



# MC68HC705L26 (菖蒲) MCU

# **PRODUCT SPECIFICATION**

# **Rev 0.3**

Tuesday, February 24, 2004

Gordon T. Sasamori

CSIC MCU Design Section Tokyo Design Operations Nippon Motorola Ltd. Tokyo 106 Japan DRAFT COPY FOR REVIEW — Please Comment

The MC68HC705L26 is an MCU device in a 48-pin QFP package with the HC05 CPU core, a 24x4/25x3 LCD Driver, an SPI, a Pulse Width Counter, IR Carrier output, 16-bit Event Counter, dual on-chip oscillators, a COP watchdog timer, a 2-channel A/D converter, and total of 20 general purpose I/O port lines. The I/O port includes software programmable pull-ups and open drain outputs, and high current, high voltage outputs. The 8 K byte memory map has 6160 bytes of user EPROM and 176 bytes of user RAM.

Motorola reserves the right to make changes to any product herein to improve reliability, functioning or design. Although the information in this document has been carefully reviewed and is believed to be reliable, Motorola does not assume liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola and O are registered trademarks of Motorola, Inc. Motorola is an Equal Employment Opportunity/Affirmative Action Employer.



# Freescale Semiconductor, Inc.

### **CHANGES MADE IN REVISION 0.3**

- Fix various typo errors.
- Added missing STOP mode clock section.
- Changed RMO port output condition to include setting DDR.
- Removed references to AWOML bit and changed AWOMH name to AWOM
- Rewrote the LCD cycle frame equation.
- Changed the I<sub>DD</sub> DC electrical spec.
- Buzzer clock is 2KHz and 4KHz at 2MHz bus clock
- (Eliminated Conditional Text; eps-> FM polygons)



# TABLE OF CONTENTS

|                   | <b>SECTION 1</b>                                                                                                                                                             | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                     |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                   | 1.1                                                                                                                                                                          | FEATURES                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                     |
|                   | 1.2                                                                                                                                                                          | MCU STRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                     |
|                   | 1.3                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                     |
|                   | 1.4<br>1 <u>4</u> 1                                                                                                                                                          | VDD AND VSS                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       |
|                   | 1.4.2                                                                                                                                                                        | OSC1. OSC2                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                     |
|                   | 1.4.3                                                                                                                                                                        | XOSC1, XOSC2                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                     |
|                   | 1.4.4                                                                                                                                                                        | RESET                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                     |
| ηt                | 1.4.5                                                                                                                                                                        | PA0:PA2/KWI0:KWI2, PA3/KWI3/BZ, PA4/AD0/EVI, PA5/<br>PA6/RMO, PA7/PWCI                                                                                                                                                                                                                                                                                                                                                                          | ADI.                                                                  |
| nei               | 1.4.6                                                                                                                                                                        | PC0/SCK, PC1/SDO, PC2/SDI, PC3/IRQ                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                     |
| un                | 1.4.7                                                                                                                                                                        | PB0:PB7/FP24:FP17                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                     |
| 20                | 1.4.8                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                     |
| e<br>e            | 1.4.9                                                                                                                                                                        | BP3/FP0, FP1.FP16, PB0.PB7/FP24.FP17                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                     |
| as                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |
| Ple               | SECTION 2                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                     |
| Ĩ                 | 2.1                                                                                                                                                                          | SINGLE-CHIP MODE MEMORY MAP                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                     |
| Ż                 | 2.2                                                                                                                                                                          | I/O AND CONTROL REGISTERS                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                     |
| ΪE                | 2.3<br>2.4                                                                                                                                                                   | ROM                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                    |
|                   | 2.1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |
| 2                 | SECTION 2                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                    |
| R RI              | SECTION 3                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                    |
| =OR RI            | <b>SECTION 3</b><br>3.1                                                                                                                                                      | OPERATING MODES                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>17</b><br>17                                                       |
| Y FOR RI          | SECTION 3<br>3.1<br>3.2<br>3.3                                                                                                                                               | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES                                                                                                                                                                                                                                                                                                                                                                            | .17<br>17<br>17                                                       |
| <b>DPY FOR RI</b> | <b>SECTION 3</b><br>3.1<br>3.2<br>3.3<br>3.3.1                                                                                                                               | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES<br>STOP INSTRUCTION                                                                                                                                                                                                                                                                                                                                                        | <b>17</b><br>17<br>17<br>17<br>17                                     |
| COPY FOR RI       | <b>SECTION 3</b><br>3.1<br>3.2<br>3.3<br>3.3.1<br>3.3.1<br>3.3.2                                                                                                             | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES.<br>STOP INSTRUCTION<br>WAIT INSTRUCTION                                                                                                                                                                                                                                                                                                                                   | .17<br>17<br>17<br>17<br>17<br>19                                     |
| FT COPY FOR RI    | <b>SECTION 3</b><br>3.1<br>3.2<br>3.3<br>3.3.1<br>3.3.1<br>3.3.2<br>3.4                                                                                                      | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES.<br>STOP INSTRUCTION<br>WAIT INSTRUCTION<br>COP WATCHDOG TIMER CONSIDERATIONS                                                                                                                                                                                                                                                                                              | .17<br>17<br>17<br>17<br>17<br>19<br>19                               |
| RAFT COPY FOR R   | SECTION 3<br>3.1<br>3.2<br>3.3<br>3.3.1<br>3.3.2<br>3.4<br>SECTION 4                                                                                                         | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES.<br>STOP INSTRUCTION<br>WAIT INSTRUCTION<br>COP WATCHDOG TIMER CONSIDERATIONS<br>CPU CORE                                                                                                                                                                                                                                                                                  | .17<br>17<br>17<br>17<br>17<br>19<br>19                               |
| DRAFT COPY FOR RI | SECTION 3<br>3.1<br>3.2<br>3.3<br>3.3.1<br>3.3.2<br>3.4<br>SECTION 4<br>4.1                                                                                                  | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES<br>STOP INSTRUCTION<br>WAIT INSTRUCTION<br>COP WATCHDOG TIMER CONSIDERATIONS<br>CPU CORE<br>REGISTERS                                                                                                                                                                                                                                                                      | .17<br>17<br>17<br>17<br>19<br>19<br>19                               |
| DRAFT COPY FOR RI | SECTION 3<br>3.1<br>3.2<br>3.3<br>3.3.1<br>3.3.2<br>3.4<br>SECTION 4<br>4.1<br>4.1<br>4.1.1<br>4.1 2                                                                         | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES<br>STOP INSTRUCTION<br>WAIT INSTRUCTION<br>COP WATCHDOG TIMER CONSIDERATIONS<br>CPU CORE<br>REGISTERS<br>ACCUMULATOR (A)                                                                                                                                                                                                                                                   | .17<br>17<br>17<br>17<br>19<br>19<br>19<br>19                         |
| DRAFT COPY FOR RI | SECTION 3<br>3.1<br>3.2<br>3.3<br>3.3.1<br>3.3.2<br>3.4<br>SECTION 4<br>4.1<br>4.1.1<br>4.1.2<br>4.1 3                                                                       | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES<br>STOP INSTRUCTION<br>WAIT INSTRUCTION<br>COP WATCHDOG TIMER CONSIDERATIONS<br>CPU CORE<br>REGISTERS<br>ACCUMULATOR (A)<br>INDEX REGISTER (X)<br>STACK POINTER (SP)                                                                                                                                                                                                       | .17<br>17<br>17<br>17<br>19<br>19<br>19<br>21<br>21<br>21             |
| DRAFT COPY FOR RI | SECTION 3<br>3.1<br>3.2<br>3.3<br>3.3.1<br>3.3.2<br>3.4<br>SECTION 4<br>4.1<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4                                                              | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES<br>STOP INSTRUCTION<br>WAIT INSTRUCTION<br>COP WATCHDOG TIMER CONSIDERATIONS<br>CPU CORE<br>REGISTERS<br>ACCUMULATOR (A)<br>INDEX REGISTER (X)<br>STACK POINTER (SP)<br>PROGRAM COUNTER (PC)                                                                                                                                                                               | .17<br>17<br>17<br>17<br>19<br>19<br>19<br>19                         |
| DRAFT COPY FOR RI | SECTION 3<br>3.1<br>3.2<br>3.3<br>3.3.1<br>3.3.2<br>3.4<br>SECTION 4<br>4.1<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4<br>4.1.5                                                     | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES<br>STOP INSTRUCTION<br>WAIT INSTRUCTION<br>COP WATCHDOG TIMER CONSIDERATIONS<br>CPU CORE<br>REGISTERS<br>ACCUMULATOR (A)<br>INDEX REGISTER (X)<br>STACK POINTER (SP)<br>PROGRAM COUNTER (PC)<br>CONDITION CODE REGISTER (CCR)                                                                                                                                              | .17<br>17<br>17<br>17<br>19<br>19<br>19<br>19                         |
| DRAFT COPY FOR R  | SECTION 3<br>3.1<br>3.2<br>3.3<br>3.3.1<br>3.3.2<br>3.4<br>SECTION 4<br>4.1<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.3<br>4.1.4<br>4.1.5<br>4.2                                     | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES<br>STOP INSTRUCTION<br>WAIT INSTRUCTION<br>COP WATCHDOG TIMER CONSIDERATIONS<br>CPU CORE<br>REGISTERS<br>ACCUMULATOR (A)<br>INDEX REGISTER (X)<br>STACK POINTER (SP)<br>PROGRAM COUNTER (PC)<br>CONDITION CODE REGISTER (CCR)                                                                                                                                              | .17<br>17<br>17<br>17<br>19<br>19<br>19<br>21<br>21<br>21<br>22<br>22 |
| DRAFT COPY FOR RI | SECTION 3<br>3.1<br>3.2<br>3.3<br>3.3.1<br>3.3.2<br>3.4<br>SECTION 4<br>4.1<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.3<br>4.1.4<br>4.1.5<br>4.2<br>4.2.1<br>4.2.1<br>4.2.2          | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES<br>STOP INSTRUCTION<br>WAIT INSTRUCTION<br>COP WATCHDOG TIMER CONSIDERATIONS<br>CPU CORE<br>REGISTERS<br>ACCUMULATOR (A)<br>INDEX REGISTER (X)<br>STACK POINTER (SP)<br>PROGRAM COUNTER (PC)<br>CONDITION CODE REGISTER (CCR)<br>INSTRUCTION SET<br>REGISTER/MEMORY INSTRUCTIONS                                                                                           | .17<br>17<br>17<br>17<br>19<br>19<br>19<br>19                         |
| DRAFT COPY FOR RI | SECTION 3<br>3.1<br>3.2<br>3.3<br>3.3.1<br>3.3.2<br>3.4<br>SECTION 4<br>4.1<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4<br>4.1.3<br>4.1.4<br>4.1.5<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3 | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES<br>STOP INSTRUCTION<br>WAIT INSTRUCTION<br>COP WATCHDOG TIMER CONSIDERATIONS<br>CPU CORE<br>REGISTERS<br>ACCUMULATOR (A)<br>INDEX REGISTER (X)<br>STACK POINTER (SP)<br>PROGRAM COUNTER (PC)<br>CONDITION CODE REGISTER (CCR)<br>INSTRUCTION SET<br>REGISTER/MEMORY INSTRUCTIONS<br>READ-MODIFY-WRITE INSTRUCTIONS<br>BRANCH INSTRUCTIONS                                  | .17<br>17<br>17<br>17<br>19<br>19<br>19<br>21<br>21<br>21<br>22<br>22 |
| DRAFT COPY FOR R  | SECTION 3<br>3.1<br>3.2<br>3.3<br>3.3.1<br>3.3.2<br>3.4<br>SECTION 4<br>4.1<br>4.1.2<br>4.1.3<br>4.1.3<br>4.1.4<br>4.1.5<br>4.2<br>4.2.1<br>4.2.2<br>4.2.3<br>4.2.4          | OPERATING MODES<br>SINGLE-CHIP MODE<br>TEST MODES<br>LOW-POWER MODES<br>STOP INSTRUCTION<br>WAIT INSTRUCTION<br>COP WATCHDOG TIMER CONSIDERATIONS<br>CPU CORE<br>REGISTERS<br>ACCUMULATOR (A)<br>INDEX REGISTER (X)<br>STACK POINTER (SP)<br>PROGRAM COUNTER (PC)<br>CONDITION CODE REGISTER (CCR)<br>INSTRUCTION SET<br>REGISTER/MEMORY INSTRUCTIONS<br>READ-MODIFY-WRITE INSTRUCTIONS<br>BRANCH INSTRUCTIONS<br>BIT MANIPULATION INSTRUCTIONS | .17<br>17<br>17<br>17<br>19<br>19<br>19<br>21<br>21<br>21<br>22<br>22 |

Advance Information 20040224101843





| 4.3<br>4.3.1<br>4.3.2<br>4.3.3<br>4.3.4<br>4.3.5<br>4.3.6<br>4.3.7<br>4.3.8<br>4.3.9<br>4.3.10 | ADDRESSING MODES<br>IMMEDIATE<br>DIRECT<br>EXTENDED<br>RELATIVE<br>INDEXED, NO OFFSET<br>INDEXED, 8-BIT OFFSET<br>INDEXED, 16-BIT OFFSET<br>BIT SET/CLEAR<br>BIT TEST AND BRANCH<br>0 INHERENT. | 26<br>26<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>28<br>28 |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| SECTION 5                                                                                      | KE3EI3                                                                                                                                                                                          |                                                                      |
| 5.1                                                                                            | EXTERNAL RESET (RESET)                                                                                                                                                                          |                                                                      |
| 5.2                                                                                            |                                                                                                                                                                                                 |                                                                      |
| 5.2.1                                                                                          | COMPUTER OPERATING PROPERLY RESET (CO                                                                                                                                                           |                                                                      |
| <b>SECTION 6</b>                                                                               | INTERRUPTS                                                                                                                                                                                      | 31                                                                   |
| 6.1                                                                                            | CPU INTERRUPT PROCESSING                                                                                                                                                                        |                                                                      |
| 6.2                                                                                            | RESET INTERRUPT SEQUENCE                                                                                                                                                                        |                                                                      |
| 6.3                                                                                            | SOFTWARE INTERRUPT (SWI)                                                                                                                                                                        |                                                                      |
| 6.4                                                                                            | HARDWARE INTERRUPTS                                                                                                                                                                             |                                                                      |
| 6.5                                                                                            | EXTERNAL INTERRUPT (IRQ)                                                                                                                                                                        |                                                                      |
| 6.5.1                                                                                          | EXTERNAL INTERRUPT TRIGGER CONDITION                                                                                                                                                            |                                                                      |
| 6.5.2                                                                                          |                                                                                                                                                                                                 |                                                                      |
| 6.5.3                                                                                          |                                                                                                                                                                                                 |                                                                      |
| 0.0<br>6.7                                                                                     | SERIAL DERIDHERAL INTERRUPT (SPII)                                                                                                                                                              |                                                                      |
| 6.8                                                                                            | EVENT COUNTER INTERRUPT (EVI)                                                                                                                                                                   |                                                                      |
| 6.9                                                                                            | TIME BASE INTERRUPT (TBI)                                                                                                                                                                       |                                                                      |
| 6.10                                                                                           | KEY WAKE-UP INTERRUPT (KWI)                                                                                                                                                                     |                                                                      |
| SECTION 7                                                                                      |                                                                                                                                                                                                 | 37                                                                   |
|                                                                                                |                                                                                                                                                                                                 | 07                                                                   |
| 7.1                                                                                            |                                                                                                                                                                                                 | 37<br>42                                                             |
| 7.1.1                                                                                          |                                                                                                                                                                                                 | 42<br>12                                                             |
| 7.1.2                                                                                          | PORT A PUILUP RESISTER                                                                                                                                                                          |                                                                      |
| 7.1.4                                                                                          | PORT A WIRED-OR MODE REGISTER                                                                                                                                                                   |                                                                      |
| 7.1.5                                                                                          | KEY WAKE-UP INTERRUPT (KWI)                                                                                                                                                                     |                                                                      |
| 7.1.6                                                                                          | I/O PIN TRUTH TABLES                                                                                                                                                                            |                                                                      |
| 7.2                                                                                            | PORT B                                                                                                                                                                                          | 50                                                                   |
| 7.2.1                                                                                          | PORT B DATA REGISTER                                                                                                                                                                            | 50                                                                   |
| 7.2.2                                                                                          | PORT B DATA DIRECTION REGISTER                                                                                                                                                                  | 51                                                                   |
| 7.2.3                                                                                          | PORT B PULLUP RESISTER                                                                                                                                                                          | 51                                                                   |
| 7.2.4                                                                                          | PORT B WIRED-OR MODE REGISTER                                                                                                                                                                   |                                                                      |
| 7.2.5                                                                                          | I/O PIN TRUTH TABLES                                                                                                                                                                            | 52                                                                   |

Freescale

Semiconductor, Inc.

