capacitance, CL = 20 pF.

Table 7. SPI timing

| Symbol            | Parameter                                     | Min.                           | Тур. | Max.                           | Unit | Notes (6)          |
|-------------------|-----------------------------------------------|--------------------------------|------|--------------------------------|------|--------------------|
| t <sub>SCLK</sub> | SCLK Cycle Time - SCLK pin                    | 100                            | -    | -                              | ns   | (1)                |
| t <sub>CSC</sub>  | SEB to SCLK Delay - SEB, SCLK pin             | 90                             | -    | -                              | ns   | (2)                |
| t <sub>ASC</sub>  | After SCLK Delay - SCLK, SEB pin              | 2.5                            | -    | _                              | ns   | (3)                |
| t <sub>SDC</sub>  | SCLK Duty Cycle - SCLK pin                    | 0.9*<br>(t <sub>SCLK</sub> /2) | -    | 1.1*<br>(t <sub>SCLK</sub> /2) | ns   | (4) <sup>(7)</sup> |
| t <sub>SUI</sub>  | Data Setup Time for Inputs - MOSI, SCLK pin   | 40                             | -    | _                              | ns   | (5)                |
| t <sub>HI</sub>   | Data Hold Time for Inputs - MOSI, SCLK pin    | 40                             | _    | _                              | ns   | (6)                |
| t <sub>SUO</sub>  | Data Valid (after SCLK edge) - MISO, SCLK pin | _                              | -    | 50                             | ns   | (7)                |
| t <sub>HO</sub>   | Data Hold Time for Outputs - MISO, SCLK pin   | 50                             | -    | _                              | ns   | (8)                |
| H <sub>ZSEB</sub> | High-impedance to SEB - MOSI, SEB pin         | 0.0                            | -    | -                              | ns   | (9)                |

### Notes

- 6. The numbers under the Notes heading refer to the corresponding numbers in Figure 7.
- 7. For the maximum clock speed of 10 MHz

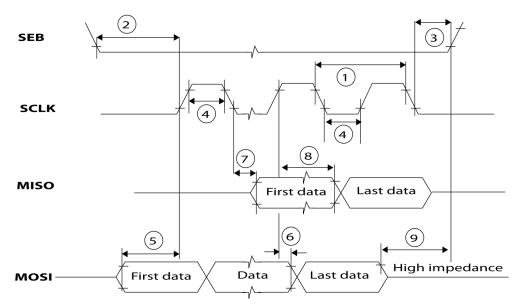



Figure 7. Typical SPI timing chart

### 6.2 External address solder balls ADR0 and ADR1

To minimize the effort on hardware wiring of signals, the MR2001T uses a combination of hardware and software coded addressing of each individual chip. Due to this procedure the hardware SEB (chip select) signal usage can be minimized.

If the software addressing is not longer sufficient (e.g. more than 4 RX chips) than a combination of SEB and software addressing is recommended.

Depending on the chip up to two external solder balls (address bit) are available (ADR0, ADR1). A connection to VCC represents a logical "1" and a connection to GND represents a logical "0", respectively. By default the logical "1" is already activated by a connection on the Die. If the corresponding pin is not connected to GND (used ball, not soldered ball), then this represents a logical "1".




Figure 8. External connection of address pins ADR0 and ADR1 to define the identification key of the chip

# 6.3 System partitioning

Using the "software" addressing scheme of Spirit chips, any system up to max. one VCO, two transmitter (TX) and 4 receiver (RX) chips are supported.

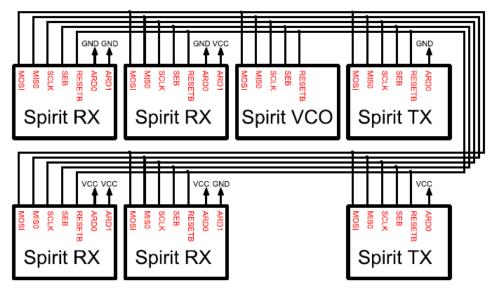



Figure 9. Chip partitioning using only software addressing of individual chips

If a system requires more than 4 Rx chips and/or 2 Tx chips and/or 1 VCO chip. Table 10 shows a proposed way to address the chips with a combination of the SEB (chip select) signal and "software" addressing.

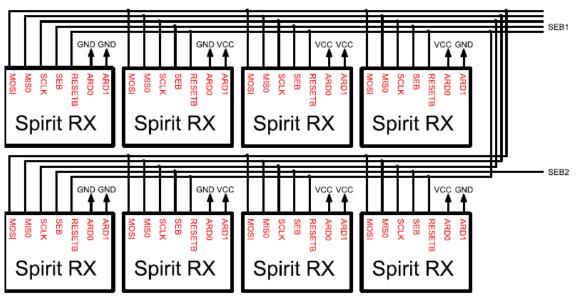



Figure 10. Typical Rx chip partitioning for more than four receivers. individual SEB signals for more than four Rx chips are required

# 6.4 Identification key

The Identification key is used to address the correct chip via SPI and it is composed of four up to six internal (on the chip hard wired) bits and up to two external bits defined by the voltage level applied to the ADR0 and ADR1 solder balls.

Table 8. Identification key

| Chip | Internal bits | ADR0 | ADR1 | Chip key |
|------|---------------|------|------|----------|
| RX1  | 1010          | 0    | 0    | 101000   |
| RX2  | 1010          | 1    | 0    | 101001   |
| RX3  | 1010          | 0    | 1    | 101010   |
| RX4  | 1010          | 1    | 1    | 101011   |
| TX1  | 01110         | 0    | -    | 011100   |
| TX2  | 01110         | 1    | -    | 011101   |
| VCO  | 101100        | -    | -    | 101100   |

If more individual chips must be addressed then the chip select (SEB) signal must be used.

# 6.5 Access protocol

### 6.5.1 Write access

Write access to the device is done as follows:

Table 9. Write access

| SPI_WRITE(add0, RX1 key) | access to RX1 is activated                   |
|--------------------------|----------------------------------------------|
| SPI_WRITE(add1, data1)   | write data1 to the RX1 register at address 1 |
| SPI_WRITE(add0, VCO key) | access to VCO is activated                   |
| SPI_WRITE(add3, data3)   | write data3 to the VCO register at address 3 |

### 6.5.2 Read access

Read access to the device is done as follows:

Table 10. Read access

| SPI_WRITE(add0, RX1 key) | access to RX1 is activated                  |
|--------------------------|---------------------------------------------|
| SPI_READ(add1, data1)    | read data1 to the RX1 register at address 1 |
| SPI_WRITE(add0, VCO key) | access to VCO is activated                  |
| SPI_READ(add3, data3)    | read data3 to the VCO register at address 3 |

# 7 Memory map

# 7.1 Generic memory map

All three MR2001T chips share the same general memory map which simplifies the programming and minimizes the error due to changes in varying register addresses.