Advance Information 20040224101843

DRAFT COPY FOR REVIEW — Please Comment



|         | 7.3    | PORT C                                   | 53   |
|---------|--------|------------------------------------------|------|
|         | 7.3.1  | PORT C DATA REGISTER                     | 57   |
|         | 7.3.2  | PORT C DATA DIRECTION REGISTER           | 57   |
|         | 7.3.3  | PORT C PULLUP REGISTER                   | 57   |
|         | 7.3.4  | PORT C WIRED-OR MODE REGISTER            | 57   |
|         | 7.3.5  | I/O PIN TRUTH TABLES                     | 58   |
|         | 7.4    | I/O PORT PROGRAMMING                     | 61   |
|         | 7.4.1  | PIN DATA DIRECTION                       | 61   |
|         | 7.4.2  | OUTPUT PIN                               | 61   |
|         | 7.4.3  | INPUT PIN                                | 61   |
|         | 7.4.4  | I/O PIN TRANSITIONS                      | 61   |
|         | 7.4.5  | I/O PINS WITH SUB-SYSTEMS                | 61   |
|         | 7.4.6  | RESISTOR CONTROL REGISTER1 (RCR1)        | 63   |
|         | 7.4.7  | RESISTOR CONTROL REGISTER2 (RCR2)        | 64   |
|         | 7.4.8  | OPEN DRAIN OUTPUT CONTROL REGISTER (WOM) | 65   |
| SECTION | 8      | OSCILLATORS AND CLOCK                    | . 67 |
|         | 8.1    | OSC CLOCK DIVIDER AND POR COUNTER        | 67   |
|         | 8.2    | SYSTEM CLOCK CONTROL                     | 67   |
|         | 8.3    | OSC AND XOSC                             | 67   |
|         | 8.3.1  | OSC ON LINE                              | 68   |
|         | 8.3.2  | XOSC ON LINE                             | 68   |
|         | 8.4    | STOP AND WAIT MODES                      | 69   |
|         | 8.5    | XOSC CLOCK DIVIDER AND POD COUNTER       | 72   |
|         | 8.6    | SYSTEM CLOCK CONTROL                     | 72   |
|         | 8.7    | XOSC                                     | 72   |
|         | 8.8    | STOP AND WAIT MODES                      | 72   |
|         | 8.9    | MISCELLANEOUS REGISTER (MISC)            | 73   |
| SECTION | 9      | TIME BASE                                | .75  |
|         | 91     | TIME BASE SUB-MODULES                    | 75   |
|         | 9.1.1  |                                          |      |
|         | 9.1.2  | STUP                                     | 75   |
|         | 9.1.3  | ТВІ                                      | 75   |
|         | 9.1.4  | COP                                      | 76   |
|         | 9.1.5  | REMOTE CONTROL CARRIER GENERATOR         | 77   |
|         | 9.1.6  | BUZZER TONE GENERATOR                    | 79   |
|         | 9.2    | TIME BASE CONTROL REGISTER 1 (TBCR1)     | 80   |
|         | 9.3    | TIME BASE CONTROL REGISTER 2 (TBCR2)     | 81   |
|         | 9.4    | TIME BASE CONTROL REGISTER 3 (TBCR3)     | 82   |
| SECTION | 10     | SPI                                      | .85  |
|         | 10.1   | INTRODUCTION                             | 85   |
|         | 10.1.1 | FEATURES                                 | 85   |
|         | 10.2   | BLOCK DIAGRAM                            | 86   |
|         | 10.2.1 | CONTROL                                  | 86   |
|         | 10.2.2 | SPDR                                     | 86   |
|         |        |                                          |      |

DRAFT COPY FOR REVIEW — Please Comment





Semiconductor, Inc.

Freescale

|                      | 10.2.3 | SPCR                                         | 86     |
|----------------------|--------|----------------------------------------------|--------|
|                      | 10.2.4 | CLOCK GENERATOR                              | 86     |
|                      | 10.2.5 | OTHERS                                       | 87     |
|                      | 10.3   | SIGNAL DESCRIPTION                           | 87     |
|                      | 10.3.1 | SERIAL DATA OUT (SDO)                        | 87     |
|                      | 10.3.2 | SERIAL DATA IN (SDI)                         | 87     |
|                      | 10.3.3 | SERIAL CLOCK (SCK)                           | 87     |
|                      | 10.4   | FUNCTIONAL DESCRIPTION                       | 87     |
|                      | 10.5   | REGISTER DESCRIPTION                         | 88     |
|                      | 10.5.1 | SERIAL PERIPHERAL CONTROL REGISTER (SPCR)    | 89     |
|                      | 10.5.2 | SERIAL PERIPHERAL STATUS REGISTER (SPSR)     | 90     |
|                      | 10.5.3 | SPI DATA REGISTER (SPDR)                     |        |
|                      | 10.6   |                                              | 92     |
|                      | 10.7   | STOP/WAIT CONDITION                          | 92     |
|                      | 10.7.1 |                                              | 92     |
|                      | 10.7.2 | VVAIT                                        | 92     |
| SECTION <sup>·</sup> | 11 LO  | CD DRIVER                                    | 93     |
|                      | 11.1   |                                              | 93     |
|                      | 11.2   | BLOCK DIAGRAM                                | 93     |
|                      | 11.3   | FUNCTIONAL DESCRIPTION                       | 94     |
|                      | 11.3.1 | LCD CONTROL REGISTERS                        | 94     |
|                      | 11.3.2 | FAST CHAGE OPTION                            | 95     |
|                      | 11.3.3 | LCD DATA REGISTER                            | 96     |
|                      | 11.4   | TERMINAL DESCRIPTION                         | 97     |
|                      | 11.4.1 | VLCD BIAS INPUTS                             | 97     |
|                      | 11.4.2 | BACK PLANE DRIVERS (BP0:BP3)                 | 97     |
|                      | 11.4.3 | FRONT PLANE DRIVERS                          | 99     |
|                      | 11.5   | LCD PANEL CONNECTION& LCD DRIVER OPERATION   | 101    |
|                      | 11.6   | LCD WAVEFORM BASE CLOCK & LCD CYCLE FRAME    | 104    |
|                      | 11.6.1 | TIME BASE CONTROL REGISTER 1 (TBCR1)         | 104    |
|                      | 11.6.2 | LCD CYCLE FRAME                              | 104    |
|                      | 11.7   | SIMPLIFIED LCD SCHEMATIC                     | 104    |
| SECTION ·            | 12 PI  | ULSE WIDTH COUNTER                           | 107    |
|                      | 121    |                                              | 108    |
|                      | 12.1   | COUNTER                                      | 108    |
|                      | 12.2   | PWC QUELIE                                   | 100    |
|                      | 12.0   | SOFTWARE CONSIDERATIONS                      | 109    |
|                      | 12.5   | PWC DURING WAIT MODE                         | 109    |
|                      | 12.6   | PWC DURING STOP MODE                         | 109    |
|                      | 12.7   | PULSE WIDTH COUNTER CONTROL REGISTER (PWCCF  | R)110  |
|                      | 12.8   | PULSE WIDTH COUNTER STATUS REGISTER (PWCSR). | í11    |
|                      | 12.9   | PULSE WIDTH COUNTER DATA REGISTER (PWCDR)    | 113    |
| SECTION <sup>-</sup> | 13 AI  | NALOG SUBSYSTEM                              | 115    |
|                      | 13.1   | ANALOG SECTION                               | 115    |
|                      |        |                                              |        |
|                      |        |                                              | nation |

For More Information On This Product, Go to: www.freescale.com



|         | 13.1.1<br>13.1.2<br>13.1.3<br>13.2<br>13.3<br>13.3.1<br>13.3.2<br>13.3.3<br>13.4<br>13.5 | RATIOMETRIC CONVERSION                                                                                                                                                                                                                                                                                                                       | 115<br>115<br>115<br>115<br>115<br>115<br>116<br>116<br>116<br>116 |
|---------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|         | 13.6                                                                                     | A/D STATUS AND CONTROL REGISTER (ADSC)                                                                                                                                                                                                                                                                                                       | 117                                                                |
|         | 13.6.1                                                                                   | CC - CONVERSION COMPLETE                                                                                                                                                                                                                                                                                                                     | 117                                                                |
|         | 13.6.2                                                                                   | ADRC - RC OSCILLATOR CONTROL                                                                                                                                                                                                                                                                                                                 | 117                                                                |
|         | 13.6.3                                                                                   |                                                                                                                                                                                                                                                                                                                                              | 11/                                                                |
|         | 13.0.4                                                                                   |                                                                                                                                                                                                                                                                                                                                              | 110                                                                |
|         | 13.7                                                                                     | A/D CONVERSION DATA REGISTER (ADC)                                                                                                                                                                                                                                                                                                           | 1 10                                                               |
| SECTION | 14 E                                                                                     | VENT COUNTER                                                                                                                                                                                                                                                                                                                                 | 119                                                                |
|         | 14.1<br>14.2                                                                             | EVENT COUNTER STATUS/CONTROL REGISTER (EVS<br>EVENT COUNTER TIMING REGISTER (EVTR)                                                                                                                                                                                                                                                           | C)120<br>121                                                       |
|         | 14.3                                                                                     | EVENT COUNTER INTERRUPTS                                                                                                                                                                                                                                                                                                                     | 123                                                                |
|         | 14.4                                                                                     | EVENT COUNTER DATA REGISTERS (EVDH) & (EVDL)                                                                                                                                                                                                                                                                                                 | 124                                                                |
|         | 14.5                                                                                     | EVENT COUNTER DURING WAIT MODE                                                                                                                                                                                                                                                                                                               | 124                                                                |
|         | 14.6                                                                                     | EVENT COUNTER DURING STOP MODE                                                                                                                                                                                                                                                                                                               | 124                                                                |
| _       |                                                                                          |                                                                                                                                                                                                                                                                                                                                              |                                                                    |
| SECTION | 15 E                                                                                     | LECTRICAL SPECIFICATIONS                                                                                                                                                                                                                                                                                                                     | 125                                                                |
| SECTION | <b>15 E</b>                                                                              | LECTRICAL SPECIFICATIONS                                                                                                                                                                                                                                                                                                                     | . <b>. 125</b><br>125                                              |
| SECTION | <b>15 E</b><br>15.1<br>15.2                                                              | LECTRICAL SPECIFICATIONS<br>MAXIMUM RATINGS<br>DC OPERATING CHARACTERISTICS                                                                                                                                                                                                                                                                  | <b>125</b><br>125<br>126                                           |
| SECTION | <b>15</b> E<br>15.1<br>15.2<br>15.3                                                      | LECTRICAL SPECIFICATIONS<br>MAXIMUM RATINGS<br>DC OPERATING CHARACTERISTICS<br>DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V)                                                                                                                                                                                                                    | 125<br>125<br>126<br>127                                           |
| SECTION | <b>15</b> E<br>15.1<br>15.2<br>15.3<br>15.4                                              | LECTRICAL SPECIFICATIONS<br>MAXIMUM RATINGS<br>DC OPERATING CHARACTERISTICS<br>DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V)<br>DC ELECTRICAL CHARACTERISTICS (VDD = 5.0V)                                                                                                                                                                      | 125<br>125<br>126<br>127<br>128                                    |
| SECTION | <b>15 E</b><br>15.1<br>15.2<br>15.3<br>15.4<br>15.5                                      | LECTRICAL SPECIFICATIONS<br>MAXIMUM RATINGS<br>DC OPERATING CHARACTERISTICS<br>DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V)<br>DC ELECTRICAL CHARACTERISTICS (VDD = 5.0V)<br>LCD DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V)                                                                                                                    | 125<br>125<br>126<br>127<br>128<br>)129                            |
| SECTION | <b>15 E</b><br>15.1<br>15.2<br>15.3<br>15.4<br>15.5<br>15.6                              | LECTRICAL SPECIFICATIONS<br>MAXIMUM RATINGS<br>DC OPERATING CHARACTERISTICS<br>DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V)<br>DC ELECTRICAL CHARACTERISTICS (VDD = 5.0V)<br>LCD DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V)<br>LCD DC ELECTRICAL CHARACTERISTICS (VDD = 5.0V)                                                                  | 125<br>125<br>126<br>127<br>128<br>)129<br>)129                    |
| SECTION | <b>15</b> E<br>15.1<br>15.2<br>15.3<br>15.4<br>15.5<br>15.6<br>15.7                      | LECTRICAL SPECIFICATIONS.<br>MAXIMUM RATINGS<br>DC OPERATING CHARACTERISTICS<br>DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V)<br>DC ELECTRICAL CHARACTERISTICS (VDD = 5.0V)<br>LCD DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V)<br>LCD DC ELECTRICAL CHARACTERISTICS (VDD = 5.0V)<br>A/D CONVERTER CHARACTERISTICS                                | 125<br>125<br>126<br>127<br>128<br>)129<br>)129<br>130             |
| SECTION | <b>15 E</b><br>15.1<br>15.2<br>15.3<br>15.4<br>15.5<br>15.6<br>15.7<br>15.8              | LECTRICAL SPECIFICATIONS.<br>MAXIMUM RATINGS<br>DC OPERATING CHARACTERISTICS<br>DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V)<br>DC ELECTRICAL CHARACTERISTICS (VDD = 5.0V)<br>LCD DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V)<br>LCD DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V)<br>A/D CONVERTER CHARACTERISTICS<br>CONTROL TIMING (VDD = 3.3V) | 125<br>125<br>126<br>127<br>128<br>)129<br>)129<br>130<br>131      |

DRAFT COPY FOR REVIEW — Please Comment





# THIS PAGE INTENTIONALLY LEFT BLANK



Advance Information 20040224101843

Page vi



DRAFT COPY FOR REVIEW — Please Comment

Semiconductor, Inc.

Freescale

# LIST OF FIGURES

| Figure 1- | 1: MC68HC705L26 Block Diagram               | 2  |
|-----------|---------------------------------------------|----|
| Figure 1- | 2: 48 QFP Single-Chip Mode Pinout           | 3  |
| Figure 1- | 3: Oscillator Connections                   | 5  |
| Figure 1- | 4: Oscillator Connections                   | 6  |
| Figure 2- | 1: MC68HC705L26 Single-Chip Mode Memory Map | 9  |
| Figure 2- | 2: I/O Register Memory Map Summary          | 10 |
| Figure 2- | 3: I/O Register \$0000:\$000F (Main Map)    | 11 |
| Figure 2- | 4: I/O Register \$0000:\$000F (Option Map)  | 12 |
| Figure 2- | 5: I/O Register \$0010:\$001F               | 13 |
| Figure 2- | 6: I/O Register \$0020:\$002F               | 14 |
| Figure 2- | 7: I/O Register \$0030:\$003F               | 15 |
| Figure 3- | 1: STOP/WAIT Flowcharts                     | 18 |
| Figure 4- | 1: M68HC05 Programming Model                | 21 |
| Figure 5- | 1: Reset Block Diagram                      | 29 |
| Figure 6- | 1: Interrupt Processing Flowchart           | 32 |
| Figure 6- | 2: Interrupt Control Register               | 34 |
| Figure 6- | 3: Interrupt Status Register                | 35 |
| Figure 7- | 1: Port A0:3/KWI0:3 I/O Circuitry           | 38 |
| Figure 7- | 2: Port A3/KWI3/BZ I/O Circuitry            | 38 |
| Figure 7- | 3: Port A4:6 I/O Circuitry                  | 39 |
| Figure 7- | 4: Port A4/AD0/EVI I/O Circuitry            | 39 |
| Figure 7- | 5: Port A5/AD1 I/O Circuitry                | 40 |
| Figure 7- | 6: Port A6/RMO I/O Circuitry                | 40 |
| Figure 7- | 7: Port A7/PWCI I/O Circuitry               | 41 |
| Figure 7- | 8: Port A Data Register                     | 42 |
| Figure 7- | 9: Port A Data Direction Register           | 42 |
| Figure 7- | 10: Key Wake-up Interrupt (KWI)             | 43 |
| Figure 7- | 11: Port B0:B7/FP24:FP17 I/O Circuitry      | 50 |
| Figure 7- | 12: Port B Data Register                    | 50 |
| Figure 7- | 13: Port B Data Direction Register          | 51 |
| Figure 7- | 14: Port PC0/SCK Circuitry                  | 53 |
| Figure 7- | 15: PC1/SDO Circuitry                       | 54 |
| Figure 7- | 16: PC2/SDI Circuitry                       | 55 |
| Figure 7- | 17: PC3/IRQ Circuitry                       | 56 |
| Figure 7- | 18: Port C Data Register                    | 57 |
|           |                                             |    |