Table 11. Generic memory map

| Addr | Register | Type | Reset | Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|------|----------|------|-------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0x00 | KEY      | R/W  | 0x00  | KEY_5    | KEY_4    | KEY_3    | KEY_2    | KEY_1    | KEY_0    | RESERVED | RESERVED |
| 0x01 | FSM0     | R/W  | 0x04  | NOT_USED | NOT_USED | NOT_USED | NOT_USED | NOT_USED | S0_F     | RESERVED | RESERVED |
| 0x02 | FSM1     | R/W  | 0x00  | NOT_USED | NOT_USED | NOT_USED | NOT_USED | NOT_USED | S1_F     | RESERVED | RESERVED |
| 0x03 | EN       | R/W  | 0x00  | EN_5     | EN_4     | EN_3     | EN_2     | EN_1     | EN_0     | RESERVED | RESERVED |
| 0x04 | CTRL0    | R/W  | 0x00  | CTRL0_5  | CTRL0_4  | CTRL0_3  | CTRL0_2  | CTRL0_1  | CTRL0_0  | RESERVED | RESERVED |
| 0x05 | CTRL1    | R/W  | 0x00  | CTRL1_5  | CTRL1_4  | CTRL1_3  | CTRL1_2  | CTRL1_1  | CTRL1_0  | RESERVED | RESERVED |
| 0x06 | CTRL2    | R/W  | 0x00  | CTRL2_5  | CTRL2_4  | CTRL2_3  | CTRL2_2  | CTRL2_1  | CTRL2_0  | RESERVED | RESERVED |
| 0x07 | CTRL3    | R/W  | 0x00  | CTRL3_5  | CTRL3_4  | CTRL3_3  | CTRL3_2  | CTRL3_1  | CTRL3_0  | RESERVED | RESERVED |
| 0x08 | SNSOUT   | R/W  | 0x00  | SNSOUT_5 | SNSOUT_4 | SNSOUT_3 | SNSOUT_2 | SNSOUT_1 | SNSOUT_0 | RESERVED | RESERVED |
| 0x09 | TST      | R/W  | 0x00  | TST_5    | TST_4    | TST_3    | TST_2    | TST_1    | TST_0    | RESERVED | RESERVED |

As an example, the register 0x03 describes the control enable/disable functionality. The level of control/enable can be different for each individual chip. Details can be found in the register map of each chip.

# 7.2 TX memory map

Table 12. TX memory map

| Addr | Register | Туре | Reset | Bit 7          | Bit 6          | Bit 5          | Bit 4          | Bit 3          | Bit 2          | Bit 1    | Bit 0    |
|------|----------|------|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------|----------|
| 0x00 | KEY      | R/W  | 0x00  | KEY_5          | KEY_4          | KEY_3          | KEY_2          | KEY_1          | KEY_0          | RESERVED | RESERVED |
| 0x01 | FSM0     | R/W  | 0x04  | NOT_USED       | NOT_USED       | NOT_USED       | NOT_USED       | NOT_USED       | S0_F           | RESERVED | RESERVED |
| 0x02 | FSM1     | R/W  | 0x00  | NOT_USED       | NOT_USED       | NOT_USED       | NOT_USED       | NOT_USED       | S1_F           | RESERVED | RESERVED |
| 0x03 | EN       | R/W  | 0x00  | TX2            | TX1            | LOPD_EN        | LOPD_SEL       | TX_IN          | NOT_USED       | RESERVED | RESERVED |
| 0x04 | CTRL0    | R/W  | 0x00  | PAPWR6_<br>ch1 | PAPWR5_<br>ch1 | PAPWR4_<br>ch1 | PAPWR3_<br>ch1 | PAPWR2_<br>ch1 | PAPWR1_<br>ch1 | RESERVED | RESERVED |
| 0x05 | CTRL1    | R/W  | 0x00  | PAPWR6_<br>ch2 | PAPWR5_<br>ch2 | PAPWR4_<br>ch2 | PAPWR3_<br>ch2 | PAPWR2_<br>ch2 | PAPWR1_<br>ch2 | RESERVED | RESERVED |
| 0x06 | CTRL2    | R/W  | 0x00  | PA1_LW_N       | PA2_LW_N       | PA2_FS         | PA2_FS_<br>SEL | PA1_FS         | PA1_FS_SEL     | RESERVED | RESERVED |
| 0x07 | CTRL3    | R/W  | 0x00  | NOT_USED       | NOT_USED       | BP2_PH         | BP2_SEL        | BP1_PH         | BP1_SEL        | RESERVED | RESERVED |
| 0x08 | SNSOUT   | R/W  | 0x00  | TMP_EN         | TMP_SEL        | PD1_EN         | PD_SEL         | PD2_EN         | SNS_RSET       | RESERVED | RESERVED |
| 0x09 | TST      | R/W  | 0x00  | NOT_USED       | NOT_USED       | NOT_USED       | NOT_USED       | NOT_USED       | TMP_TYP        | RESERVED | RESERVED |

# 7.2.1 0x00 TX key register

| Address |       |       | 0x00  | Acc   | ess: user read v | vrite |          |          |
|---------|-------|-------|-------|-------|------------------|-------|----------|----------|
| Bit     | 7     | 6     | 5     | 4     | 3                | 2     | 1        | 0        |
| R/W     | KEY_5 | KEY_4 | KEY_3 | KEY_2 | KEY_1            | KEY_0 | RESERVED | RESERVED |
| Reset   | 0     | 0     | 0     | 0     | 0                | 0     | N/A      | N/A      |

| Field | R/W      | Description               |
|-------|----------|---------------------------|
| [1:0] | RESERVED | Reserved bits             |
| [7:2] | KEY      | Device Identification Key |

# 7.2.2 0x01 TX S0 state machine register (disabled)

| Address |          |          | 0x01     | Acc      | ess: user read v | vrite |          |          |
|---------|----------|----------|----------|----------|------------------|-------|----------|----------|
| Bit     | 7        | 6        | 5        | 4        | 3                | 2     | 1        | 0        |
| R/W     | NOT_USED | NOT_USED | NOT_USED | NOT_USED | NOT_USED         | S0_F  | RESERVED | RESERVED |
| Reset   | 0        | 0        | 0        | 0        | 0                | 1     | 0        | 0        |

| Field | R/W      | Description                                                                                                  |
|-------|----------|--------------------------------------------------------------------------------------------------------------|
| [1:0] | RESERVED | Reserved bits                                                                                                |
| [2]   | S0_F     | State machine register. When S0_F is set to 1 the state machine is changing from S1 (enable) to S0 (disable) |
| [7:3] | NOT_USED | Unused bits                                                                                                  |

# 7.2.3 0x02 TX S1 state machine register (enabled)

| Address | 0x02     |          |          |          | Acc      | ess: user read v | vrite    |          |
|---------|----------|----------|----------|----------|----------|------------------|----------|----------|
| Bit     | 7        | 6        | 5        | 4        | 3        | 2                | 1        | 0        |
| R/W     | NOT_USED | NOT_USED | NOT_USED | NOT_USED | NOT_USED | S1_F             | RESERVED | RESERVED |
| Reset   | 0        | 0        | 0        | 0        | 0        | 0                | 0        | 0        |

| Field | R/W      | Description                                                                                                  |
|-------|----------|--------------------------------------------------------------------------------------------------------------|
| [1:0] | RESERVED | Reserved bits                                                                                                |
| [2]   | S1_F     | State machine register. When S1_F is set to 1 the state machine is changing from S0 (disable) to S1 (enable) |
| [7:3] | NOT_USED | Unused bits                                                                                                  |