Advance Information 20040224101843



# 68HC705L26 Specifica**Fiveescale Semiconductor, Inc.**

| Figure 7-19:  | Port C Data Direction Register                      | . 57 |
|---------------|-----------------------------------------------------|------|
| Figure 7-20:  | Resistor Control Register 1                         | . 63 |
| Figure 7-21:  | Resistor Control Register 2                         | . 64 |
| Figure 7-22:  | Wired-OR Mode Register                              | . 65 |
| Figure 8-1:   | OSC1, OSC2, XOSC1, and XOSC2                        | . 68 |
| Figure 8-2:   | Clock Signal Distribution                           | .71  |
| Figure 8-3: I | Miscellaneous Register                              | .73  |
| Figure 8-4:   | Clock State and STOP/POD Delay Diagram              | .74  |
| Figure 9-1: I | Remote Control Carrier Output Port Control (RPOL=1) | . 78 |
| Figure 9-2: I | Remote Control Carrier Output Port Control (RPOL=0) | .78  |
| Figure 9-3: I | Remote Control Carrier Duty Control                 | .78  |
| Figure 9-4: I | Buzzer Tone Output Control                          | .79  |
| Figure 9-5:   | Time Base Control Register 1                        | . 80 |
| Figure 9-6:   | Time Base Control Register 2                        | . 81 |
| Figure 9-7:   | Time Base Control Register 3                        | . 82 |
| Figure 10-1:  | SPI Block Diagram                                   | . 86 |
| Figure 10-2:  | SPI Control Register                                | . 89 |
| Figure 10-3:  | SPI Status Register                                 | . 90 |
| Figure 10-4:  | SPI Data Register                                   | . 91 |
| Figure 10-5:  | Clock/Data timing                                   | . 92 |
| Figure 11-1:  | LCD Block Diagram                                   | . 93 |
| Figure 11-2:  | LCD Control Register                                | . 94 |
| Figure 11-3:  | LCD Data Registers (LDAT1:LDAT13)                   | . 96 |
| Figure 11-4:  | 1/3 Duty LCD Backplane Driver Waveforms             | . 97 |
| Figure 11-5:  | 1/4 Duty LCD Backplane Driver Waveforms             | . 98 |
| Figure 11-6:  | 1/3 Duty LCD Front Plane Driver Waveforms           | . 99 |
| Figure 11-7:  | 1/4 Duty LCD Front Plane Driver Waveforms           | 100  |
| Figure 11-8:  | Time Base Control Register 1                        | 104  |
| Figure 11-9:  | Simplified LCD Schematic                            | 105  |
| Figure 12-1:  | Queued Pulse Width Counter Block Diagram            | 107  |
| Figure 12-2:  | PWC Control Register                                | 110  |
| Figure 12-3:  | PWC Status Register                                 | 111  |
| Figure 12-4:  | PWC Data Register                                   | 113  |
| Figure 13-1:  | A/D Status and Control Register                     | 117  |
| Figure 13-2:  | A/D Conversion Value Data Register                  | 118  |
| Figure 14-1:  | Event Counter Block Diagram                         | 119  |
| Figure 14-2:  | Event Counter Status/Control Register               | 120  |



20040224101843

DRAFT COPY FOR REVIEW — Please Comment



| Figure 14-4 E | Event Counter Input Timing Example       | 121 |
|---------------|------------------------------------------|-----|
| Figure 14-3:  | Event Counter Timing Register            | 121 |
| Figure 14-5 E | Event Counter Gate Signal Timing Example | 123 |
| Figure 14-6:  | Event Counter Data High Register         | 124 |
| Figure 14-7:  | Event Counter Data Low Register          | 124 |

# DRAFT COPY FOR REVIEW — Please Comment





# THIS PAGE INTENTIONALLY LEFT BLANK

Advance Information Page x



For More Information On This Product, Go to: www.freescale.com 20040224101843

DRAFT COPY FOR REVIEW — Please Comment



# LIST OF TABLES

| <\$paranumonly>>: | Pin Configurations                        | 4   |
|-------------------|-------------------------------------------|-----|
| <\$paranumonly>>: | Vector Address for Interrupts and Reset   | 31  |
| <\$paranumonly>>: | PA0:2/KWI0:2 I/O Pin Functions            | 44  |
| <\$paranumonly>>: | PA3/KWI3/BZ I/O Pin Functions             | 45  |
| <\$paranumonly>>: | PA4/AD0/EVI I/O Pin Functions             | 46  |
| <\$paranumonly>>: | PA5/AD1 I/O Pin Functions                 | 47  |
| <\$paranumonly>>: | PA6/RMO I/O Pin Functions                 | 48  |
| <\$paranumonly>>: | PA7/PWCI I/O Pin Functions                | 49  |
| <\$paranumonly>>: | PB0:PB3/FP24:FP21 I/O Pin Functions       | 52  |
| <\$paranumonly>>: | PB4:PB7/FP20:FP17 I/O Pin Functions       | 52  |
| <\$paranumonly>>: | PC0/SCK I/O Pin Functions                 | 58  |
| <\$paranumonly>>: | PC1/SDO I/O Pin Functions                 | 59  |
| <\$paranumonly>>: | PC2/SDI I/O Pin Functions                 | 59  |
| <\$paranumonly>>: | PC3/IRQ I/O Pin Functions                 | 60  |
| <\$paranumonly>>: | Port Control Register Bits Summary        | 62  |
| <\$paranumonly>>: | System Bus Frequency Selection            | 67  |
| <\$paranumonly>>: | CPU Start-up Time Requirements            | 70  |
| <\$paranumonly>>: | Recovery Time Requirements                | 72  |
| <\$paranumonly>>: | System Bus Frequency Selection            | 73  |
| <\$paranumonly>>: | LCD Clock Frequency                       | 75  |
| <\$paranumonly>>: | Time Base Interrupt Frequency             | 75  |
| <\$paranumonly>>: | COP Time-Out Period                       | 76  |
| <\$paranumonly>>: | Remote Carrier Frequency Selection        | 77  |
| <\$paranumonly>>: | Buzzer Frequency                          | 79  |
| <\$paranumonly>>: | RLCD Configuration                        | 94  |
| <\$paranumonly>>: | LCD Waveform Base Clock Frequency         | 104 |
| <\$paranumonly>>: | PWC Counter Clock Rate                    | 108 |
| <\$paranumonly>>: | PWC Counter Clock Rate                    | 108 |
| <\$paranumonly>>: | PWC Interrupt Sources                     | 112 |
| <\$paranumonly>>: | A/D Multiplexer Input Channel Assignments | 118 |
| <\$paranumonly>>: | Measurement Time Nibble                   | 122 |
| <\$paranumonly>>: | Wait Time Nibble                          | 122 |
|                   |                                           |     |

Advance Information 20040224101844



For More Information On This Product, Go to: www.freescale.com

DRAFT COPY FOR REVIEW — Please Comment



# THIS PAGE INTENTIONALLY LEFT BLANK

Advance Information Page xii



For More Information On This Product, Go to: www.freescale.com 20040224101844



# **SECTION 1INTRODUCTION**

The Motorola MC68HC705L26 is a member of M68HC05 family of low-cost microcontrollers (MCUs). A functional block diagram of the MC68HC705L26 is shown in **1.3**.

# 1.1 FEATURES

- Low cost, HC05 Core
- 48-pin QFP Package
- 6160 Bytes of User EPROM (including 16 Bytes of User Vectors)
- 176 Bytes of User RAM
- 24 x 4 or 25 x 3 Multiplexed LCD Driver
- 6-level Queued Pulse Width Counter
- Serial Peripheral Interface (SPI)
- 2 channel Analog to Digital Converter
- 16-bit Event Counter
- Time Base Timer
- COP Watchdog Timer
- IR Remote Carrier Output (software selectable 33-67% or 50-50% duty)
- Buzzer Output (software selectable frequencies)
- STOP Instruction Disable Option
- 20 Bidirectional I/O Lines including: 4 Key Wake-up Input Lines Software Programmable Pull-ups Software Programmable Open Drain Lines High Voltage (9 V<sub>DC</sub>), High Current (20 mA) Lines
- Software Selectable Sensitivity on IRQ Interrupt (Edge- and Level-Sensitive or Edge-Sensitive Only)
- On-Chip Dual 4MHz/32KHz (typ.) Oscillators
- Single-Chip, Self-Check, and Test Modes
- Power Saving STOP and WAIT Modes

Advance Information 20040224101845



Chapter 1: Introduction Page 1

For More Information On This Product, Go to: www.freescale.com

Please Comment

I

DRAFT COPY FOR REVIEW

# 1.2 MCU STRUCTURE

Semiconductor, Inc.

Freescale

The overall block diagram of the MC68HC705L26 is shown in 1.3.





# 1.3 MASK OPTIONS

There are no Mask Options on the MC68HC705L26.

Chapter 1: Introduction Page 2



For More Information On This Product, Go to: www.freescale.com



# 1.4 FUNCTIONAL PIN DESCRIPTION

NOTE: A line over a signal name indicates an active low signal. For example, RESET is active high and RESET is active low. Any reference to voltage, current, resistance, capacitance, time, or frequency specified in the following sections will refer to the nominal values. The exact values and their tolerance or limits are specified in SECTION 15.

The MC68HC705L26 is available in the 48-pin QFP. The pin assignments for the package are shown in **Figure 1-2**.





The following paragraphs describe the general function of each pin.

Advance Information 20040224101845



Chapter 1: Introduction Page 3

For More Information On This Product, Go to: www.freescale.com

Freescale Semiconductor, Inc.

Please Comment

DRAFT COPY FOR REVIEW

# 68HC705L26 Specifica**Fireescale Semiconductor, Inc.**

| Pin<br>Nbr | Pin Name    | I/O<br>DIR |
|------------|-------------|------------|
| 10         | OSC1        | I          |
| 11         | OSC2        | 0          |
| 12         | VDD         | DC         |
| 13         | XOSC2       | 0          |
| 14         | XOSC1       | I          |
| 15         | VSS         | DC         |
| 16         | RESET       | I          |
| 17         | PA0/KWI0    | IO         |
| 18         | PA1/KWI1    | IO         |
| 19         | PA2/KWI2    | IO         |
| 20         | PA3/KWI3/BZ | IO         |
| 21         | PA4/AD0/EVI | IO         |
| 22         | PA5/AD1     | IO         |
| 23         | PA6/RMO     | IO         |
| 24         | PA7/PWCI    | IO         |
| 25         | PC0/SCK     | IO         |
| 26         | PC1/SDO     | IO         |
| 27         | PC2/SDI     | IO         |
| 28         | PC3/IRQ/VPP | IO         |

| Table 1-1: | Pin Configurations |
|------------|--------------------|
|------------|--------------------|

| Pin<br>Nbr | Pin Name | I/O<br>DIR |
|------------|----------|------------|
| 29         | PB0/FP24 | 10         |
| 30         | PB1/FP23 | ю          |
| 31         | PB2/FP22 | IO         |
| 32         | PB3/FP21 | IO         |
| 33         | PB4/FP20 | IO         |
| 34         | PB5/FP19 | IO         |
| 35         | PB6/FP18 | IO         |
| 36         | PB7/FP17 | ю          |
| 37         | FP16     | 0          |
| 38         | FP15     | 0          |
| 39         | FP14     | 0          |
| 40         | FP13     | 0          |
| 41         | FP12     | 0          |
| 42         | FP11     | 0          |
| 43         | FP10     | 0          |
| 44         | FP9      | 0          |
| 45         | FP8      | 0          |
| 46         | FP7      | 0          |
| 47         | FP6      | 0          |
| 48         | FP5      | 0          |
| 1          | FP4      | 0          |
| 2          | FP3      | 0          |
| 3          | FP2      | 0          |
| 4          | FP1      | 0          |
| 5          | BP3/FP0  | 0          |
| 6          | BP2      | 0          |
| 7          | BP1      | 0          |
| 8          | BP0      | 0          |
| 9          | VLCD     | DC         |

Chapter 1: Introduction Page 4



For More Information On This Product, Go to: www.freescale.com

Advance Information 20040224101845

I



### 1.4.1 VDD AND VSS

Power is supplied to the MCU through  $V_{DD}$  and  $V_{SS}$ .  $V_{DD}$  is the positive supply, and  $V_{SS}$  is ground. The MCU operates from a single power supply.

Very fast signal transitions occur on the MCU pins. The short rise and fall times place very high short-duration current demands on the power supply. To prevent noise problems, special care should be taken to provide good power supply bypassing at the MCU by using bypass capacitors with good high-frequency characteristics that are positioned as close to the MCU as possible. Bypassing requirements vary, depending on how heavily the MCU pins are loaded.

### 1.4.2 OSC1, OSC2

The OSC1 and OSC2 pins are the connections for the 2-pin on-chip oscillator. The OSC1 and OSC2 pins can accept the following sets of components:

- 1. A crystal as shown in Figure 1-3(a)
- 2. An external clock signal as shown in Figure 1-3(b)

The frequency,  $f_{OSC}$ , of the oscillator or external clock source is divided by two to produce the internal operating frequency,  $f_{OP}$ .

### 1.4.2.1 Crystal

The circuit in **Figure 1-3(a)** shows a typical 2-pin oscillator circuit for an AT-cut, parallel resonant crystal. The crystal manufacturer's recommendations should be followed, as the crystal parameters determine the external component values required to provide maximum stability and reliable start-up. The load capacitance values used in the oscillator circuit design should include all stray capacitances. The crystal and components should be mounted as close as possible to the pins for start-up stabilization and to minimize output distortion.





Advance Information 20040224101845



Chapter 1: Introduction Page 5

For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW



# 1.4.2.2 External Clock

An external clock from another CMOS-compatible device can be connected to the OSC1 input, with the OSC2 input not connected, as shown in **Figure 1-3(b)**. This configuration is possible regardless of the oscillator is setup.

# 1.4.3 XOSC1, XOSC2

The XOSC1 and XOSC2 pins are the connections for the 2-pin on-chip oscillator. The XOSC1 and XOSC2 pins can accept the following sets of components:

- 1. A crystal as shown in Figure 1-4(a)
- 2. An external clock signal as shown in Figure 1-4(b)

The frequency,  $f_{OSC}$ , of the oscillator or external clock source is divided by two to produce the internal operating frequency,  $f_{OP}$ .

# 1.4.3.1 Crystal

Semiconductor, I

٩

eescal

The circuit in **Figure 1-4(a)** shows a typical 2-pin oscillator circuit for an AT-cut, parallel resonant crystal. The crystal manufacturer's recommendations should be followed, as the crystal parameters determine the external component values required to provide maximum stability and reliable start-up. The load capacitance values used in the oscillator circuit design should include all stray capacitances. The crystal and components should be mounted as close as possible to the pins for start-up stabilization and to minimize output distortion.



Figure 1-4: Oscillator Connections

# 1.4.3.2 External Clock

An external clock from another CMOS-compatible device can be connected to the XOSC1 input, with the XOSC2 input not connected, as shown in **Figure 1-4(b)**. This configuration is possible regardless of the oscillator is setup.

# 1.4.4 **RESET**

This pin can be used as an input to reset the MCU to a known start-up state by pulling it to the low state. The RESET pin contains a steering diode to discharge any voltage on the pin

Chapter 1: Introduction Page 6



Advance Information 20040224101845



to  $V_{DD}$ , when the power is removed. The RESET pin contains an internal Schmitt trigger to improve its noise immunity as an input. Refer to **SECTION 5**.

### 1.4.5 PA0:PA2/KWI0:KWI2, PA3/KWI3/BZ, PA4/AD0/EVI, PA5/ADI, PA6/RMO, PA7/PWCI

Port A is a 8 bit I/O port. The state of any pin is software programmable and all Port A lines are configured as inputs during power-on or reset. Bits 0:3 is shared with the Key Wake-up Subsystem, and bit 3 is also shared with Buzzer Subsystem. Bit 4 is shared with A/D Converter and Event Counter. Bit 5 is shared with A/D Converter. Bit 6 is shared with IR Remote Output. Bit 7 is shared with the Pulse Counter Subsystem. See **SECTION 7** for more details on the I/O ports.

# 1.4.6 PC0/SCK, PC1/SDO, PC2/SDI, PC3/IRQ

These four I/O lines comprise Port C. Bits 0 thru 2 are shared with the SPI subsystem. Bit 3 is shared with the IRQ input. The state of any pin is software programmable and all Port C lines are configured as port inputs during power-on or reset. Each Port C pins may be configured with a pull-up resistor by a software option. SPI output pins SCK and SDO may be configured as open drain output by a software option. See **SECTION 7** for more details on the I/O ports. The PC3/IRQ pin is used for special mode entry. Do not apply voltages above VDD for normal single chip mode operation. See **SECTION 15** for more details.

### 1.4.7 PB0:PB7/FP24:FP17

These eight I/O lines comprise Port B. The state of any pin is software programmable and all bits are configured as LCD output during power-on or reset. These bits are shared with LCD Front Plane drivers. See **SECTION 7** for more details on the I/O ports.

# 1.4.8 VLCD

This pin provides offset to LCD driver bias for adjusting the contrast of LCD. See **SECTION 11** for additional information.

### 1.4.9 BP3/FP0, FP1:FP18, PB0:PB7/FP24:FP17

There are 25 front plane drivers for the LCD display. Front Planes 17 thru 24 are shared with Port B bit 7 thru 0, respectively. Front Plane 0 is shared with Back Plane 3. See **SECTION 11** for additional information.

### 1.4.10 BP0:BP2, BP3/FP0

There are 4 back plane drivers for the LCD display. Back Plane 3 is multiplexed with Front Plane 0. See **SECTION 11** for additional information.

Advance Information 20040224101845



Chapter 1: Introduction Page 7

For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW



# THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 1: Introduction Page 8



For More Information On This Product, Go to: www.freescale.com



# **SECTION 2MEMORY MAP**

# 2.1 SINGLE-CHIP MODE MEMORY MAP

When the MC68HC705L26 is in the Single-Chip Mode 80 bytes of I/O registers, 176 bytes of user RAM (including a 64 byte stack), 6144 bytes of user ROM, and 16 bytes of user vectors are available in the 8K memory map as shown in **2.2**.



Figure 2-1: MC68HC705L26 Single-Chip Mode Memory Map

# 2.2 I/O AND CONTROL REGISTERS

The I/O and Control Registers reside in locations \$0000-\$003F. A summary of these registers is shown in **Figure 2-2**. The bit assignments for each register are shown in **Figure 2-3** thru **Figure 2-7**. Reading from unimplemented bits (denoted with '—') will return unknown states, and writing to unimplemented bits will be ignored.

Address locations \$0000:\$000F are dual mapped. When OPTM bit in the MISC register is cleared, main address map is accessed. When OPTM bit in the MISC register is set, option address map is accessed.

Advance Information 20040224101845



Chapter 2: Memory Map Page 9

For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW



I

| \$0000Port A Data Register\$0001Port B Data Register\$0002Port C Data Register\$0003unimplemented\$0004unimplemented\$0005unimplemented\$0006unimplemented\$0007unimplemented\$0008Interrupt Control Register\$0009Interrupt Status Register\$0000Serial Peripheral Control Register\$0000Serial Peripheral Data Register\$0000Serial Peripheral Data Register\$0000Pulse Width Counter Control Register\$0000Pulse Width Counter Status Register\$0001TimeBase Control Register 1\$0010TimeBase Control Register 2\$0011unimplemented\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010A/D Data Register 3\$0021LCD Data Register 3\$0022LCD Data Register 4\$0023LCD Data Register 5\$0024LCD Data Register 6\$0025LCD Data Register 6\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                      | Addr   | Name (Main Map Registers)            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------|
| \$0001Port B Data Register\$0002Port C Data Register\$0003unimplemented\$0004unimplemented\$0005unimplemented\$0006unimplemented\$0007unimplemented\$0008Interrupt Control Register\$0009Interrupt Status Register\$0000Serial Peripheral Control Register\$0000Serial Peripheral Status Register\$0000Pulse Width Counter Control Register\$0000Pulse Width Counter Control Register\$0001TimeBase Control Register 1\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010A/D Data Register\$0011A/D Control/Status Register\$0021LCD Data Register 3\$0022LCD Data Register 3\$0023LCD Data Register 4\$0024LCD Data Register 6\$0025LCD Data Register 6\$0026LCD Data Register 7                                                              | \$0000 | Port A Data Register                 |
| \$0002Port C Data Register\$0003unimplemented\$0004unimplemented\$0005unimplemented\$0006unimplemented\$0007unimplemented\$0008Interrupt Control Register\$0009Interrupt Status Register\$0008Serial Peripheral Control Register\$00008Serial Peripheral Status Register\$00009Pulse Width Counter Control Register\$00000Pulse Width Counter Control Register\$00000Pulse Width Counter Status Register\$00000Pulse Width Counter Data Register\$00010TimeBase Control Register 1\$0011TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019A/D Data Register\$0011A/D Control/Status Register\$0021LCD Data Register 3\$0022LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7             | \$0001 | Port B Data Register                 |
| \$0003unimplemented\$0004unimplemented\$0005unimplemented\$0006unimplemented\$0007unimplemented\$0008Interrupt Control Register\$0009Interrupt Status Register\$00008Serial Peripheral Control Register\$00009Serial Peripheral Data Register\$00000Serial Peripheral Data Register\$00000Pulse Width Counter Control Register\$00000Pulse Width Counter Data Register\$00000Pulse Width Counter Data Register\$00000Pulse Width Counter Data Register\$00001TimeBase Control Register 1\$0010TimeBase Control Register 2\$0011TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010A/D Data Register\$0011A/D Control/Status Register\$0021LCD Data Register 1\$0022LCD Data Register 3\$0024LCD Data Register 3\$0025LCD Data Register 4\$0026LCD Data Register 6\$0027LCD Data Register 7                                            | \$0002 | Port C Data Register                 |
| \$0004unimplemented\$0005unimplemented\$0006unimplemented\$0007unimplemented\$0008Interrupt Control Register\$0009Interrupt Status Register\$0000Serial Peripheral Control Register\$0000Serial Peripheral Data Register\$0000Pulse Width Counter Control Register\$0000Pulse Width Counter Control Register\$0000Pulse Width Counter Data Register\$0001TimeBase Control Register 1\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010unimplemented\$0011TimeBase Control Register 1\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010A/D Control/Status Register\$0011LCD Control Register 3\$0021LCD Data Register 1\$0022LCD Data Register 3\$0023LCD Data Register 4\$0024LCD Data Register 4\$0025LCD Data Register 6\$0026LCD Data Register 7 | \$0003 | unimplemented                        |
| \$0005unimplemented\$0006unimplemented\$0007unimplemented\$0008Interrupt Control Register\$0009Interrupt Status Register\$0004Serial Peripheral Control Register\$0005Serial Peripheral Status Register\$0006Serial Peripheral Data Register\$0007Pulse Width Counter Control Register\$0008Pulse Width Counter Status Register\$00009Pulse Width Counter Data Register\$00010TimeBase Control Register 1\$00101TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010A/D Data Register\$0011A/D Control/Status Register\$0021LCD Data Register 3\$0022LCD Data Register 3\$0023LCD Data Register 4\$0024LCD Data Register 4\$0025LCD Data Register 4\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                  | \$0004 | unimplemented                        |
| \$0006unimplemented\$0007unimplemented\$0008Interrupt Control Register\$0009Interrupt Status Register\$0000Serial Peripheral Control Register\$0000Serial Peripheral Data Register\$0000Pulse Width Counter Control Register\$0000Pulse Width Counter Status Register\$0000Pulse Width Counter Status Register\$0001TimeBase Control Register 1\$0010TimeBase Control Register 2\$0011TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010A/D Data Register\$0011A/D Control/Status Register\$0021LCD Data Register 3\$0022LCD Data Register 3\$0023LCD Data Register 4\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                            | \$0005 | unimplemented                        |
| \$0007unimplemented\$0008Interrupt Control Register\$0000Serial Peripheral Control Register\$0000Serial Peripheral Status Register\$0000Serial Peripheral Data Register\$0000Pulse Width Counter Control Register\$0000Pulse Width Counter Status Register\$0000Pulse Width Counter Status Register\$0001TimeBase Control Register 1\$0011TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010tomplemented\$0011tomplemented\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019A/D Data Register\$0011A/D Control/Status Register\$0021LCD Control Register 3\$0022LCD Data Register 1\$0023LCD Data Register 4\$0024LCD Data Register 5\$0025LCD Data Register 6\$0026LCD Data Register 6\$0027LCD Data Register 7                            | \$0006 | unimplemented                        |
| \$0008Interrupt Control Register\$0009Interrupt Status Register\$00004Serial Peripheral Control Register\$00005Serial Peripheral Data Register\$00006Pulse Width Counter Control Register\$00007Pulse Width Counter Status Register\$0008Pulse Width Counter Data Register\$0009Pulse Width Counter Data Register\$00010TimeBase Control Register 1\$0011TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0011A/D Data Register\$0012LCD Control/Status Register\$0020LCD Control Register 3\$0021LCD Data Register 1\$0022LCD Data Register 3\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                           | \$0007 | unimplemented                        |
| \$0009Interrupt Status Register\$000ASerial Peripheral Control Register\$000BSerial Peripheral Status Register\$000CSerial Peripheral Data Register\$000DPulse Width Counter Control Register\$000EPulse Width Counter Status Register\$000FPulse Width Counter Data Register\$000FPulse Width Counter Data Register\$0000TimeBase Control Register 1\$0010TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010A/D Data Register\$0011A/D Control/Status Register 3\$0022LCD Data Register 1\$0023LCD Data Register 3\$0024LCD Data Register 3\$0025LCD Data Register 4\$0026LCD Data Register 6\$0027LCD Data Register 6\$0026LCD Data Register 6                                                                                                                                                                                     | \$0008 | Interrupt Control Register           |
| \$000ASerial Peripheral Control Register\$000BSerial Peripheral Status Register\$000CSerial Peripheral Data Register\$000DPulse Width Counter Control Register\$000EPulse Width Counter Status Register\$000FPulse Width Counter Data Register\$000FPulse Width Counter Data Register\$000FPulse Width Counter Data Register\$0010TimeBase Control Register 1\$0011TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0019unimplemented\$0010A/D Data Register\$0011A/D Control/Status Register\$0020LCD Control Register 3\$0021LCD Data Register 1\$0022LCD Data Register 1\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 4\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                | \$0009 | Interrupt Status Register            |
| \$000BSerial Peripheral Status Register\$000CSerial Peripheral Data Register\$000DPulse Width Counter Control Register\$000EPulse Width Counter Status Register\$000FPulse Width Counter Data Register\$0010TimeBase Control Register 1\$0011TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010A/D Data Register\$0011A/D Control/Status Register\$0020LCD Control Register 3\$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 4\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                             | \$000A | Serial Peripheral Control Register   |
| \$000CSerial Peripheral Data Register\$000DPulse Width Counter Control Register\$000EPulse Width Counter Status Register\$000FPulse Width Counter Data Register\$000FPulse Width Counter Data Register\$0010TimeBase Control Register 1\$0011TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010A/D Data Register\$0011A/D Control/Status Register 3\$0020LCD Control Register 3\$0021LCD Data Register 1\$0022LCD Data Register 3\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                     | \$000B | Serial Peripheral Status Register    |
| \$000DPulse Width Counter Control Register\$000EPulse Width Counter Status Register\$000FPulse Width Counter Data Register\$0010TimeBase Control Register 1\$0011TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010A/D Data Register\$00110A/D Control/Status Register\$00121LCD Data Register 3\$00202LCD Data Register 1\$00223LCD Data Register 3\$0024LCD Data Register 3\$0025LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                  | \$000C | Serial Peripheral Data Register      |
| \$000EPulse Width Counter Status Register\$000FPulse Width Counter Data Register\$0010TimeBase Control Register 1\$0011TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0019unimplemented\$0010unimplemented\$0011unimplemented\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017Unimplemented\$0018unimplemented\$0019Unimplemented\$0010A/D Data Register\$00110A/D Control/Status Register\$00121LCD Control Register 3\$00202LCD Data Register 1\$00223LCD Data Register 3\$0024LCD Data Register 3\$0025LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                          | \$000D | Pulse Width Counter Control Register |
| \$000FPulse Width Counter Data Register\$0010TimeBase Control Register 1\$0011TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0019unimplemented\$00110unimplemented\$00121unimplemented\$001322unimplemented\$001433unimplemented\$001544unimplemented\$001544unimplemented\$001544unimplemented\$001544unimplemented\$001544unimplemented\$001544unimplemented\$001544LCD Control/Status Register\$001544LCD Control Register 3\$00244LCD Data Register 1\$00235LCD Data Register 2\$00244LCD Data Register 3\$00255LCD Data Register 5\$00265LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                            | \$000E | Pulse Width Counter Status Register  |
| \$0010TimeBase Control Register 1\$0011TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0018unimplemented\$0019unimplemented\$00110unimplemented\$00121unimplemented\$00132unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010A/D Data Register\$0011A/D Control/Status Register\$0020LCD Control Register 3\$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 3\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                           | \$000F | Pulse Width Counter Data Register    |
| \$0011TimeBase Control Register 2\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$00114unimplemented\$0015unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010unimplemented\$00111A/D Data Register\$00112A/D Data Register\$00115TimeBase Control Register 3\$0020LCD Control Register 3\$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                   | \$0010 | TimeBase Control Register 1          |
| \$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0019unimplemented\$00110unimplemented\$0012unimplemented\$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019A/D Data Register\$00110A/D Control/Status Register\$00121LCD Control Register 3\$00202LCD Data Register 1\$00223LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 3\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                 | \$0011 | TimeBase Control Register 2          |
| \$0013unimplemented\$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0019unimplemented\$0010unimplemented\$00110unimplemented\$0012unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$00110A/D Data Register\$00120LCD Control/Status Register 3\$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 3\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                | \$0012 | unimplemented                        |
| \$0014unimplemented\$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0019unimplemented\$0010unimplemented\$00110unimplemented\$00111unimplemented\$00112unimplemented\$00115A/D Data Register\$00116A/D Control/Status Register\$00117TimeBase Control Register 3\$002018LCD Control Register 3\$00211LCD Data Register 1\$00222LCD Data Register 2\$00233LCD Data Register 3\$00244LCD Data Register 4\$00255LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0013 | unimplemented                        |
| \$0015unimplemented\$0016unimplemented\$0017unimplemented\$0018unimplemented\$0019unimplemented\$0019unimplemented\$0010unimplemented\$00110unimplemented\$00111unimplemented\$00112unimplemented\$00112A/D Data Register\$00115A/D Control/Status Register 3\$00116A/D Control Register 3\$00200LCD Control Register 3\$00211LCD Data Register 1\$00222LCD Data Register 2\$00233LCD Data Register 3\$00244LCD Data Register 4\$00255LCD Data Register 5\$00266LCD Data Register 6\$00270LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0014 | unimplemented                        |
| <ul> <li>\$0016 unimplemented</li> <li>\$0017 unimplemented</li> <li>\$0018 unimplemented</li> <li>\$0019 unimplemented</li> <li>\$0019 unimplemented</li> <li>\$001A unimplemented</li> <li>\$001B unimplemented</li> <li>\$001C unimplemented</li> <li>\$001C unimplemented</li> <li>\$001D A/D Data Register</li> <li>\$001E A/D Control/Status Register</li> <li>\$001F TimeBase Control Register 3</li> <li>\$0020 LCD Control Register</li> <li>\$0021 LCD Data Register 1</li> <li>\$0022 LCD Data Register 2</li> <li>\$0023 LCD Data Register 3</li> <li>\$0024 LCD Data Register 3</li> <li>\$0025 LCD Data Register 4</li> <li>\$0025 LCD Data Register 5</li> <li>\$0026 LCD Data Register 6</li> <li>\$0027 LCD Data Register 7</li> </ul>                                                                                                                                                                                                                     | \$0015 | unimplemented                        |
| \$0017unimplemented\$0018unimplemented\$0019unimplemented\$0010unimplemented\$00110unimplemented\$00110unimplemented\$00110A/D Data Register\$00111A/D Control/Status Register\$00112ImmeBase Control Register 3\$0012LCD Control Register 3\$0020LCD Control Register 1\$0021LCD Data Register 2\$0022LCD Data Register 3\$0023LCD Data Register 4\$0024LCD Data Register 5\$0025LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$0016 | unimplemented                        |
| \$0018unimplemented\$0019unimplemented\$001Aunimplemented\$001Bunimplemented\$001Cunimplemented\$001Cunimplemented\$001DA/D Data Register\$001EA/D Control/Status Register\$001FTimeBase Control Register 3\$0020LCD Control Register\$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0017 | unimplemented                        |
| \$0019unimplemented\$001Aunimplemented\$001Bunimplemented\$001Cunimplemented\$001DA/D Data Register\$001EA/D Control/Status Register\$001FTimeBase Control Register 3\$0020LCD Control Register\$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$0018 | unimplemented                        |
| \$001Aunimplemented\$001Bunimplemented\$001Cunimplemented\$001DA/D Data Register\$001EA/D Control/Status Register\$001FTimeBase Control Register 3\$0020LCD Control Register\$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0019 | unimplemented                        |
| \$001Bunimplemented\$001Cunimplemented\$001DA/D Data Register\$001EA/D Control/Status Register\$001FTimeBase Control Register 3\$0020LCD Control Register\$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$001A | unimplemented                        |
| \$001Cunimplemented\$001DA/D Data Register\$001EA/D Control/Status Register\$001FTimeBase Control Register 3\$0020LCD Control Register\$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$001B | unimplemented                        |
| \$001DA/D Data Register\$001EA/D Control/Status Register\$001FTimeBase Control Register 3\$0020LCD Control Register\$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$001C | unimplemented                        |
| \$001EA/D Control/Status Register\$001FTimeBase Control Register 3\$0020LCD Control Register\$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$001D | A/D Data Register                    |
| \$001FTimeBase Control Register 3\$0020LCD Control Register\$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$001E | A/D Control/Status Register          |
| \$0020LCD Control Register\$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$001F | TimeBase Control Register 3          |
| \$0021LCD Data Register 1\$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0020 | LCD Control Register                 |
| \$0022LCD Data Register 2\$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$0021 | LCD Data Register 1                  |
| \$0023LCD Data Register 3\$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0022 | LCD Data Register 2                  |
| \$0024LCD Data Register 4\$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0023 | LCD Data Register 3                  |
| \$0025LCD Data Register 5\$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0024 | LCD Data Register 4                  |
| \$0026LCD Data Register 6\$0027LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0025 | LCD Data Register 5                  |
| \$0027 LCD Data Register 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0026 | LCD Data Register 6                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0027 | LCD Data Register 7                  |

| Addr         | Name                                  |
|--------------|---------------------------------------|
| \$0028       | LCD Data Register 8                   |
| \$0029       | LCD Data Register 9                   |
| \$002A       | LCD Data Register 10                  |
| \$002B       | LCD Data Register 11                  |
| \$002C       | LCD Data Register 12                  |
| \$002D       | LCD Data Register 13                  |
| \$002E       | Event Counter Control/Status Register |
| \$002F       | Event Counter Timing Register         |
| \$0030       | Event Counter Data High Register      |
| \$0031       | Event Counter Data Low Register       |
| \$0032       | unimplemented                         |
| \$0033       | unimplemented                         |
| \$0034       | unimplemented                         |
| \$0035       | unimplemented                         |
| \$0036       | unimplemented                         |
| \$0037       | unimplemented                         |
| \$0038       | unimplemented                         |
| \$0039       | unimplemented                         |
| \$003A       | unimplemented                         |
| \$003B       | unimplemented                         |
| \$003C       | unimplemented                         |
| \$003D       | reserved                              |
| \$003E       | Miscellaneous Register                |
| \$003F       | unimplemented                         |
|              |                                       |
| OPTN<br>Addr | Name (Option Map Registers)           |
| \$0000       | Port A Data Direction Register        |
| \$0001       | Port B Data Direction Register        |
| \$0002       | Port C Data Direction Register        |
| \$0003       | unimplemented                         |
| \$0004       | unimplemented                         |

| Addr   | Name (Option Map Registers)       |
|--------|-----------------------------------|
| \$0000 | Port A Data Direction Register    |
| \$0001 | Port B Data Direction Register    |
| \$0002 | Port C Data Direction Register    |
| \$0003 | unimplemented                     |
| \$0004 | unimplemented                     |
| \$0005 | unimplemented                     |
| \$0006 | unimplemented                     |
| \$0007 | unimplemented                     |
| \$0008 | Resistor Control Register         |
| \$0009 | Resistor Control Register         |
| \$000A | Wired-OR Mode Register            |
| \$000B | unimplemented                     |
| \$000C | unimplemented                     |
| \$000D | unimplemented                     |
| \$000E | Key Wake-up Input Enable Register |
| \$000F | Mask Option Status Register       |