# 7.2.4 0x03 TX enable and LO input peak detector bits

| Address | 0x03 |     |            |             | Acc   | ess: user read w | vrite    |          |
|---------|------|-----|------------|-------------|-------|------------------|----------|----------|
| Bit     | 7    | 6   | 5          | 4           | 3     | 2                | 1        | 0        |
| R/W     | TX2  | TX1 | LOPD_TX_EN | LOPD_TX_SEL | TX_IN | NOT_USED         | RESERVED | RESERVED |
| Reset   | 0    | 0   | 0          | 0           | 0     | 0                | 0        | 0        |

| Field | R/W         | Description                                                      |
|-------|-------------|------------------------------------------------------------------|
| [1:0] | RESERVED    | Reserved bits                                                    |
| [2]   | NOT_USED    | Unused bit                                                       |
| [3]   | TX_IN       | Enable Input buffer (LO Input)                                   |
| [4]   | LOPD_TX_SEL | LO Power detector output selection 0: diode row 1 1: diode row 2 |
| [5]   | LOPD_TX_EN  | Activate LO power detector (After on-chip LO doubler)            |
| [6]   | TX1         | Enable TX channel 1                                              |
| [7]   | TX2         | Enable TX channel 2                                              |

The LO, Tx peak (power) detectors and temperature sensor cannot be enabled simultaneously. Only the activation of one sensor is supported.

Table 13. LO power detector sensor activation

| SPI_WRITE(0x00, TX key)   | access to TX is activated                                         |
|---------------------------|-------------------------------------------------------------------|
| SPI_WRITE(0x08, 04h)      | Activate sensor reset SNS_RSET (discharge on-chip capacitance)    |
| SPI_WRITE(0x08, 00h)      | De-activate sensor reset SNS_RSET (discharge on-chip capacitance) |
| SPI_WRITE(0x03, 20h)      | Enable LO peak detector (diode row 0)                             |
| <measure v1=""></measure> | Measure voltage V1 at sense output                                |
| SPI_WRITE(0x08, 04h)      | Activate sensor reset SNS_RSET (discharge on-chip capacitance)    |
| SPI_WRITE(0x08, 00h)      | De-activate sensor reset SNS_RSET (discharge on-chip capacitance) |
| SPI_WRITE(0x03, 30h)      | Enable LO peak detector (diode row 1)                             |
| <measure v2=""></measure> | Measure voltage V2 at sense output                                |

|V1-V2| gives a voltage which is proportional to the LO power at the output of the on-chip doubler. SNS\_RSET (sensor reset) activation discharges an on-chip capacitance to pull-down the output to GND. The activation maybe required between each change of the sensor branch to speed up communication. It is not allowed to have the sensor active while there is a reset operation.

# 7.2.5 0x04 TX power control - channel 1

| Address | 0x04       |            |            |            | Acc        | ess: user read w | /rite    |          |
|---------|------------|------------|------------|------------|------------|------------------|----------|----------|
| Bit     | 7          | 6          | 5          | 4          | 3          | 2                | 1        | 0        |
| R/W     | PAPWR6_ch1 | PAPWR5_ch1 | PAPWR4_ch1 | PAPWR3_ch1 | PAPWR2_ch1 | PAPWR1_ch1       | RESERVED | RESERVED |
| Reset   | 0          | 0          | 0          | 0          | 0          | 0                | 0        | 0        |

| Field | R/W        | Description                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [1:0] | RESERVED   | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                |
| [7:2] | PAPWRx_ch1 | 6 bit power control for TX channel 1 101101 == 0 dB attenuation (max. output power) 100111 == 1.0 dB attenuation 100001 == 2.5 dB attenuation 011000 == 4.0 dB attenuation 010101 == 6.0 dB attenuation 001111 == 10 dB attenuation 000000 == max. attenuation  Other power control combinations are available resulting in different attenuation levels. See Figure 15 for plot of PACODE vs. output power. |

# 7.2.6 0x05 TX power control - channel 2

| Address | 0x05       |            |            |            |            | Access: user read write |          |          |
|---------|------------|------------|------------|------------|------------|-------------------------|----------|----------|
| Bit     | 7          | 6          | 5          | 4          | 3          | 2                       | 1        | 0        |
| R/W     | PAPWR6_ch2 | PAPWR5_ch2 | PAPWR4_ch2 | PAPWR3_ch2 | PAPWR2_ch2 | PAPWR1_ch2              | RESERVED | RESERVED |
| Reset   | 0          | 0          | 0          | 0          | 0          | 0                       | 0        | 0        |

| Field | R/W        | Description                                                                                                                                                                                                                                                    |  |
|-------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [1:0] | RESERVED   | Reserved bits                                                                                                                                                                                                                                                  |  |
| [7:2] | PAPWRx_ch2 | 6 bit power control for TX channel 2 101101 == 0 dB attenuation (max. output power) 100111 == 1.0 dB attenuation 100001 == 2.5 dB attenuation 011000 == 4.0 dB attenuation 010101 == 6.0 dB attenuation 001111 == 10 dB attenuation 000000 == max. attenuation |  |

# 7.2.7 0x06 TX modulator/channel control

| Address | 0x06     |          |        |            | Acc    | ess: user read v | rite     |          |
|---------|----------|----------|--------|------------|--------|------------------|----------|----------|
| Bit     | 7        | 6        | 5      | 4          | 3      | 2                | 1        | 0        |
| R/W     | PA1_LW_N | PA2_LW_N | PA2_FS | PA2_FS_SEL | PA1_FS | PA1_FS_SEL       | RESERVED | RESERVED |
| Reset   | 0        | 0        | 0      | 0          | 0      | 0                | 0        | 0        |

| Field | R/W        | Description                                                                                  |
|-------|------------|----------------------------------------------------------------------------------------------|
| [1:0] | RESERVED   | Reserved bits                                                                                |
| [2]   | PA1_FS_SEL | Channel 1 fast switch select 0 : External signal control enabled 1 : Control via SPI enabled |
| [3]   | PA1_FS     | Channel 1 fast switch control 0 : Channel 1 de-activated 1 : Channel 1 activated             |
| [4]   | PA2_FS_SEL | Channel 2 fast switch select 0 : External signal control enabled 1 : Control via SPI enabled |
| [5]   | PA2_FS     | Channel 2 fast switch control 0 : Channel 1 de-activated 1 : Channel 1 activated             |
| [6]   | PA2_LW_N   | Enable low noise setting of the reference current for channel 2                              |
| [7]   | PA1_LW_N   | Enable low noise setting of the reference current for channel 1                              |

# 7.2.8 0x07 TX bi-phase modulator

| Address | 0x07     |          |        |         | Acc    | ess: user read v | vrite    |          |
|---------|----------|----------|--------|---------|--------|------------------|----------|----------|
| Bit     | 7        | 6        | 5      | 4       | 3      | 2                | 1        | 0        |
| R/W     | NOT_USED | NOT_USED | BP2_PH | BP2_SEL | BP1_PH | BP1_SEL          | RESERVED | RESERVED |
| Reset   | 0        | 0        | 0      | 0       | 0      | 0                | 0        | 0        |

| Field | R/W      | Description                                                                                          |
|-------|----------|------------------------------------------------------------------------------------------------------|
| [1:0] | RESERVED | Reserved bits                                                                                        |
| [2]   | BP1_SEL  | Channel 1 bi-phase modulator control 0 : External signal control enabled 1 : Control via SPI enabled |
| [3]   | BP1_PH   | Channel 1 modulator settings 0 : 0 ° 1 : 180 °                                                       |
| [4]   | BP2_SEL  | Channel 2 bi-phase modulator control 0 : External signal control enabled 1 : Control via SPI enabled |
| [5]   | BP2_PH   | Channel 2modulator settings 0:0° 1:180°                                                              |
| [7:6] | NOT_USED | Unused bits                                                                                          |