### Figure 2-2: I/O Register Memory Map Summary

Chapter 2: Memory Map Page 10



Advance Information 20040224101845

DRAFT COPY FOR REVIEW — Please Comment



### Freescale Semiconductor GIRG 705L26 Specification 0.3

| ADDR   | REGISTER NAME                 | READ Bit Number Significance |      |      |        |      |       |      |      |       |  |
|--------|-------------------------------|------------------------------|------|------|--------|------|-------|------|------|-------|--|
| (hex)  | ABBREV.                       | WRITE                        | 7    | 6    | 5      | 4    | 3     | 2    | 1    | 0     |  |
| \$0000 | PORT A DATA<br>PORTA          | R<br>W                       | PA7  | PA6  | PA5    | PA4  | PA3   | PA2  | PA1  | PA0   |  |
| \$0001 | PORT B DATA<br>PORTB          | R<br>W                       | PB7  | PB6  | PB5    | PB4  | PB3   | PB2  | PB1  | PB0   |  |
| \$0002 | PORT C DATA<br>PORTC          | R<br>W                       | 0    | 0    | 0      | 0    | PC3   | PC2  | PC1  | PC0   |  |
| \$0003 | unimplemented                 | R<br>W                       | _    | _    | _      | _    | _     | _    | _    | _     |  |
| \$0004 | unimplemented                 | R<br>W                       | _    | _    | _      | _    | _     | _    | _    | _     |  |
| \$0005 | unimplemented                 | R<br>W                       | _    | _    | _      | _    | _     | _    | _    | _     |  |
| \$0006 | unimplemented                 | R<br>W                       | _    | _    | _      | _    | _     | _    | _    | _     |  |
| \$0007 | unimplemented                 | R<br>W                       | _    | _    | _      | _    | _     | _    | _    | _     |  |
| \$0008 | INTERRUPT CONTROL REG.        | R<br>W                       | IRQE | 0    | 0      | KWIE | IRQS  | 0    | 0    | 0     |  |
|        | INTERRUPT STATUS REG.         | R                            | IRQF | 0    | 0      | KWIF | 0     | 0    | 0    | 0     |  |
| \$0009 | INTSR                         | W                            | _    |      |        |      | RIRQ  |      | _    | RKWIF |  |
| \$000A | SERIAL PERI. CONTROL REG      | R<br>W                       | SPIE | SPE  | DORD   | MSTR | 0     | 0    | 0    | SPR   |  |
| ¢000P  | SERIAL PERI. STATUS REG       | R                            | SPIF | DCOL | 0      | 0    | 0     | 0    | 0    | 0     |  |
| φ000B  | SPSR                          | W                            | _    | _    |        | _    | _     |      | _    |       |  |
| \$000C | SERIAL PERI. DATA REG<br>SPDR | R<br>W                       | SPD7 | SPD6 | SPD5   | SPD4 | SPD3  | SPD2 | SPD1 | SPD0  |  |
| \$000D | PWC CONTROL REGISTER<br>PWCCR | R<br>W                       | PWCE | EM   | IS     | POL  | CCK1  | CCK0 | NCK1 | NCK0  |  |
| ¢ooor  | PWC STATUS REGISTER           | R                            | PL   | SIG  |        | COVF | PWCIF | QOR  | QFUL | QEMP  |  |
| ⊅000E  | PWCSR                         | W                            |      |      | PVVCIE |      | _     |      | _    | —     |  |
| \$000F | PWC DATA REGISTER<br>PWCDR    | R<br>W                       | PWC7 | PWC6 | PWC5   | PWC4 | PWC3  | PWC2 | PWC1 | PWC0  |  |

Figure 2-3: I/O Register \$0000:\$000F (Main Map)

DRAFT COPY FOR REVIEW — Please Comment

Advance Information 20040224101845



Chapter 2: Memory Map Page 11

# 68HC705L26 Specificative escale Semiconductor, Inc.

| ADDR           | REGISTER NAME                              | READ   | AD Bit Number Significance |       |       |       |       |       |       |       |  |
|----------------|--------------------------------------------|--------|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| (hex)          | ABBREV.                                    | /RITE  | 7                          | 6     | 5     | 4     | 3     | 2     | 1     | 0     |  |
| OPTN<br>\$0000 | PORT A DATA DIRECTION<br>DDRA              | R<br>W | DDRA7                      | DDRA6 | DDRA5 | DDRA4 | DDRA3 | DDRA2 | DDRA1 | DDRA0 |  |
| OPTN<br>\$0001 | PORT B DATA DIRECTION<br>DDRB              | R<br>W | DDRB7                      | DDRB6 | DDRB5 | DDRB4 | DDRB3 | DDRB2 | DDRB1 | DDRB0 |  |
| OPTN<br>\$0002 | PORT C DATA DIRECTION<br>DDRC              | R<br>W | 0                          | 0     | 0     | 0     | DDRC3 | DDRC2 | DDRC1 | DDRC0 |  |
| OPTN<br>\$0003 | unimplemented                              | R<br>W |                            |       |       |       |       |       | _     |       |  |
| OPTN<br>\$0004 | unimplemented                              | R<br>W | _                          | _     | _     | _     | _     | _     | _     | _     |  |
| OPTN<br>\$0005 | unimplemented                              | R<br>W | _                          | _     | _     | _     | _     | _     | _     | _     |  |
| OPTN<br>\$0006 | unimplemented                              | R<br>W | _                          | _     | _     | _     | _     | _     | _     | _     |  |
| OPTN<br>\$0007 | unimplemented                              | R<br>W | _                          | _     | _     | _     | _     | _     | _     | _     |  |
| OPTN<br>\$0008 | RESISTOR CONTROL REG.<br>RCR1              | R<br>W | 0                          | 0     | 0     | 0     | RBH   | RBL   | RAH   | RAL   |  |
| OPTN           | RESISTOR CONTROL REG.                      | R      | 0                          | 0     | 0     | 0     | 0     | 0     | 0     |       |  |
| \$0009         | RCR2                                       | W      | _                          | _     | _     | _     | _     | _     | _     | RC    |  |
| OPTN<br>\$000A | WIRED-OR MODE REG<br>WOMR                  | R<br>W | BWOMH                      | BWOML | 0     | 0     | 0     | CWOM  | AWOM  | 0     |  |
| OPTN<br>\$000B | unimplemented                              | R<br>W | _                          |       |       |       |       |       | _     |       |  |
| OPTN<br>\$000C | unimplemented                              | R<br>W | _                          | _     | _     | _     | _     | _     | _     | _     |  |
| OPTN<br>\$000D | unimplemented                              | R<br>W | _                          | _     | _     | _     | _     | _     | _     | _     |  |
| OPTN<br>\$000E | KEY WAKE-UP INPUT ENABLE<br>KWIEN          | R<br>W | 0                          | 0     | 0     | 0     | KWIE3 | KWIE2 | KWIE1 | KWIE0 |  |
| OPTN<br>\$000F | MASK OPTION STATUS REG<br>MOSR (see notes) | R<br>W | RSTR<br>—                  | OSCR  | XOSCR | STOPD | 0     | 0     | 0     | 0     |  |

Note:

Figure 2-4: I/O Register \$0000:\$000F (Option Map)

1. Mask Option Status Register is available for MC68HC05L25 only.



Advance Information 20040224101845

DRAFT COPY FOR REVIEW — Please Comment



# Freescale Semiconductors (1945) 705L26 Specification 0.3

| ADDR          | REGISTER NAME           | READ Bit Number Significance |       |      |      |      |        |        |       |        |  |
|---------------|-------------------------|------------------------------|-------|------|------|------|--------|--------|-------|--------|--|
| (hex) ABBREV. | ABBREV.                 | VRILE                        | 7     | 6    | 5    | 4    | 3      | 2      | 1     | 0      |  |
| \$0010        | TIME BASE CONTROL REG 1 | R                            | TBCLK | 0    | ГСІК | RMC4 | RMC3   | RMC2   | RMC1  | RMC0   |  |
| \$0010        | TBCR1                   | W                            | TBOER |      | LOEK |      | 111100 | 111102 | TUNOT | 111100 |  |
| \$0011        | TIME BASE CONTROL REG 2 | R                            | TBIF  | TBIE | TBR1 | TBR0 | 0      | 0      | COPE  | 0      |  |
|               | TBCR2                   | W                            |       |      |      |      | RTBIF  |        |       | COPC   |  |
| \$0012        | unimplemented           | R                            | _     | _    | _    | _    | _      | _      | _     | _      |  |
|               |                         | W                            |       |      |      |      |        |        |       |        |  |
| \$0013        | unimplemented           | R                            |       | _    | _    | _    | _      | _      | _     | _      |  |
|               |                         |                              |       |      |      |      |        |        |       |        |  |
| \$0014        | unimplemented           | W                            |       | _    | _    | _    | _      | _      | _     | _      |  |
| \$0015        | unimplemented           | R                            |       |      |      |      |        |        |       |        |  |
| \$0015        |                         | W                            |       |      |      |      |        |        |       |        |  |
| \$0016        | unimplemented           | R                            |       | _    |      | _    | _      | _      | _     | _      |  |
|               |                         | W                            |       |      |      |      |        |        |       |        |  |
| \$0017        | unimplemented           | R                            |       | _    | _    | _    | _      | _      | _     | _      |  |
|               |                         | W                            |       |      |      |      |        |        |       |        |  |
| \$0018        | unimplemented           | R<br>W                       |       | —    | —    | _    | —      | —      | —     | _      |  |
|               |                         | R                            |       |      |      |      |        |        |       |        |  |
| \$0019        | unimplemented           |                              | —     | —    | —    | —    | —      | _      | —     |        |  |
|               |                         | R                            |       |      |      |      |        |        |       |        |  |
| \$001A        | unimplemented           | W                            |       | —    | —    | _    | —      | —      | _     | —      |  |
| <b>0</b> 0045 | unimplemented           | R                            |       |      |      |      |        |        |       |        |  |
| \$001B        | unimpiemented           | W                            | _     | _    | _    | _    | _      | _      | _     | _      |  |
| \$0010        | unimplemented           | R                            |       |      |      |      |        |        |       |        |  |
| \$001C        | unimplemented           | W                            |       |      |      |      |        |        |       |        |  |
| \$001D        | A/D DATA REGISTER       | R                            | AD7   | AD6  | AD5  | AD4  | AD3    | AD2    | AD1   | AD0    |  |
| <b>\$001D</b> | ADDR                    | W                            |       |      | _    |      | _      |        |       | —      |  |
| \$001E        | A/D STATUS/CONTROL REG  | R                            | CC    | ADRC | ADON | 0    | 0      | CH2    | CH1   | CH0    |  |
| *             | ADOCK                   | W                            | —     |      |      |      |        |        |       |        |  |
| \$001F        | TIME BASE CONTROL REG 3 | R                            | 0     | RMON | RPOL | RMPE | BCLK   | BZON   | BPOL  | BZPE   |  |
|               |                         | W                            |       |      |      |      |        |        |       |        |  |

Figure 2-5: I/O Register \$0010:\$001F

DRAFT COPY FOR REVIEW — Please Comment

Advance Information 20040224101845



Chapter 2: Memory Map Page 13

# 68HC705L26 Specificative scale Semiconductor, Inc.

| ADDR   |                             |        |       | Bit Number Significance |       |       |       |       |       |       |  |
|--------|-----------------------------|--------|-------|-------------------------|-------|-------|-------|-------|-------|-------|--|
| (hex)  | ABBREV.                     | RIF    | 7     | 6                       | 5     | 4     | 3     | 2     | 1     | 0     |  |
| \$0020 | LCD CONTROL REG<br>LCDCR    | R<br>W | LCDE  | PBEH                    | DUTY  | PBEL  | 0     | 0     | FC    | LC    |  |
| \$0021 | LCD DATA REGISTER<br>LDAT1  | R<br>W | F1B3  | F1B2                    | F1B1  | F1B0  | F0B3  | F0B2  | F0B1  | F0B0  |  |
| \$0022 | LCD DATA REGISTER<br>LDAT2  | R<br>W | F3B3  | F3B2                    | F3B1  | F3B0  | F2B3  | F2B2  | F2B1  | F2B0  |  |
| \$0023 | LCD DATA REGISTER<br>LDAT3  | R<br>W | F5B3  | F5B2                    | F5B1  | F5B0  | F4B3  | F4B2  | F4B1  | F4B0  |  |
| \$0024 | LCD DATA REGISTER<br>LDAT4  | R<br>W | F7B3  | F7B2                    | F7B1  | F7B0  | F6B3  | F6B2  | F6B1  | F6B0  |  |
| \$0025 | LCD DATA REGISTER<br>LDAT5  | R<br>W | F9B3  | F9B2                    | F9B1  | F9B0  | F8B3  | F8B2  | F8B1  | F8B0  |  |
| \$0026 | LCD DATA REGISTER<br>LDAT6  | R<br>W | F11B3 | F11B2                   | F11B1 | F11B0 | F10B3 | F10B2 | F10B1 | F10B0 |  |
| \$0027 | LCD DATA REGISTER<br>LDAT7  | R<br>W | F13B3 | F13B2                   | F13B1 | F13B0 | F12B3 | F12B2 | F12B1 | F12B0 |  |
| \$0028 | LCD DATA REGISTER<br>LDAT8  | R<br>W | F15B3 | F15B2                   | F15B1 | F15B0 | F14B3 | F14B2 | F14B1 | F14B0 |  |
| \$0029 | LCD DATA REGISTER<br>LDAT9  | R<br>W | F17B3 | F17B2                   | F17B1 | F17B0 | F16B3 | F16B2 | F16B1 | F16B0 |  |
| \$002A | LCD DATA REGISTER<br>LDAT10 | R<br>W | F19B3 | F19B2                   | F19B1 | F19B0 | F18B3 | F18B2 | F18B1 | F18B0 |  |
| \$002B | LCD DATA REGISTER<br>LDAT11 | R<br>W | F21B3 | F21B2                   | F21B1 | F21B0 | F20B3 | F20B2 | F20B1 | F20B0 |  |
| \$002C | LCD DATA REGISTER<br>LDAT12 | R<br>W | F23B3 | F23B2                   | F23B1 | F23B0 | F22B3 | F22B2 | F22B1 | F22B0 |  |
| \$002D | LCD DATA REGISTER<br>LDAT13 | R<br>W | 0     | 0                       | 0     | 0     | F24B3 | F24B2 | F24B1 | F24B0 |  |
| ¢0025  | EVENT CNTR STAT/CONT REG    | R      | EVICE |                         | EVOE  | EVIF  | EVOF  | 0     | 0     | 0     |  |
| \$002E | EVSCR                       | W      | EVCE  |                         | EVOE  | _     | _     | RCCF  | ROFF  | _     |  |
| \$002F | EVENT COUNTER TIMING REG    | R<br>W | WT3   | WT2                     | WT1   | WT0   | MT3   | MT2   | MT1   | MT0   |  |

Figure 2-6: I/O Register \$0020:\$002F

NP



Advance Information 20040224101845 DRAFT COPY FOR REVIEW — Please Comment



# Freescale Semiconductor; 1945705L26 Specification 0.3

| ADDR   | REGISTER NAME                  | READ   | READ Bit Number Significance |       |       |       |       |       |       |      |  |  |
|--------|--------------------------------|--------|------------------------------|-------|-------|-------|-------|-------|-------|------|--|--|
| (hex)  | ABBREV.                        | WRITE  | 7                            | 6     | 5     | 4     | 3     | 2     | 1     | 0    |  |  |
| \$0030 | EVENT CNTR DATA REG H<br>EVDH  | R<br>W | BIT15                        | BIT14 | BIT13 | BIT12 | BIT11 | BIT10 | BIT9  | BIT8 |  |  |
| \$0031 | EVENT CNTR DATA REG L<br>EVDL  | R<br>W | BIT7                         | BIT6  | BIT5  | BIT4  | BIT3  | BIT2  | BIT1  | BIT0 |  |  |
| \$0032 | unimplemented                  | R<br>W | _                            | _     | _     | _     | _     | _     | _     |      |  |  |
| \$0033 | unimplemented                  | R<br>W | _                            | _     | _     | _     | _     | _     | _     | _    |  |  |
| \$0034 | unimplemented                  | R<br>W | _                            | _     | _     | _     | _     | _     | _     | _    |  |  |
| \$0035 | unimplemented                  | R<br>W | _                            | _     | _     | _     | _     | _     | _     | _    |  |  |
| \$0036 | unimplemented                  | R<br>W | _                            | _     | _     | _     | _     | _     | _     | _    |  |  |
| \$0037 | unimplemented                  | R<br>V | _                            | _     | _     | _     | _     | _     | _     | _    |  |  |
| \$0038 | unimplemented                  | R<br>W | _                            | _     | _     | _     | _     | _     | _     | _    |  |  |
| \$0039 | unimplemented                  | R<br>W | _                            | _     | _     | _     | _     | _     | _     | _    |  |  |
| \$003A | unimplemented                  | R<br>W | _                            | _     | _     | _     | _     | _     | _     | _    |  |  |
| \$003B | unimplemented                  | R<br>W | _                            | _     | _     | _     | _     | _     | _     | _    |  |  |
| \$003C | unimplemented                  | R<br>W | _                            | _     | _     | _     | _     | _     | _     | _    |  |  |
| \$003D | reserved                       | R<br>W | _                            | _     | _     | _     | _     | _     | _     | _    |  |  |
| \$003E | MISCELLANEOUS REGISTER<br>MISC | R      | FTUP                         | STUP  | 0     | 0     | SYS1  | SYS0  | FOSCE | OPTM |  |  |
| \$003F | unimplemented                  | R      | _                            |       |       |       |       |       |       | _    |  |  |

Figure 2-7: I/O Register \$0030:\$003F

DRAFT COPY FOR REVIEW — Please Comment

Advance Information 20040224101845



Chapter 2: Memory Map Page 15 I

# 2.3 RAM

The user RAM consists of 176 bytes (including the stack) at locations \$0050 thru \$00FF. The stack can access 64 locations begins at address \$00FF and proceeds down to \$00C0.