MR2001T

## 7.2.9 0x08 TX sensor register

| Address | ldress 0x08 |         |        |        | Acc    | ess: user read v | vrite    |          |
|---------|-------------|---------|--------|--------|--------|------------------|----------|----------|
| Bit     | 7           | 6       | 5      | 4      | 3      | 2                | 1        | 0        |
| R/W     | TMP_EN      | TMP_SEL | PD1_EN | PD_SEL | PD2_EN | SNS_RSET         | RESERVED | RESERVED |
| Reset   | 0           | 0       | 0      | 0      | 0      | 0                | 0        | 0        |

| Field | R/W      | Description                                                                                              |  |
|-------|----------|----------------------------------------------------------------------------------------------------------|--|
| [1:0] | RESERVED | Reserved bits                                                                                            |  |
| [2]   | SNS_RSET | Sensor reset                                                                                             |  |
| [3]   | PD2_EN   | Enable peak detector channel 2                                                                           |  |
| [4]   | PD_SEL   | Peak detector reference branch selection 0 : main signal branch activated 1 : reference branch activated |  |
| [5]   | PD1_EN   | Enable peak detector channel 1                                                                           |  |
| [6]   | TMP_SEL  | Temperature sensor output selection 0: diode row 1 1: diode row 2                                        |  |
| [7]   | TMP_EN   | Enable temperature sensor                                                                                |  |

Only the temperature sensor or the peak detector can be enabled at a time. The activation of both sensors must be avoided. The temperature sensor uses a reference (diode row = 0) and a signal branch (diode row = 1). Only the absolute difference between these two voltages gives a voltage with is proportional to temperature, and peak voltage level.

Table 14. Temperature sensor activation

| SPI_WRITE(0x00, TX key)   | access to TX is activated                                      |
|---------------------------|----------------------------------------------------------------|
| SPI_WRITE(0x08, 04h)      | Activate sensor reset SNS_RSET (discharge on-chip capacitance) |
| SPI_WRITE(0x08, 8Ch)      | Enable temperature sensor at diode row 0                       |
| <measure v1=""></measure> | Measure voltage V1 at sense output                             |
| SPI_WRITE(0x08, 04h)      | Activate sensor reset SNS_RSET (discharge on-chip capacitance) |
| SPI_WRITE(0x08, C8h)      | Enable temperature sensor at diode row 1                       |
| <measure v2=""></measure> | Measure voltage V2 at sense output                             |

|V1-V2| gives a voltage which is proportional to the on-chip temperature. SNS\_RSET (sensor reset) activation discharges an on-chip capacitance to pull down the output to GND. The activation maybe required between each change of the sensor branch to speed up communication. Similar scheme must be used to read out values of the peak detector.

# 7.2.10 0x09 TX test register

| Address | 0x09     |          |          |          |          | Acc     | ess: user read w | rite     |
|---------|----------|----------|----------|----------|----------|---------|------------------|----------|
| Bit     | 7        | 6        | 5        | 4        | 3        | 2       | 1                | 0        |
| R/W     | NOT_USED | NOT_USED | NOT_USED | NOT_USED | NOT_USED | TMP_TYP | RESERVED         | RESERVED |
| Reset   | 0        | 0        | 0        | 0        | 0        | 0       | 0                | 0        |

| Field | R/W      | Description                                                  |
|-------|----------|--------------------------------------------------------------|
| [1:0] | RESERVED | Reserved bits                                                |
| [2]   | TMP_TYP  | Activate temperature sensor  1: Temperature sensor activated |
| [7:3] | NOT_USED | Unused bits                                                  |

## 7.3 State machine

The MR2001 chipset contains a digital controller which provides a simplied enable/disable control of the key analog blocks. The state maschine has only two states S0 and S1. S0 corresponds to the OFF (disabled) mode and S1 corresponds to the ON (enabled) mode, respectively.

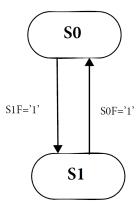



Figure 11. MR2001T state machine with the two states S0 and S1

The signals, block controlled by the state machine are listed in the following table.

| Internal<br>signal<br>names | Chip | State machine S1 (register 0x02 set to 0x04) | State machine S0 (register 0x01 set to 0x04) |
|-----------------------------|------|----------------------------------------------|----------------------------------------------|
| d_out10                     | Tx   | PA1 buffer enabled                           | PA1 buffer disabled                          |
| d_out10                     | Tx   | TX1 enabled                                  | TX1 disabled                                 |
| d_out12                     | Tx   | PA2 buffer enabled                           | PA2 buffer disabled                          |
| d_out12                     | Tx   | TX2 enabled                                  | TX2 disabled                                 |
| d_out20                     | Tx   | Doubler and buffer after doubler enabled     | Doubler and buffer after doubler disabled    |
| d_out20                     | Tx   | Phase selection 1 enabled                    | Phase selection 1 disabled                   |
| d_out20                     | Tx   | Phase selection 2 enabled                    | Phase selection 2 disabled                   |
| d_out8                      | Tx   | LO peak detector Tx input enabled            | LO peak detector Tx input disabled           |
| d_out6                      | Tx   | LO peak detector Tx input/output selection   | LO peak detector Tx output disabled          |

# 8 Typical applications

### 8.1 Introduction

The MR2001 is an expandable three package solution for automotive radar modules. The chipset consists of a VCO (voltage controlled oscillator), a two-channel Tx transmitter, and a three-channel Rx receiver.

The MR2001T is a high performance, highly integrated, two-channel, transmitter (TX) ideally suited for automotive radar applications. In conjunction with the MR2001V, a four-channel voltage controlled oscillator, and the MR2001R, a Three-channel transmitter, it provides an expandable three package solution for automotive radar modules.

The chips are connected together via the LO signal around 38 GHz. The individual control of each chip is realized by SPI. The main controller and modulation master is a single microprocessor (MCU) with integrated high-speed analog to digital converters (ADC) and appropriate signal processing capability such as fast fourier transforms.

The front-end solution is specifically architected to be controlled by NXP's Qorivva MPC5775 MCU. Especially the baseband functionality (high-pass filters, variable gain amplifiers, anti-aliasing filters) on the receiver chips has been designed to work with the MPC5775 MCU.

## 8.2 Typical application

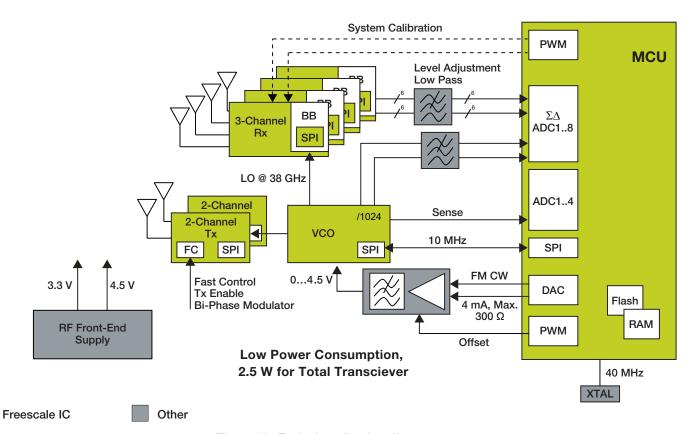



Figure 12. Typical application diagram

### 8.3 Measurement results

In the following chapters can find some typical measurement results which should help to guide a Radar system design.