NOTE: Using the stack area for data storage or temporary work locations requires care to prevent it from being overwritten due to stacking from an interrupt or subroutine call.

# 2.4 ROM

There are a total of 6160 bytes of ROM on chip. These are implemented as 6144 bytes of user ROM at locations \$0700 thru \$1EFF and 16 bytes of user vectors at locations \$1FF0 thru \$1FFF. Total of 240 bytes of Test ROM and vectors are located from \$1F00 thru \$1FEF.

DRAFT COPY FOR REVIEW — Please Comment



Advance Information 20040224101845



# **SECTION 3OPERATING MODES**

The MC68HC705L26 has three modes of operation that affect the pin-out and architecture of the MCU: Single-Chip Mode, Internal Test Mode, and Expanded Test Mode. The Single-Chip Modes will normally be used, and the Test Modes are required for the special needs of production test and burn-in.

# 3.1 SINGLE-CHIP MODE

The Single-Chip Mode allows the MCU to function as a self-contained microcontroller, with maximum use of the pins for on-chip peripheral functions. The pinout for the Single-Chip Mode is shown in **Figure 1-2**.

In the Single-Chip Mode all address and data activity occurs within the MCU and is not available externally.

# 3.2 TEST MODES

The Internal Test Mode and Expanded Test Mode are reserved for factory test.

# 3.3 LOW-POWER MODES

In each of its configuration modes the MC68HC705L26 is capable of running in one of two low-power operational modes. The WAIT and STOP instructions provide two modes that reduce the power required for the MCU by stopping various internal clocks and/or the on-chip oscillator. The STOP and WAIT instructions are not normally used if the COP Watchdog Timer is enabled. The flow of the STOP and WAIT modes is shown in **Figure 3-1**.

### 3.3.1 STOP INSTRUCTION

Execution of the STOP instruction places the MCU in its lowest power consumption mode. In the STOP Mode the internal oscillator is turned off, halting *all* internal processing, except the Time Base/COP Watchdog Timer if it is enabled and clocked from XOSC.

Execution of the STOP instruction automatically clears the I-bit in the Condition Code Register. All other registers, and memory remain unaltered. All input/output lines remain unchanged. Therefore, unused ports must be programmed as output or tied to the power rails to prevent excessive current consumption.

The MCU can be brought out of the STOP Mode by an external IRQ interrupt, KWI interrupt, SPI (slave mode only) interrupt, PWC or TBI interrupt clocked by XOSC, or a RESET.

Advance Information 20040224101845



Chapter 3: Operating Modes Page 17

For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW





Figure 3-1: STOP/WAIT Flowcharts

Go to: www.freescale.com

**Chapter 3: Operating Modes** Page 18 For More Information On This Product,





### 3.3.2 WAIT INSTRUCTION

The WAIT instruction places the MCU in a low-power mode, which consumes more power than the STOP Mode. In the WAIT Mode the internal processor clock is halted, suspending all processor and internal bus activity. Internal timer clocks remain active, permitting interrupts to be generated from the timer or a reset to be generated from the COP Watchdog Timer. Execution of the WAIT instruction automatically clears the I-bit in the Condition Code Register and external interrupt is allowed. All other registers, memory, and input/output lines remain in their previous states.

If Time Base interrupts are enabled, a Time Base interrupt will cause the processor to exit the WAIT Mode and resume normal operation. The Time Base may be used to generate a periodic exit from the WAIT Mode. The WAIT Mode may also be exited when an external interrupt (IRQ) or RESET occurs.

# 3.4 COP WATCHDOG TIMER CONSIDERATIONS

The COP Watchdog Timer is active in all modes of operation if enabled by an TBCR2 select bit. If the COP Watchdog Timer is selected by the TBCR2 bit, any execution of the STOP instruction (either intentional or inadvertent due to the CPU being disturbed) will cause the oscillator (OSC) to halt and thus the COP Watchdog Timer will not time out if driven from OSC. Thus for applications that require use of COP Watchdog from OSC, STOP instruction must be disabled, or COP must be driven from XOSC.

If the COP Watchdog Timer is selected by the TBCR2 select bit, the COP will reset the MCU when it times out. Therefore, it is recommended that the COP Watchdog should be **disabled** for a system that must have intentional uses of the WAIT or STOP Modes for periods longer than the COP timeout period.

Please Comment

I

DRAFT COPY FOR REVIEW

Advance Information 20040224101845



Chapter 3: Operating Modes Page 19



# THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 3: Operating Modes Page 20



Advance Information 20040224101845 DRAFT COPY FOR REVIEW — Please Comment



# **SECTION 4CPU CORE**

The MC68HC705L26 has an 8 K memory map. Therefore it uses 13 bits of the address bus.

# 4.1 **REGISTERS**

The MCU contains five registers which are hard-wired within the CPU and are not part of the memory map. These five registers are shown in **Figure 4-1** and are described in the following paragraphs.



Figure 4-1: M68HC05 Programming Model

### 4.1.1 ACCUMULATOR (A)

The accumulator is a general purpose 8-bit register as shown in **Figure 4-1**. The CPU uses the accumulator to hold operands and results of arithmetic calculations or non-arithmetic operations. The accumulator is unaffected by a reset of the device.

### 4.1.2 INDEX REGISTER (X)

The index register shown in Figure 4-1 is an 8-bit register that can perform two functions:

- Indexed addressing
- Temporary storage

In indexed addressing with no offset, the index register contains the low byte of the operand address, and the high byte is assumed to be \$00. In indexed addressing with an 8-bit offset, the CPU finds the operand address by adding the index register contents to an 8-bit immediate value. In indexed addressing with a 16-bit offset, the CPU finds the operand address by adding the index register contents to a 16-bit immediate value

Advance Information 20040224101845



Chapter 4: CPU Core Page 21

**Freescale Semiconductor, Inc** 

Please Comment

DRAFT COPY FOR REVIEW

# 68HC705L26 Specifica**Fiveescale Semiconductor, Inc.**

The index register can also serve as an auxiliary accumulator for temporary storage. The index register is unaffected by a reset of the device.

# 4.1.3 STACK POINTER (SP)

The stack pointer shown in **Figure 4-1** is a 16-bit register internally. In devices with memory maps less than 64 K bytes the unimplemented upper address lines are ignored. The stack pointer contains the address of the next free location on the stack. During a reset or the reset stack pointer (RSP) instruction, the stack pointer is set to \$00FF. The stack pointer is then decremented as data is pushed onto the stack and incremented as data is pulled from the stack.

When accessing memory, the ten most significant bits are permanently set to 000000011. The five least significant register bits are appended to these eleven fixed bits to produce an address within the range of \$00FF to \$00C0. Subroutines and interrupts may use up to 64 (\$40) locations. If 64 locations are exceeded, the stack pointer wraps around and writes over the previously stored information. A subroutine call occupies two locations on the stack; and an interrupt uses five locations.

# 4.1.4 PROGRAM COUNTER (PC)

Semiconductor,

1

eescal

The program counter shown in **Figure 4-1** is a 16-bit register internally. In devices with memory maps less than 64 K bytes the unimplemented upper address lines are ignored, and memory image is mirrored. The program counter contains the address of the next instruction or operand to be fetched.

Normally, the address in the program counter increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location.

# 4.1.5 CONDITION CODE REGISTER (CCR)

The CCR shown in **Figure 4-1** is a 5-bit register in which four bits are used to indicate the results of the instruction just executed. The fifth bit is the interrupt mask. These bits can be individually tested by a program, and specific actions can be taken as a result of their state. The condition code register should be thought of as having three additional upper bits that are always ones. Only the interrupt mask is affected by a reset of the device. The following paragraphs explain the functions of the lower five bits of the condition code register.

# 4.1.5.1 Half Carry Bit (H-Bit)

When the half-carry bit is set, it means that a carry occurred between bits 3 and 4 of the accumulator during the last ADD or ADC (add with carry) operation. The half-carry bit is required for binary-coded decimal (BCD) arithmetic operations.

# 4.1.5.2 Interrupt Mask (I-Bit)

When the interrupt mask is set, the internal and external interrupts are disabled. Interrupts are enabled when the interrupt mask is cleared. When an interrupt occurs, the interrupt mask is automatically set after the CPU registers are saved on the stack, but before the interrupt vector is fetched. If an interrupt request occurs while the interrupt mask is set, the



Advance Information 20040224101845


interrupt request is latched. Normally, the interrupt is processed as soon as the interrupt mask is cleared.

A return from interrupt (RTI) instruction pulls the CPU registers from the stack, restoring the interrupt mask to its state before the interrupt was encountered. After any reset, the interrupt mask is set and can only be cleared by the Clear I-Bit (CLI), STOP, or WAIT instructions.

# 4.1.5.3 Negative Bit (N-Bit)

The negative bit is set when the result of the last arithmetic operation, logical operation, or data manipulation was negative. (Bit 7 of the result was a logical one.)

The negative bit can also be used to check an often-tested flag by assigning the flag to bit 7 of a register or memory location. Loading the accumulator with the contents of that register or location then sets or clears the negative bit according to the state of the flag.

# 4.1.5.4 Zero Bit (Z-Bit)

The zero bit is set when the result of the last arithmetic operation, logical operation, data manipulation, or data load operation was zero.

# 4.1.5.5 Carry/Borrow Bit (C-Bit)

The carry/borrow bit is set when a carry out of bit 7 of the accumulator occurred during the last arithmetic operation, logical operation, or data manipulation. The carry/borrow bit is also set or cleared during bit test and branch instructions and during shifts and rotates. This bit is not set by an INC or DEC instruction.

# 4.2 INSTRUCTION SET

The MCU has a set of 62 basic instructions. They can be divided into five different types: register/memory, read-modify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. For more information on the instruction set, refer to the M6805 Family User's Manual (M6805UM/AD2) or the associated MC68HC05 Data Sheet.

# 4.2.1 REGISTER/MEMORY INSTRUCTIONS

Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing

Please Comment

DRAFT COPY FOR REVIEW

Advance Information 20040224101845



Chapter 4: CPU Core Page 23

modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operand. Refer to the following instruction list.

| Function                                 | Mnemonic |
|------------------------------------------|----------|
| Load A from Memory                       | LDA      |
| Load X from Memory                       | LDX      |
| Store A in Memory                        | STA      |
| Store X in Memory                        | STX      |
| Add Memory to A                          | ADD      |
| Add Memory and Carry to A                | ADC      |
| Subtract Memory                          | SUB      |
| Subtract Memory from A with Borrow       | SBC      |
| AND Memory to A                          | AND      |
| OR Memory with A                         | ORA      |
| Exclusive OR Memory with A               | EOR      |
| Arithmetic Compare A with Memory         | CMP      |
| Arithmetic Compare X with Memory         | CPX      |
| Bit Test Memory with A (Logical Compare) | BIT      |
| Jump Unconditional                       | JMP      |
| Jump to Subroutine                       | JSR      |
| Multiply                                 | MUL      |

# 4.2.2 READ-MODIFY-WRITE INSTRUCTIONS

These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. The test for negative or zero (TST) instruction is an exception to the read-modify-write sequence since it does not modify the value. Do not use these read-modify-write instructions on write-only locations. Refer to the following list of instructions.

| Function                  | Mnemonic |
|---------------------------|----------|
| Increment                 | INC      |
| Decrement                 | DEC      |
| Clear                     | CLR      |
| Complement                | СОМ      |
| Negate (Two's Complement) | NEG      |
| Rotate Left Thru Carry    | ROL      |
| Rotate Right Thru Carry   | ROR      |
| Logical Shift Left        | LSL      |
| Logical Shift Right       | LSR      |
| Arithmetic Shift Right    | ASR      |
| Test for Negative or Zero | TST      |

Chapter 4: CPU Core Page 24



For More Information On This Product, Go to: www.freescale.com

Advance Information 20040224101845



### 4.2.3 BRANCH INSTRUCTIONS

This set of instruction branches if a particular condition is met; otherwise, no operation is performed. Branch instructions are two-byte instructions. Refer to the following list for branch instructions.

| Function                              | Mnemonic |
|---------------------------------------|----------|
| Branch Always                         | BRA      |
| Branch Never                          | BRN      |
| Branch if Higher                      | BHI      |
| Branch if Lower or Same               | BLS      |
| Branch if Carry Clear                 | BCC      |
| Branch if Higher or Same              | BHS      |
| Branch if Carry Set                   | BCS      |
| Branch if Lower                       | BLO      |
| Branch if Not Equal                   | BNE      |
| Branch if Equal                       | BEQ      |
| Branch if Half Carry Clear            | BHCC     |
| Branch if Half Carry Set              | BHCS     |
| Branch if Plus                        | BPL      |
| Branch if Minus                       | BMI      |
| Branch if Interrupt Mask Bit is Clear | BMC      |
| Branch if Interrupt Mask Bit is Set   | BMS      |
| Branch if Interrupt Line is Low       | BIL      |
| Branch if Interrupt Line is High      | BIH      |
| Branch to Subroutine                  | BSR      |

# 4.2.4 BIT MANIPULATION INSTRUCTIONS

The MCU is capable of setting or clearing any read/write bit which resides in the first 256 bytes of the memory space where all port registers, port DDRs, timer, timer control, and on-chip RAM reside. An additional feature allows the software to test and branch on the state of any bit within these 256 locations. The bit set, bit clear, and bit test and branch functions are each implemented with a single instruction. For test and branch instructions, the value of the bit tested is also placed in the carry bit of the condition code register. The bit set and bit clear instructions are also read-modify-write instructions and should not be used to manipulate write-only locations. Refer to the following list for bit manipulation instructions.

| Function                 | Mnemonic         |
|--------------------------|------------------|
| Set Bit n                | BSET n (n = 07)  |
| Clear Bit n              | BCLR n (n = 07)  |
| Branch if Bit n is Set   | BRSET n (n = 07) |
| Branch if bit n is Clear | BRCLR n (n = 07) |

Advance Information 20040224101845



Chapter 4: CPU Core Page 25

For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW ---

# 4.2.5 CONTROL INSTRUCTIONS

These instructions are register reference instructions and are used to control processor operation during program execution. Refer to the following list for control instructions.

| Function                 | Mnemonic |
|--------------------------|----------|
| Transfer A to X          | TAX      |
| Transfer X to A          | TXA      |
| Set Carry Bit            | SEC      |
| Clear Carry Bit          | CLC      |
| Set Interrupt Mask Bit   | SEI      |
| Clear Interrupt Mask Bit | CLI      |
| Software Interrupt       | SWI      |
| Return from Subroutine   | RTS      |
| Return from Interrupt    | RTI      |
| Reset Stack Pointer      | RSP      |
| No-Operation             | NOP      |
| Stop                     | STOP     |
| Wait                     | WAIT     |

# 4.3 ADDRESSING MODES

The MCU uses ten different addressing modes to provide the programmer with an opportunity to optimize the code for all situations. The various indexed addressing modes make it possible to locate data tables, code conversion tables, and scaling tables anywhere in the memory space. Short indexed accesses are single byte instructions; the longest instructions (three bytes) permit accessing tables throughout memory. Short and long absolute addressing is also included. One- or two-byte direct addressing instructions access all data bytes in most applications. Extended addressing permits jump instructions to reach all memory.

The term "effective address" (EA) is used in describing the various addressing modes. Effective address is defined as the address from which the argument for an instruction is fetched or stored.

### 4.3.1 IMMEDIATE

Semiconductor, I

٩

eescal

In the immediate addressing mode, the operand is contained in the byte immediately following the opcode. The immediate addressing mode is used to access constants that do not change during program execution (e.g., a constant used to initialize a loop counter).

### 4.3.2 DIRECT

In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256 bytes in memory with single two-byte instructions.

### 4.3.3 EXTENDED

In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode byte. Instructions with extended addressing mode are

Chapter 4: CPU Core Page 26



Advance Information 20040224101845



Please Comment

DRAFT COPY FOR REVIEW

capable of referencing arguments anywhere in memory with a single three-byte instruction. When using the Motorola assembler, the user need not specify whether an instruction uses direct or extended addressing. The assembler automatically selects the shortest form of the instruction.