### 8.3.1 Common results

### 8.3.1.1 Temperature sensor

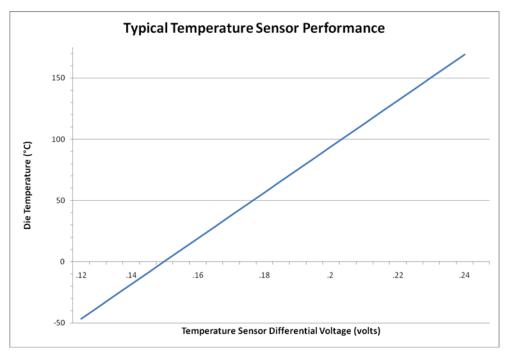



Figure 13. Typical slope of the temperature sensor of all 3 chips.

The derived equation can be used to calculate the on-chip temperature at the position of the sensor

The derived equation: Die Temp[°C]=  $\Delta V_{TEMP}$  \* 1875.0 - 280.94, with  $\Delta V_{TEMP}$  the difference between the two sequential reading on the sense output, can be used to calculate the on-chip temperature. See 0x08 TX sensor register.

### 8.3.1.2 Thermal resistance

Figure 14 shows electrical measurements done on the 2-channel transmitter chip mounted on a multi-layer FR4/RO3003 PCB mounted on a mechanical carrier, which is attached to an on-wafer chuck. Due to the test set-up the extracted thermal resistance is combination of the PCB to heatsink thermal resistance and the resistance of the RCP itself. Taking this into account, the thermal resistance of the RCP package itself is in the range of approx. 15 K/W.

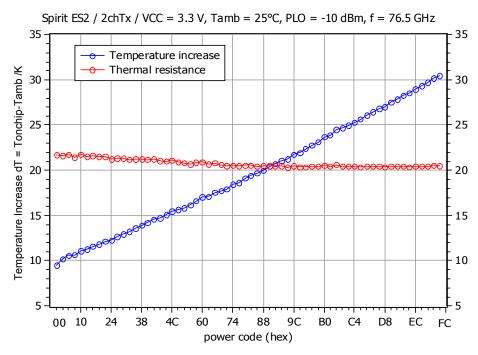



Figure 14. Electrical measurements of the thermal resistance of the RCP including PCB (FR4/RO3003), mechanical carrier and attachment to the on-wafer chuck.

### 8.3.2 2-channel transmitter Tx

### 8.3.2.1 Output power and current consumption vs. power code

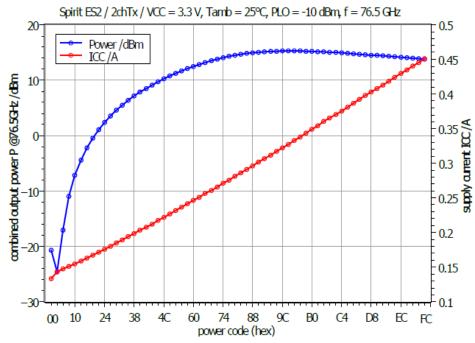



Figure 15. Typical transmitter output power and current consumption in dependence on the power code

### 8.3.2.2 Amplitude noise

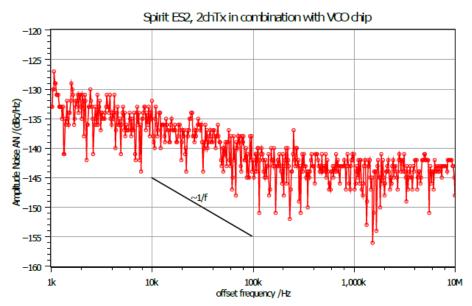



Figure 16. Amplitude noise in dependence on the offset frequency.

The input signal of the transmitter chip is provided by the MR2001 VCO to obtain a realistic measurement representative for a real system

### 8.3.2.3 Tx enable/disable switching time

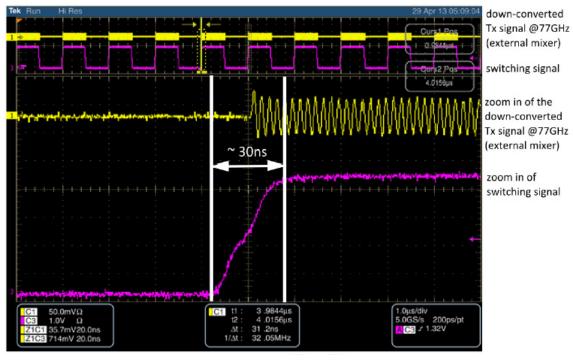



Figure 17. Switching of the Tx output signal at 77 GHz using the dedicated fast control signals

# 8.3.2.4 Tx bi-phase modulator switching time

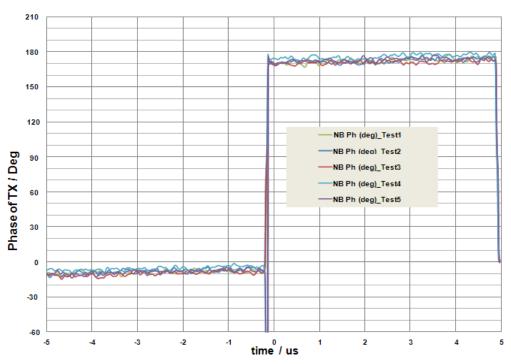



Figure 18. Bi-phase modulator switching time

Table 15. Bi-phase modulator accuracy

| Phase modulator tests: max. phase devariation |                |            |            |  |  |  |  |
|-----------------------------------------------|----------------|------------|------------|--|--|--|--|
| Board number                                  | Temp. = -40 °C |            |            |  |  |  |  |
| Board Hulliber                                | dPH_VCCN       | dPH_VCCN   | dPH_VCCN   |  |  |  |  |
| 79                                            | 3.48979352     | 3.00369858 | 3.51679007 |  |  |  |  |
| 51                                            | 4.29737721     | 3.60926265 | 3.58143264 |  |  |  |  |
| 93                                            | 4.18885615     | 4.44115113 | 4.4606723  |  |  |  |  |
| 97                                            | 2.86346822     | 3.26335298 | 3.5343957  |  |  |  |  |
| Board number                                  | Temp. = 25 °C  |            |            |  |  |  |  |
| Board Hulliber                                | dPH_VCCN       | dPH_VCCN   | dPH_VCCN   |  |  |  |  |
| 79                                            | 0.43866804     | 0.62846025 | 0.30926482 |  |  |  |  |
| 51                                            | 1.34644524     | 1.13013042 | 2.25861293 |  |  |  |  |
| 93                                            | 0.73030537     | 0.33466792 | 0.84329248 |  |  |  |  |
| 97                                            | 0.60180711     | 1.06668807 | 0.25107081 |  |  |  |  |
| Board number                                  | Temp. = 125 °C |            |            |  |  |  |  |
| Board Hulliber                                | dPH_VCCN       | dPH_VCCN   | dPH_VCCN   |  |  |  |  |
| 79                                            | 2.74077045     | 1.83352347 | 5.12341654 |  |  |  |  |
| 51                                            | 5.35388709     | 3.75971579 | 5.78778351 |  |  |  |  |
| 93                                            | 3.93749411     | 3.00785361 | 4.52890949 |  |  |  |  |
| 97                                            | 2.56610758     | 2.2756504  | 2.29983061 |  |  |  |  |

### 8.3.2.5 Tx channel-to-channel isolation

| RCP par | t#83 |             |                       |                           |             |                       |                           |
|---------|------|-------------|-----------------------|---------------------------|-------------|-----------------------|---------------------------|
| T       | vec  |             | TX1 enabled, TX2 disa | bled                      |             | TX2 enabled, TX1 disa | bled                      |
| Temp    | VCC  | PTX1 (dBm)  | PTX2 (dBm)            | Suppression of Tx1 to Tx2 | PTX2 (dBm)  | PTX1 (dBm)            | Suppression of Tx2 to Tx1 |
| 25°C    | VCCL | 13.3780307  | -31.1264364           | 44.5044671                | 13.19151078 | -29.7696062           | 42.96111698               |
|         | VCCN | 13.62436295 | -29.1294747           | 42.75383765               | 13.36192185 | -32.0277503           | 45.38967215               |
|         | VCCH | 14.0060923  | -31.7361246           | 45.7422169                | 13.6991058  | -33.2508626           | 46.9499684                |
| -40°C   | VCCL | 14.4708857  | -27.5821481           | 42.0530338                | 14.8101941  | -28.8657611           | 43.6759552                |
|         | VCCN | 14.7848906  | -28.4344435           | 43.2193341                | 15.056465   | -28.2465677           | 43.3030327                |
|         | VCCH | 14.8796449  | -28.1951796           | 43.0748245                | 15.2787074  | -26.8268638           | 42.1055712                |
| 125°C   | VCCL | 8.76883911  | -39.7677032           | 48.53654231               | 7.53366858  | -34.78867             | 42.32233858               |
|         | VCCN | 9.20925148  | -34.2685666           | 43.47781808               | 8.29215917  | -34.2835165           | 42.57567567               |
|         | VCCH | 9.81352394  | -32.9420409           | 42.75556484               | 9.33657767  | -33.6667823           | 43.00335997               |
| RCP par | t#51 |             |                       |                           |             |                       |                           |
| 25°C    | VCCL | 13.07302771 | -31.0045348           | 44.07756251               | 13.08234414 | -33.2682381           | 46.35058224               |
|         | VCCN | 13.29718998 | -30.2506283           | 43.54781828               | 13.49046736 | -32.6963831           | 46.18685046               |
|         | VCCH | 13.72432399 | -30.2506283           | 43.97495229               | 13.49046736 | -31.8611661           | 45.35163346               |
| -40°C   | VCCL | 15.2261243  | -28.8169732           | 44.0430975                | 15.3214754  | -28.9628814           | 44.2843568                |
|         | VCCN | 15.3885285  | -29.4959551           | 44.8844836                | 15.5578723  | -29.412148            | 44.9700203                |
|         | VCCH | 15.6991826  | -26.613318            | 42.3125006                | 15.7764402  | -29.5893435           | 45.3657837                |
| 125°C   | VCCL | 8.19685217  | -34.0769752           | 42.27382737               | 8.17217095  | -30.6462421           | 38.81841305               |
|         | VCCN | 9.08600147  | -31.5774057           | 40.66340717               | 8.81054076  | -31.7414643           | 40.55200506               |
|         | VCCH | 9.80552616  | -32.5313485           | 42.33687466               | 9.44048906  | -31.1813001           | 40.62178916               |
| RCP par | t#43 |             |                       |                           |             |                       |                           |
| 25°C    | VCCL | 13.39617028 | -31.7524247           | 45.14859498               | 13.37088892 | -28.7878954           | 42.15878432               |
|         | VCCN | 13.64543027 | -30.2277605           | 43.87319077               | 13.42866905 | -28.6826972           | 42.11136625               |
|         | VCCH | 14.0915816  | -29.811769            | 43.9033506                | 13.86252472 | -28.152426            | 42.01495072               |
| -40°C   | VCCL | 14.3357337  | -26.9784695           | 41.3142032                | 14.5279138  | -26.6057624           | 41.1336762                |
|         | VCCN | 14.1015644  | -27.9931902           | 42.0947546                | 14.7878311  | -26.109081            | 40.8969121                |
|         | VCCH | 14.2521621  | -26.1792575           | 40.4314196                | 14.9028976  | -28.6983833           | 43.6012809                |
| 125°C   | VCCL | 7.1184971   | -42.2858229           | 49.40432                  | 6.84635617  | -32.4024482           | 39.24880437               |
|         | VCCN | 8.35771842  | -36.7117331           | 45.06945152               | 7.86623494  | -34.1218315           | 41.98806644               |
|         | VCCH | 9.29117076  | -35.4860466           | 44.77721736               | 8.86259113  | -33.4061688           | 42.26875993               |
|         |      |             | min. suppression      | 40.4314196                |             | min. suppression      | 38.81841305               |

Figure 19. Channel-to-channel isolation for all conditions > 39 dB

Table 16. TX leakage at Lo frequency

| VCC              | Temp  |        |        |  |  |
|------------------|-------|--------|--------|--|--|
| 700              | 25 °C | -40 °C | 125 °C |  |  |
| V <sub>CCL</sub> | -57.5 | -57.5  | -58    |  |  |
| V <sub>CCN</sub> | -57.5 | -57.4  | -58    |  |  |
| V <sub>CCH</sub> | -57.7 | -57.2  | -57.7  |  |  |

 $f_{IN}$  = 38.25 GHz,  $V_{CCL}$  = 3.3 V -5%,  $V_{CCN}$  = 3.3 V,  $V_{CCH}$  = 3.3 V +5%. Values in the table are in dBm and measured after combination of the differential signals using the balun described in Figure 26.

### 8.4 External components

### 8.4.1 Biasing

### 8.4.1.1 External blocking capacitors

To achieve defined specifications, the supply to the chip must be regarding spurious and noise level as good as possible. For this reason, typically external filters are added between the sensor supply domain and the on-chip supply domains. Figure 20 shows such a typical supply scheme. The blocking caps should be placed as close as possible to the package. This is dependent on application board material and manufacturer.

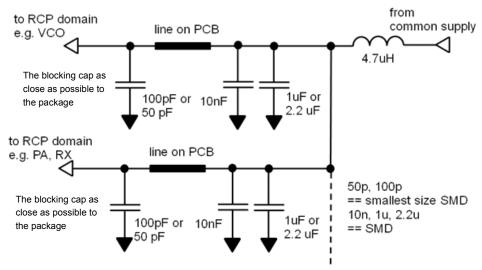



Figure 20. Typical arrangement and values of blocking capacitors to supply the chips

### 8.4.1.2 External biasing resistors

To operate the MR2001 chip-set, it is mandatory to connect each chip to two external resistors RN, RP, respectively. Without these two resistors the chips cannot be functional.