### 4.3.4 RELATIVE

The relative addressing mode is only used in branch instructions. In relative addressing, the contents of the 8-bit signed offset byte (which is the last byte of the instruction) is added to the PC if, and only if, the branch conditions are true. Otherwise, control proceeds to the next instruction. The span of relative addressing is from -128 to +127 from the address of the next opcode. The programmer need not calculate the offset when using the Motorola assembler, since it calculates the proper offset and checks to see that it is within the span of the branch.

### 4.3.5 INDEXED, NO OFFSET

In the indexed, no offset addressing mode, the effective address of the argument is contained in the 8-bit index register. This addressing mode can access the first 256 memory locations. These instructions are only one byte long. This mode is often used to move a pointer through a table or to hold the address of a frequently referenced RAM or I/O location.

### 4.3.6 INDEXED, 8-BIT OFFSET

In the indexed, 8-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8-bit index register and the unsigned byte following the opcode. The addressing mode is useful for selecting the Kth element in an element table. With this two-byte instruction, K would typically be in X with the address of the beginning of the table in the instruction. As such, tables may begin anywhere within the first 256 addressable locations and could extend as far as location 510. \$1FE is the highest location which can be accessed in this way.

# 4.3.7 INDEXED, 16-BIT OFFSET

In the indexed, 16-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8-bit index register and the two unsigned bytes following the opcode. This address mode can be used in a manner similar to indexed, 8-bit offset except that this three-byte instruction allows tables to be anywhere in memory. As with direct and extended addressing, the Motorola assembler determines the shortest form of indexed addressing.

### 4.3.8 BIT SET/CLEAR

In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode, and the byte following the opcode specifies the direct address of the byte in which the specified bit is to be set or cleared. Any read/write register bit in the first 256 locations of memory, including I/O, can by selectively set or cleared with a single two-byte instruction.

Advance Information 20040224101845



Chapter 4: CPU Core Page 27 

# 4.3.9 BIT TEST AND BRANCH

The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit that is to be tested and its condition (set or clear), is included in the opcode. The address of the byte to be tested is in the single byte immediately following the opcode byte. The signed relative 8-bit offset in the third byte is added to the PC if the specified bit is set or cleared in the specified memory location. This single three-byte instruction allows the program to branch based on the condition of any readable bit in the first 256 locations of memory. The span of branching is from -128 to +127 from the address of the next opcode. The state of the tested bit is also transferred to the carry bit of the condition code register.

# 4.3.10 INHERENT

Semiconductor,

٩

eescal

In the inherent addressing mode, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register and/or accumulator as well as the control instructions with no other arguments are included in this mode. These instructions are one byte long.

Chapter 4: CPU Core Page 28



Advance Information 20040224101845



# **SECTION 5RESETS**

The MCU can be reset from following sources: one external input and two internal restart conditions. The RESET pin is an input with a Schmitt trigger as shown in **Figure 5-1**. All the peripheral modules which drive external pins will be reset by the synchronous reset signal (RST) coming from a latch, which is synchronized to the PH2 bus clock and set by the any of the five reset sources.



Figure 5-1: Reset Block Diagram

# 5.1 EXTERNAL RESET (RESET)

The RESET pin is the only external source of a reset. This pin is connected to a Schmitt trigger input gate to provide an upper and lower threshold voltage separated by a minimum amount of hysteresis. This external reset occurs whenever the RESET pin is pulled below the lower threshold and remains in reset until the RESET pin rises above the upper threshold. This active low input will generate the RST signal and reset the CPU and peripherals. Termination of the external RESET input or the internal COP Watchdog reset are the only reset sources that can alter the operating mode of the MCU.

NOTE: Activation of the RST signal is generally referred to as <u>reset</u> of the device, unless otherwise specified.

# 5.2 INTERNAL RESETS

The two internally generated resets are the initial power-on delay function and the COP Watchdog Timer reset. Termination of the external RESET input or the internal COP Watchdog Timer are the only reset sources that can alter the operating mode of the MCU. The other internal resets will not have any effect on the mode of operation when their reset state ends.

Advance Information 20040224101845



Chapter 5: Resets Page 29

For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW

68HC705L26 Specifica**fiveescale Semiconductor, Inc.** 

# 5.2.1 POWER-ON DELAY (POD)

The internal POD is generated on power-up to allow the clock oscillator to stabilize. The POD is strictly for power turn-on conditions and is not able to detect a drop in the power supply voltage (brown-out). There is an oscillator stabilization delay of between 16128 to 16384 internal processor bus clock cycles (PH2) after the oscillator becomes active.

The POR will generate the RST signal which will reset the CPU. If any other reset function is active at the end of this 16128 to 16384 cycle delay, the RST signal will remain in the reset condition until the other reset condition(s) end.

# 5.2.2 COMPUTER OPERATING PROPERLY RESET (COPR)

The internal COPR reset is generated automatically (if enabled via a TBCR2 select bit) by a time-out of the COP Watchdog Timer. This time-out occurs if the counter in the COP Watchdog Timer is not reset (cleared) within a specific time by a program reset sequence. The COP Watchdog Timer can be disabled by a TBCR2 select bit. Refer to **Section 9.1.4** for more information on this timeout feature.

The COPR will generate the RST signal which will reset the CPU and other peripherals. If any other reset function is active at the end of the COPR reset signal, the RST signal will remain in the reset condition until the other reset condition(s) end.



For More Information On This Product, Go to: www.freescale.com

Advance Information 20040224101845





# **SECTION 6INTERRUPTS**

The MCU can be interrupted in the following ways:

- 1. Nonmaskable Software Interrupt Instruction (SWI)
- 2. External Interrupt via IRQ (IRQ)
- 3. Serial Peripheral Interface Interrupt (SPII)
- 4. Pulse Width Counter Interrupt (PWCI)
- 5. Internal Time Base Interrupt (TBI)
- 6. Key Wake-up Interrupt (KWI)
- 7. Event Counter Overflow Interrupt (EVOF)

# 6.1 CPU INTERRUPT PROCESSING

Interrupts cause the processor to save register contents on the stack and to set the interrupt mask (I-bit) to prevent additional interrupts. Unlike RESET, hardware interrupts do not cause the current instruction execution to be halted, but are considered pending until the current instruction is complete.

If interrupts are not masked (I-bit in the CCR is clear) and the corresponding interrupt enable bit is set, the processor will proceed with interrupt processing. Otherwise, the next instruction is fetched and executed. If an interrupt occurs the processor completes the current instruction, then stacks the current CPU register states, sets the I-bit to inhibit further interrupts, and finally checks the pending hardware interrupts. If more than one interrupt is pending following the stacking operation, the interrupt with the highest vector location shown in **Table 6-1** will be serviced first. The SWI is executed the same as any other instruction, regardless of the I-bit state.

When an interrupt is to be processed the CPU fetches the address of the appropriate interrupt software service routine from the vector table at locations \$1FF0 thru \$1FFF as defined in **Table 6-1**.

| Register | Flag<br>Name | Interrupts           | CPU Interrupt | Vector Address |
|----------|--------------|----------------------|---------------|----------------|
| N/A      | N/A          | Reset                | RESET         | \$1FFE:\$1FFF  |
| N/A      | N/A          | Software             | SWI           | \$1FFC:\$1FFD  |
| INTCR    | IRQF         | External Interrupt   | IRQ           | \$1FFA:\$1FFB  |
| KWIEN    | KWIF         | Key Wake-up          | KWI           | \$1FF8:\$1FF9  |
| PWSR     | PWCF         | Pulse Width Counter  | PWCI          | \$1FF6:\$1FF7  |
| EVSCR    | ECOF         | Event Counter        | EVI           | \$1FF4:\$1FF5  |
| SPSR     | SPIF         | Serial Peripheral    | SPII          | \$1FF2:\$1FF3  |
| TBCR2    | TBIF         | Time Base Periodical | ТВІ           | \$1FF0:\$1FF1  |

 Table 6-1:
 Vector Address for Interrupts and Reset

Advance Information 20040224101845



Chapter 6: Interrupts Page 31

For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW

An RTI instruction is used to signify when the interrupt software service routine is completed. The RTI instruction causes the register contents to be recovered from the stack and normal processing to resume at the next instruction that was to be executed when the interrupt took place. **Figure 6-1** shows the sequence of events that occur during interrupt processing.



Figure 6-1: Interrupt Processing Flowchart

Chapter 6: Interrupts Page 32

Semiconductor, Inc.

reescale



Advance Information 20040224101845



# 6.2 RESET INTERRUPT SEQUENCE

The RESET function is not in the strictest sense an interrupt; however, it is acted upon in a similar manner as shown in **Figure 6-1**. A low level input on the RESET pin or internally generated RST signal causes the program to vector to its starting address which is specified by the contents of memory locations \$1FFE:\$1FFF. The I-bit in the condition code register is also set. The MCU is configured to a known state during this type of reset as previously described in **SECTION 5**.

# 6.3 SOFTWARE INTERRUPT (SWI)

The SWI is an executable instruction and a non-maskable interrupt since it is executed regardless of the state of the I-bit in the CCR. If the I-bit is zero (interrupts enabled), the SWI instruction executes after interrupts which were pending before the SWI was fetched, or before interrupts generated after the SWI was fetched. The interrupt service routine address is specified by the contents of memory locations \$1FFC:\$1FFD.

# 6.4 HARDWARE INTERRUPTS

All hardware interrupts except RESET are maskable by the I-bit in the CCR. If the I-bit is set, all hardware interrupts (internal and external) are disabled. Clearing the I-bit enables the hardware interrupts. There are two types of hardware interrupts which are explained in the following sections.

# 6.5 EXTERNAL INTERRUPT (IRQ)

The IRQ pin provides an asynchronous interrupt to the CPU. The IRQ is enabled by the IRQE bit in the INTCR. See also **Section 7.3**. The interrupt service routine address is specified by the contents of memory locations \$1FFA:\$1FFB.

CPU instructions BIH and BIL test the pin state of PC3/ $\overline{IRQ}$  pin.

# 6.5.1 EXTERNAL INTERRUPT TRIGGER CONDITION

• External interrupt (IRQ) is activated by the negative edged signal.





The limit on the minimum pulse width ( $t_{ILIH}$ ) is as specified. The pulse interval ( $t_{ILIL}$ ) must be longer than the interrupt service routine's service time + 21 machine cycles.



Chapter 6: Interrupts Page 33

For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW

# 6.5.2 INTERRUPT CONTROL REGISTER (INTCR)

| ADDR REGISTER |                                 | RW | 7    | 6 | 5 | 4      | 3    | 2 | 1 | 0 |
|---------------|---------------------------------|----|------|---|---|--------|------|---|---|---|
| \$0008        | INTERRUPT CONTROL REG.<br>INTCR | R  |      | 0 | 0 |        | IPOS | 0 | 0 | 0 |
|               |                                 | W  | INQL | _ | — | IXVVIL | INQO | _ | — |   |
|               | RE                              | 0  | 0    | 0 | 0 | 0      | 0    | 0 | 0 |   |

### Figure 6-2: Interrupt Control Register

# IRQE External Interrupt (IRQ) Enable

IRQE bit enables external interrupt when interrupt mask is cleared and IRQF is set. This bit is cleared at reset.

- 1 = IRQ is enabled
- 0 = IRQ is disabled

#### BITS6:5 Reserved

These bits are not used and always return 0.

#### KWIE KWI Enable

KWIE bit enables Key Wake-up Interrupt when KWIF is set. The KWIEx bit in KWIEN bit must also be set for enabling KWI. This bit is cleared at reset.

- 1 = KWI is enabled
- 0 = KWI is disabled

### IRQS External Interrupt (IRQ) Select edge sensitivity only

IRQS bit determines whether the LEVEL and EDGE or EDGE only will trigger the IRQ interrupt. This bit is cleared at reset.

- 1 = trigger only on negative EDGEs
- 0 = trigger on low LEVEL and negative EDGEs

### BITS2:0 Reserved

These bits are not used and always return 0.

Chapter 6: Interrupts Page 34



Advance Information 20040224101845



### 6.5.3 INTERRUPT STATUS REGISTER (INTSR)

| ADDR   | REGISTER                       | RW | 7    | 6 | 5 | 4    | 3     | 2 | 1 | 0     |
|--------|--------------------------------|----|------|---|---|------|-------|---|---|-------|
| \$0000 | INTERRUPT STATUS REG.<br>INTSR | R  | IRQF | 0 | 0 | KWIF | 0     | 0 | 0 | 0     |
| \$0009 |                                | W  | _    | — | - | —    | RIRQF | _ | — | RKWIF |
|        | RI                             | 0  | 0    | 0 | 0 | 0    | 0     | 0 | 0 |       |

#### Figure 6-3: Interrupt Status Register

#### IRQF External Interrupt (IRQ) Flag

A falling edge at IRQ pin sets IRQF bit. If IRQE bit and this bit are set, and the interrupt mask is cleared, interrupt is generated. This bit is read only bit and clearing IRQF is accomplished by writing a 1 to the RIRQF bit. Reset clears this bit.

#### BITS6:5 Reserved

These bits are not used and always return 0.

#### KWIF Key Wake-up Interrupt Flag

When KWIEx bit in the KWIEN register is set, the falling edge at KWIx pin sets the KWIF bit. If KWIE bit and this bit are set, an interrupt is generated. This bit is a read only bit and clearing it is accomplished by writing a 1 to the RKWIF bit. Reset clears this bit.

### RIRQF Reset IRQ Flag

The RIRQF bit is write only bit and always read as 0. Writing a 1 to this bit clears IRQF bit and writing 0 to this bit has no effect.

1 = clear IRQF

0 = no effect

#### BITS2:1 Reserved

These bits are not used and always return 0.

#### RKWIF Reset KWI Flag

The RKWIF bit is write only bit and always read as 0. Writing a 1 to this bit clears KWIF bit and writing 0 to this bit has no effect.

1 = clear KWIF

0 = no effect

Please Comment

DRAFT COPY FOR REVIEW

Advance Information 20040224101845



# 6.6 PULSE WIDTH COUNTER INTERRUPT (PWCI)

The PWC interrupt is generated by the Pulse Width Counter System at the end of one pulse or every edge. The I-bit in the CCR must be clear and PWCIE bit in PWCR must be set in order for the PWC interrupt to be generated. This interrupt will vector to the interrupt service routine located at the address specified by the contents of memory locations The interrupt service routine address is specified by the contents of memory locations \$1FF6:\$1FF7. See **SECTION 12** for more information.

# 6.7 SERIAL PERIPHERAL INTERRUPT (SPII)

The SPI interrupt is generated by the Serial Peripheral Interface System at the end of one byte of data transmission or reception. The I-bit in the CCR must be clear and SPIE bit in SPCR must be set in order for the SPI interrupt to be generated. This interrupt will vector to the interrupt service routine located at the address specified by the contents of memory locations The interrupt service routine address is specified by the contents of memory locations \$1FF2:\$1FF3. See **SECTION 10** for more information.

# 6.8 EVENT COUNTER INTERRUPT (EVI)

The EVI interrupt is generated by the Event Counter System. The I-bit in the CCR must be clear in order for the EVI interrupt to be enabled. This interrupt will vector to the interrupt service routine located at the address specified by the contents of memory locations The interrupt service routine address is specified by the contents of memory locations \$1FF4:\$1FF5. See **SECTION 14** for more information.

# 6.9 TIME BASE INTERRUPT (TBI)

Semiconductor, I

đ

eescal

The TBI interrupt is generated periodically by the Time Base System. The I-bit in the CCR must be clear in order for the TBI interrupt to be enabled. This interrupt will vector to the interrupt service routine located at the address specified by the contents of memory locations The interrupt service routine address is specified by the contents of memory locations \$1FF0:\$1FF1. See **SECTION 9** for more information.

# 6.10 KEY WAKE-UP INTERRUPT (KWI)

The KWI interrupt is generated by the Key Wake-Up System. The I-bit in the CCR must be clear in order for the KWI interrupt to be enabled. This interrupt will vector to the interrupt service routine located at the address specified by the contents of memory locations The interrupt service routine address is specified by the contents of memory locations \$1FF8:\$1FF9. See **SECTION 7** for more information.

Chapter 6: Interrupts Page 36



Advance Information 20040224101845



# **SECTION 7INPUT/OUTPUT PORTS**

In the Single-Chip Mode there are 20 bidirectional I/O lines arranged as three ports (Ports A, B, and C). The individual bits in these ports are programmable as either inputs or outputs under software control by the data direction registers (DDR's). If enabled by select bits in RCR or WOMR, port pins may have software programmable pullup resistors, or open drain outputs, respectively.

# 7.1 PORT A

Port A is an 8-bit bidirectional port which shares bits 0:3 with Key Wake-up subsystem and bit 3 is also shared with Buzzer Subsystem as shown in **Figure 7-1** and **Figure 7-2**. Bit 4 shares with A/D Converter and Event Counter Subsystems as shown in **Figure 7-4**. Bit 5 shares with A/D Converter Subsystem as shown in **Figure 7-5**. Bit 6 shares with Time Base Subsystem as shown in **Figure 7-6**. Bit 7 shares with Pulse Width Counter Subsystem as shown in **Figure 7-7**. Each Port A pin is controlled by the corresponding bits in a data direction register and a data register enable bits of appropriate sub-systems. The Port A Data Register is located at address \$0000. The Port A Data Direction Register (DDRA) is located at address \$0000 of the option map. Reset clears the DDRA. The Port A Data Register is unaffected by reset.