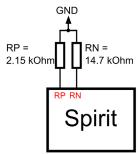



Figure 21. Required external resistors RN and RP for each individual MR2001Chip

| External resistors | Value   | Recommendation                                                                    |
|--------------------|---------|-----------------------------------------------------------------------------------|
| RP                 | 2.15 kΩ | E96, $\pm$ 1.0%, TK = $\pm$ 100 ppm/K, SMD, 0402 or smaller, 50 $\mu$ A current   |
| RN                 | 14.7 kΩ | E96, $\pm 1.0\%$ , TK = $\pm 100$ ppm/K, SMD, 0402 or smaller, 50 $\mu$ A current |

The two external resistors are part of the on-chip bandgap references. Due to the lower tolerances of the external resistors ( $\pm 1.0\%$  compared to on-chip  $\pm 10\%$ ) the supply current variation from package to package is drastically reduced.

# 8.4.2 Sense outputs

# 8.4.2.1 Tri-state sense outputs

The MR2001 chip-set provides tri-state sensing output signal which allows simplified wiring and signaling. All sense signals can be connected together to share the same hardwired signal line.

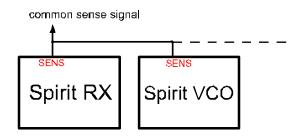
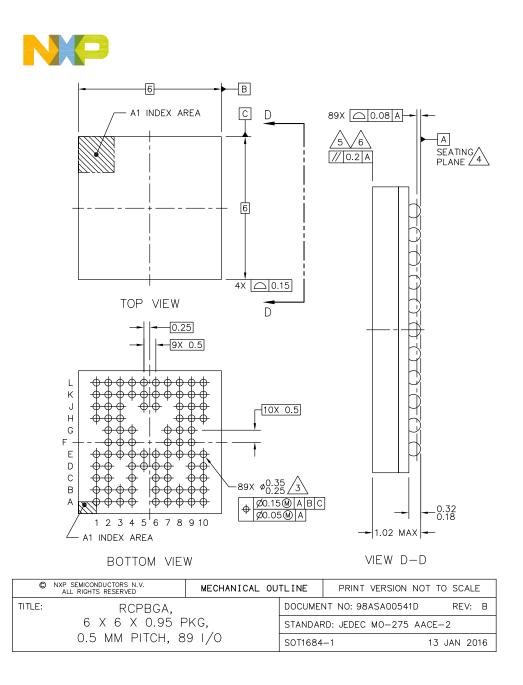



Figure 22. Block diagram and the relevant pin signals


# 9 Packaging

# 9.1 Package mechanical dimensions

Package dimensions are provided in package drawings. To find the most current package outline drawing, go to <a href="https://www.nxp.com">www.nxp.com</a> and perform a keyword search for the drawing's document number.

Table 17. Packaging information

| Package                                        | Suffix | Package outline drawing number |
|------------------------------------------------|--------|--------------------------------|
| 6.0 x 6.0 mm RCP, (10 x 11 array) 0.5 mm pitch | VK     | 98ASA00541D                    |





- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

6 Scoring or grooves on top surface of package is not permitted.

4. DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

25. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

7. NO VOIDS IN ENCAPSULATION PERMITTED.

| NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED |                                                            | MECHANICAL OUTLINE |                               | PRINT VERSION NO   | T TO SCALE  |
|---------------------------------------------|------------------------------------------------------------|--------------------|-------------------------------|--------------------|-------------|
| TITLE:                                      | ITLE: RCPBGA,<br>6 X 6 X 0.95 PKG,<br>0.5 MM PITCH, 89 I/O |                    | DOCUME                        | NT NO: 98ASA00541D | REV: B      |
|                                             |                                                            |                    | STANDARD: JEDEC MO-275 AACE-2 |                    |             |
|                                             |                                                            |                    | S0T1684                       | i–1                | 13 JAN 2016 |

### 9.2 PCB and RCP environment

### 9.2.1 NXP test board

### 9.2.1.1 RO3003 on FR4

For the NXP test boards a multi-layer PCB composed of 127  $\mu$ m thick Rogers 3003 on top of standard FR4 core is used. The manufacturer for these boards is Elekonta/Marek (http://www.elekonta.de/).

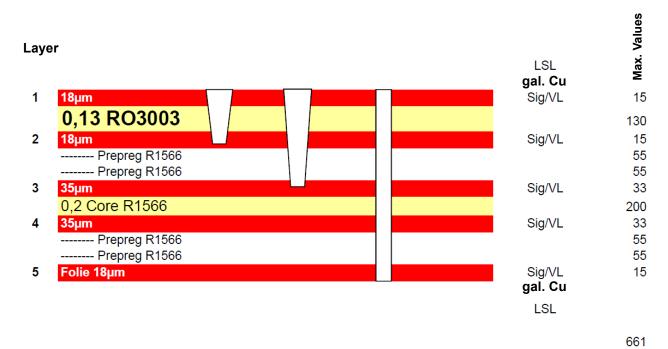



Figure 23. RO3003 on top of a FR4 core

## 9.2.1.2 Layout rules

The <u>Figure 24</u> shows the solder ball arrangement including thermal and rf vias of typical PCB. Solder ball locations are shown in magenta with a label in blue, thermal via's have a wider diameter and are also shown in magenta without any blue label, important gnd via's to achieve rf perfromance are shown in green. Thermal vias are located in the area where no solder ball is available, so that they can occupay the full area of a solder ball.

| Туре                       | Shape | Geometry                                     |
|----------------------------|-------|----------------------------------------------|
| solder ball                | ADRO  | ~∅ 300 um                                    |
| thermal via                |       | > Ø 200 um, thru PCB (non filled, or filled) |
| gnd via for rf performance |       | Ø 200 um<br>(non filled, or filled)          |

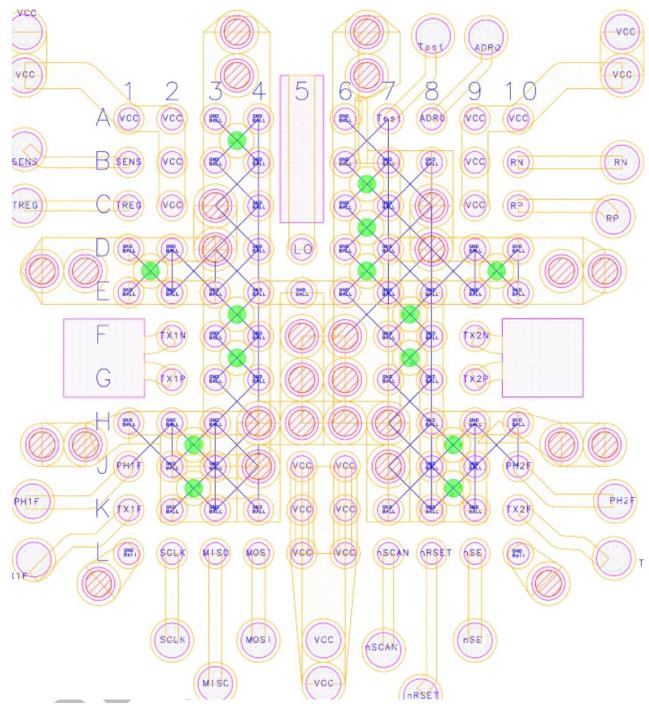



Figure 24. Top view of the Tx solder ball arrangement (magenta with blue label) including gnd vias (green, 200 um) to obtain rf-performance and thermal vias (> 200 um) to guarantee temperature range

The layout of the RCPs and the solder ball arrangement have been already done to allow space for thermal vias in the area where no solder balls are placed. It is recommended that this area is fully filled with thermal vias to lower the thermal resissance.

### 9.2.1.3 Single-ended RF connection at 38 GHz (PCB microstip lines)

For 38 GHz input and output signals no special matching structure on the PCB is required. A standard 50  $\Omega$  microstrip transmission line directly connected to the solder ball is fully sufficient.

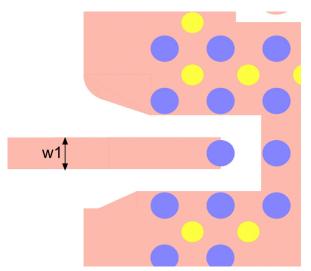



Figure 25. Example for the RF connection of a 38 GHz input and output signal. Shown in the picture is the LO input of the receiver chip

### 9.2.1.4 Differential RF connection at 77 GHz (PCB microstip lines)

To combine the differential Tx signals on the PCB, a simplified balun can be used. The layout of such structure and the geometrical details is shown in <u>Figure 26</u>. The port definitions for the EM simulations are also displayed.

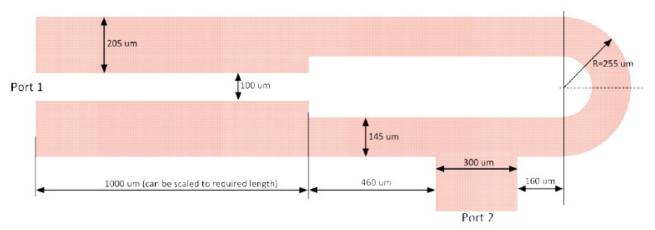



Figure 26. Layout and dimensions of a microstrip balun for the frequency range from 76 to 81 GHz

Figure 16 shows simulation results (Momentum ADS 2009U1) based on typical substrate parameters for RO3003 at 77 GHz ( r = 3.13, tand = 0.01, substrate thickness t = 127  $\mu$ m). The attenuation in the desired frequency range is approx. 0.6 dB and the input and output matching is always better as 15 dB.

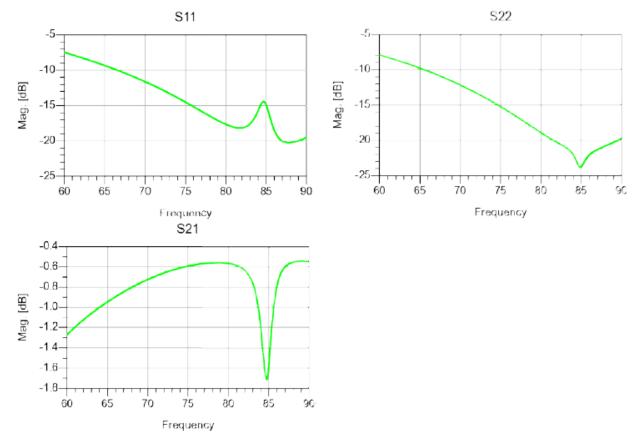
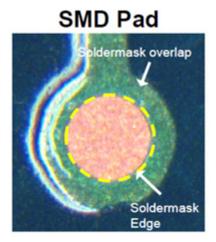




Figure 27. 2.5D EM simulation results of the balun structure shown in Figure 26

# 9.3 Assembly conditions

The following are basic recommendations for the NXP RCP aseembly:

- · Avoid non solder mask defined (NSMD) defined pads
- Pad size 280 µm minimum
- · Solder mask defined board pad
- Solder mask opening 200 μm minimum
- Stencil thickness 100 μm
- Solder paste opening 200 μm
- Lead-free solder paste (SAC405)
- ±35 μm placement of component
- Reflow following paste supplier suggested temperatures, or...
- Reflow peak is 260 °C, time above liquidus (217 °C) for 60 to 120 seconds



## **NSMD Pad**

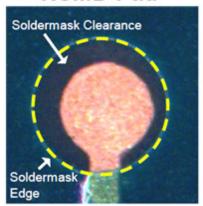



Figure 28. Solder mask (SMD) and non-solder mask defined (NSMD) pads

The typical reflow profile for the chip-set is shown in Figure 29.

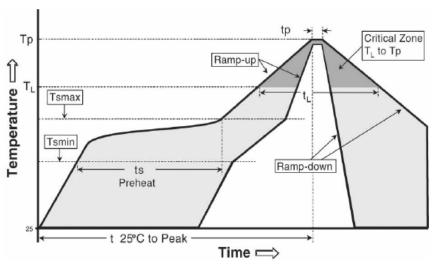



Figure 29. Typical MR2001 reflow profile

| Profile parameter                                                                                 |                                      |
|---------------------------------------------------------------------------------------------------|--------------------------------------|
| Average ramp-up rate(TSmax to Tp)                                                                 | 3.0 °C/second max.                   |
| Pre-heat     Temperature Min. (TSmin)     Temperature Max. (TSmax)     Time (TSmin to TSmax) (ts) | 150 °C<br>200 °C<br>60 – 120 seconds |
| Time maintained above:                                                                            | 217 °C<br>60-150 seconds             |
| Peak Temperature (Tp)                                                                             | 260 °C                               |
| Time within 5.0 °C of actual Peak Temperature (tp)                                                | 10 – 30 seconds                      |
| Ramp-down Rate                                                                                    | 6.0 °C/second max.                   |
| Time 25 °C to Peak Temperature                                                                    | 8 minutes max.                       |

#### Notes

8. Reflow profile as per IPC/JEDEC J-STD-020D.1

# 10 Revision history

| Revision | Date    | Description of Changes                                                                                                                                                                                                                                                          |  |
|----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.0      | 11/2014 | Initial release                                                                                                                                                                                                                                                                 |  |
| 2.0      | 12/2014 | Made typographic corrections to bring the document into compliance.                                                                                                                                                                                                             |  |
| 3.0      | 12/2014 | Updated limits for Peak Detector Output Voltage and Power Control                                                                                                                                                                                                               |  |
| 4.0      | 2/2015  | <ul> <li>Clarification on slow and fast modulation times</li> <li>Clarification on SPI interface</li> <li>Clarification on LO power detector sensor activation</li> <li>Update on peak detector threshold voltages</li> <li>Update on control functionality voltages</li> </ul> |  |
| 5.0      | 11/2015 | <ul> <li>Clarification of POUTM and PDRIFT at PACODE35</li> <li>Added formula to ENABLE_FAST and DISABLE_FAST</li> <li>Updated reflow profile table as per IPC/JEDEC J-STD-020D.1</li> </ul>                                                                                    |  |
| 6.0      | 8/2016  | <ul> <li>Updated to NXP document form and style</li> <li>Removed RF test concept</li> <li>Corrected SPI access to temperature sensor and temperature sensor graph, and parameters on reflow profile</li> </ul>                                                                  |  |

#### How to Reach Us:

Home Page: NXP.com

Web Support:

http://www.nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address:

http://www.nxp.com/terms-of-use.html.

NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. All rights reserved.

© 2016 NXP B.V.

Document Number: MC33MR2001T

Rev. 6.0 8/2016