Port A bits 0:3 when configured as output port is an open drain output. Maximum of 9V may be applied to these pins regardless of  $V_{DD}$ . Each pin may sink maximum of 20mA at  $V_{OL}$  (max) = 0.3V. See Section 15.1, Section 15.3 and Section 15.4.

Please Comment

DRAFT COPY FOR REVIEW

Advance Information 20040224101845



Chapter 7: Input/Output Ports Page 37

#### :68HC705L26 Specificaliteescale Semiconductor, Inc.









Chapter 7: Input/Output Ports Page 38 For More Information On This Product,



Go to: www.freescale.com

Advance Information 20040224101845







Advance Information 20040224101845

Chapter 7: Input/Output Ports Page 39

For More Information On This Product, Go to: www.freescale.com

# 68HC705L26 Specifica Five escale Semiconductor, Inc.





Advance Information 20040224101845

For More Information On This Product, Go to: www.freescale.com







**Freescale Semiconductor, Inc.** 

Advance Information 20040224101845



Chapter 7: Input/Output Ports Page 41

# 7.1.1 PORT A DATA REGISTER

| ADDR                        | REGISTER | RW     | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|-----------------------------|----------|--------|-----|-----|-----|-----|-----|-----|-----|-----|
| \$0000 PORT A DATA<br>PORTA |          | R<br>W | PA7 | PA6 | PA5 | PA4 | PA3 | PA2 | PA1 | PA0 |
|                             | RE       | U      | U   | U   | U   | U   | U   | U   | U   |     |

| Figure 7-8: | Port A Data | Register |
|-------------|-------------|----------|
|-------------|-------------|----------|

Each Port A I/O pin has a corresponding bit in the Port A Data Register. When a Port A pin is programmed as an output the state of the corresponding data register bit determines the state of the output pin. When a Port A pin is programmed as an input, any read of the Port A Data Register will return the logic state of the corresponding I/O pin. The Port A data register is unaffected by reset.

# 7.1.2 PORT A DATA DIRECTION REGISTER

| ADDR           | REGISTER                      | RW     | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|----------------|-------------------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| OPTN<br>\$0000 | PORT A DATA DIRECTION<br>DDRA | R<br>W | DDRA7 | DDRA6 | DDRA5 | DDRA4 | DDRA3 | DDRA2 | DDRA1 | DDRAC |
|                | RESET:                        |        | : 0   | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

### Figure 7-9: Port A Data Direction Register

Each Port A I/O pin may be programmed as an input by clearing the corresponding bit in the DDRA, or programmed as an output by setting the corresponding bit in the DDRA. The DDRA can be accessed at address \$0000 of the option map. The DDRA is cleared by reset.

# 7.1.3 PORT A PULLUP RESISTER

Semiconductor, Inc

٩

eescal

Each Port A pin may have software programmable pullup device enabled by the RCR select bits RAH and RAL. The pullup is activated whenever the corresponding bit in the RCR is set. The typical resistance at  $V_{DD}$ =3V is 50 K $\Omega$ . Since reset clears the RCR, all pins will initialize with the pullup devices disabled.

# 7.1.4 PORT A WIRED-OR MODE REGISTER

Port A bits 0:3 configured for output pins are wired-or mode (open drain) only. Port A bits 4:7 configured for output pins may have software programmable wired-or mode (open drain) output enabled by the AWOM bit in the WOMR. Since reset clears the WOMR, the wired-or mode disabled on reset.



Advance Information 20040224101845



### 7.1.5 KEY WAKE-UP INTERRUPT (KWI)

Four Key Wake-up inputs (KWI0-KWI3) share pins with Port A. Each key wake-up input is enabled by the corresponding bit in the KWIEN register which resides in the options map, and Key Wake-up Interrupt (KWI) is enabled by the KWIE bit in the INTCR.

When a falling edge is detected at one of the enabled key wake-up inputs, the KWIF bit in the INTSR is set and KWI is generated if KWIE = 1. Each input has a latch which responds only to the falling edge at the pin and all input latches are cleared at the same time by clearing KWIF bit. See **Figure 7-10**.





Advance Information 20040224101845

MOTOROLA

Chapter 7: Input/Output Ports Page 43

For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW —

# 7.1.6 I/O PIN TRUTH TABLES

Table 7-1 thru Table 7-1 summarizes the input or output mode programming for Port A.

| DDR | Output<br>Latch | KWIE0:2 | RAL | I/O Pin Modes                  | Access to<br>DDRA0:2 | Access to D<br>Latch | ata Register<br>PA0:2 |
|-----|-----------------|---------|-----|--------------------------------|----------------------|----------------------|-----------------------|
|     |                 |         |     |                                | Read/Write           | Read                 | Write                 |
| 0   | х               | 0       | 0   | IN, Hi-Z,<br>KWI disable       | DDRA0:2              | Pin                  | Latch*                |
| 0   | х               | 0       | 1   | IN,<br>KWI disable, Pullup     | DDRA0:2              | Pin                  | Latch*                |
| 0   | Х               | 1       | 0   | IN, Hi-Z,<br>KWI enable        | DDRA0:2              | Pin                  | Latch*                |
| 0   | Х               | 1       | 1   | IN,<br>KWI enable, Pullup      | DDRA0:2              | Pin                  | Latch*                |
| 1   | 0               | 0       | Х   | OUT, OD                        | DDRA0:2              | Latch                | Latch, Pin            |
| 1   | 1               | 0       | 0   | OUT, OD, Hi-Z                  | DDRA0:2              | Latch                | Latch, Pin            |
| 1   | 1               | 0       | 1   | OUT, OD, Pullup                | DDRA0:2              | Latch                | Latch, Pin            |
| 1   | 0               | 1       | Х   | OUT, OD,<br>KWI enable         | DDRA0:2              | Latch                | Latch, Pin            |
| 1   | 1               | 1       | 0   | OUT, OD, Hi-Z,<br>KWI enable   | DDRA0:2              | Latch                | Latch, Pin            |
| 1   | 1               | 1       | 1   | OUT, OD, Pullup,<br>KWI enable | DDRA0:2              | Latch                | Latch, Pin            |

### Table 7-1: PA0:2/KWI0:2 I/O Pin Functions

Note:

Semiconductor, Inc

٩

eescal

X is don't care state.
 \* Does not affect input, but stored to Data Register Latch

Chapter 7: Input/Output Ports Page 44



Advance Information 20040224101845



| DDR | Out-<br>put | KWIE3 | BZPE | RAL | I/O Pin Modes                          | Access to<br>DDRA3 | Access to D<br>Latch | ata Register<br>PA3 |
|-----|-------------|-------|------|-----|----------------------------------------|--------------------|----------------------|---------------------|
|     | Latch       |       |      |     |                                        | Read/Write         | Read                 | Write               |
| 0   | Х           | 0     | 0    | 0   | IN, Hi-Z,<br>KWI disable               | DDRA3              | Pin                  | Latch*              |
| 0   | Х           | 0     | 0    | 1   | IN, Hi-Z,<br>KWI disable, Pullup       | DDRA3              | Pin                  | Latch*              |
| 0   | Х           | 1     | 0    | 0   | IN, Hi-Z,<br>KWI enable                | DDRA3              | Pin                  | Latch*              |
| 0   | Х           | 1     | 0    | 1   | IN, Hi-Z,<br>KWI enable, Pullup        | DDRA3              | Pin                  | Latch*              |
| 1   | 0           | 0     | 0    | Х   | Port OUT, OD,<br>KWI disable           | DDRA3              | Latch                | Latch, Pin          |
| 1   | 1           | 0     | 0    | 0   | Port OUT, OD, Hi-Z,<br>KWI disable     | DDRA3              | Latch                | Latch, Pin          |
| 1   | 1           | 0     | 0    | 1   | Port OUT, OD,<br>KWI disable, Pullup   | DDRA3              | Latch                | Latch, Pin          |
| 1   | 0           | 1     | 0    | Х   | Port OUT, OD,<br>KWI enable            | DDRA3              | Latch                | Latch, Pin          |
| 1   | 1           | 1     | 0    | 0   | Port OUT, OD, Hi-Z,<br>KWI enable      | DDRA3              | Latch                | Latch, Pin          |
| 1   | 1           | 1     | 0    | 1   | Port OUT, OD,<br>Pullup,<br>KWI enable | DDRA3              | Latch                | Latch, Pin          |
| 0   | ×           | 0     | 1    | 0   | BZ OUT, OD,                            |                    | Pin                  | Latch*              |
| 1   |             |       |      |     | KWI disable                            |                    | Latch                | Laton               |
| 0   | x           | 0     | 1    | 1   | BZ OUT, OD,                            |                    | Pin                  | Latch*              |
| 1   |             |       | 1    |     | KWI disable, Pullup                    | DUILAU             | Latch                | Laton               |
| 0   | x           | 1     | 1    | 0   | BZ OUT, OD,                            | DDRA3              | Pin                  | Latch*              |
| 1   |             |       |      |     | KWI enable                             | DUILAS             | Latch                | Laton               |
| 0   | X           | 1     | 1    | 1   | BZ OUT, OD,                            | DDRA3              | Pin                  | Latch*              |
| 1   |             | '     | •    | •   | KWI enable, Pullup                     |                    | Latch                | Laton               |

| Table 7-2: | PA3/KWI3/BZ I/O | <b>Pin Functions</b> |
|------------|-----------------|----------------------|
|------------|-----------------|----------------------|

Note:

1. X is don't care state.

2. \* Does not affect input, but stored to Data Register Latch

Chapter 7: Input/Output Ports Page 45

For More Information On This Product, Go to: www.freescale.com

#### :68HC705L26 Specificativeescale Semiconductor, Inc.

| ĺ | DDR | Out-<br>put | EVCE | ADON | A/D | AWOM | RAH | I/O Pin Modes                | Access to<br>DDRA4 | Access to D<br>Latch | ata Register<br>n PA4 |          |
|---|-----|-------------|------|------|-----|------|-----|------------------------------|--------------------|----------------------|-----------------------|----------|
|   |     | Latch       |      |      | СП  |      |     |                              | Read/Write         | Read                 | Write                 |          |
| Ī | 0   | Х           | 0    | 0    | Х   | Х    | 0   | Port IN, Hi-Z                | DDRA4              | Pin                  | Latch*                |          |
|   | 0   | Х           | 0    | 0    | Х   | Х    | 1   | Port IN, Pullup              | DDRA4              | Pin                  | Latch*                |          |
|   | 0   | Х           | Х    | 1    | 0   | Х    | Х   | A/D IN                       | DDRA4              | 0                    | Latch*                |          |
|   | 0   | Х           | Х    | 1    | 1-7 | Х    | 0   | Port IN, Hi-Z                | DDRA4              | Pin                  | Latch*                |          |
|   | 0   | Х           | Х    | 1    | 1-7 | Х    | 1   | Port IN, Pullup              | DDRA4              | Pin                  | Latch*                |          |
|   | 0   | Х           | 1    | Х    | х   | Х    | 0   | Port IN, Hi-Z,<br>Event In   | DDRA4              | Pin                  | Latch*                | <b>.</b> |
|   | 0   | Х           | 1    | Х    | х   | Х    | 1   | Port IN, Pullup,<br>Event In | DDRA4              | Pin                  | Latch*                | nent     |
|   | 1   | Х           | 0    | 0    | Х   | 0    | Х   | OUT, CMOS                    | DDRA4              | Latch                | Latch, Pin            | Ē        |
|   | 1   | 0           | 0    | 0    | Х   | 1    | Х   | OUT, OD                      | DDRA4              | Latch                | Latch, Pin            | ၂ ပိ     |
|   | 1   | 1           | 0    | 0    | Х   | 1    | 0   | OUT, OD, Hi-Z                | DDRA4              | Latch                | Latch, Pin            | l e      |
|   | 1   | 1           | 0    | 0    | Х   | 1    | 1   | OUT, OD, Pullup              | DDRA4              | Latch                | Latch, Pin            | as<br>as |
|   | 1   | Х           | 0    | 1    | Х   | 0    | Х   | OUT, CMOS                    | DDRA4              | Latch                | Latch, Pin            | ₽        |
|   | 1   | 0           | 0    | 1    | Х   | 1    | Х   | OUT, OD                      | DDRA4              | Latch                | Latch, Pin            | Īī       |
| 1 | 1   | 1           | Х    | 1    | 0   | 1    | 0   | OUT, OD                      | DDRA4              | Latch                | Latch, Pin            |          |
|   | 1   | 1           | 0    | 1    | 1-7 | 1    | 0   | OUT, OD, Hi-Z                | DDRA4              | Latch                | Latch, Pin            |          |
|   | 1   | 1           | 0    | 1    | Х   | 1    | 1   | OUT, OD, Pullup              | DDRA4              | Latch                | Latch, Pin            | 12       |
|   | 1   | Х           | 1    | 0    | х   | 0    | х   | OUT, CMOS,<br>Event In       | DDRA4              | Latch                | Latch, Pin            | R RE     |
|   | 1   | 0           | 1    | 0    | х   | 1    | Х   | OUT, OD, Event<br>In         | DDRA4              | Latch                | Latch, Pin            | FO       |
|   | 1   | 1           | 1    | 0    | х   | 1    | 0   | OUT, OD, Hi-Z,<br>Event In   | DDRA4              | Latch                | Latch, Pin            | V d O    |
|   | 1   | 1           | 1    | 0    | х   | 1    | 1   | OUT, OD,<br>Event In, Pullup | DDRA4              | Latch                | Latch, Pin            | FT C     |
| I | 1   | Х           | 1    | 1    | 1-7 | 0    | Х   | OUT, CMOS,<br>Event In       | DDRA4              | Latch                | Latch, Pin            | DRA      |
| ı | 1   | 0           | 1    | 1    | 1-7 | 1    | Х   | OUT, OD,<br>Event In         | DDRA4              | Latch                | Latch, Pin            |          |
|   | 1   | 1           | 1    | 1    | 1-7 | 1    | 0   | OUT, OD, Hi-Z,<br>Event In   | DDRA4              | Latch                | Latch, Pin            |          |
| ı | 1   | 1           | 1    | 1    | 1-7 | 1    | 1   | OUT, OD,<br>Event In, Pullup | DDRA4              | Latch                | Latch, Pin            |          |

#### Table 7-3: PA4/AD0/EVI I/O Pin Functions

Note:

1. X is don't care state.

2. \* Does not affect input, but stored to Data Register Latch

3. Do not apply analog voltage to this pin unless the I/O pin mode is set to A/D IN. Excessive current may be drawn if this pin is read as digital input port while analog voltage is applied.



Go to: www.freescale.com

Advance Information 20040224101845



| DDR | Output | ADON | A/D<br>CH | AWOM | RAH | I/O Pin Modes   | Access to<br>DDRA5 | Access to D<br>Latch | ata Register<br>n PA5 |
|-----|--------|------|-----------|------|-----|-----------------|--------------------|----------------------|-----------------------|
|     | Laton  |      | OIT       |      |     |                 | Read/Write         | Read                 | Write                 |
| 0   | Х      | 0    | Х         | Х    | 0   | Port IN, Hi-Z   | DDRA5              | Pin                  | Latch*                |
| 0   | Х      | 0    | Х         | Х    | 1   | Port IN, Pullup | DDRA5              | Pin                  | Latch*                |
| 0   | Х      | 1    | 1         | Х    | Х   | A/D IN          | DDRA5              | 0                    | Latch*                |
| 0   | Х      | 1    | 0, 2-7    | Х    | 0   | Port IN, Hi-Z   | DDRA5              | Pin                  | Latch*                |
| 0   | Х      | 1    | 0, 2-7    | Х    | 1   | Port IN, Pullup | DDRA5              | Pin                  | Latch*                |
| 1   | Х      | 0    | Х         | 0    | Х   | OUT, CMOS       | DDRA5              | Latch                | Latch, Pin            |
| 1   | 0      | 0    | Х         | 1    | Х   | OUT, OD         | DDRA5              | Latch                | Latch, Pin            |
| 1   | 1      | 0    | Х         | 1    | 0   | OUT, OD, Hi-Z   | DDRA5              | Latch                | Latch, Pin            |
| 1   | 1      | 0    | Х         | 1    | 1   | OUT, OD, Pullup | DDRA5              | Latch                | Latch, Pin            |
| 1   | Х      | 1    | Х         | 0    | Х   | OUT, CMOS       | DDRA5              | Latch                | Latch, Pin            |
| 1   | 0      | 1    | Х         | 1    | Х   | OUT, OD         | DDRA5              | Latch                | Latch, Pin            |
| 1   | 1      | 1    | Х         | 1    | 0   | OUT, OD, Hi-Z   | DDRA5              | Latch                | Latch, Pin            |
| 1   | 1      | 1    | Х         | 1    | 1   | OUT, OD, Pullup | DDRA5              | Latch                | Latch, Pin            |

#### Table 7-4: PA5/AD1 I/O Pin Functions

Note:

Please Comment

DRAFT COPY FOR REVIEW ---

1. X is don't care state.

2. \* Does not affect input, but stored to Data Register Latch

3. Do not apply analog voltage to this pin unless the I/O pin mode is set to A/D IN. Excessive current may be drawn if this pin is read as digital input port while analog voltage is applied.

Advance Information 20040224101845



Chapter 7: Input/Output Ports Page 47

# 68HC705L26 Specificative escale Semiconductor, Inc.

| 1 | I/O I | Port | Remote | e Carrier | Output | AWOM | RAH | I/O Pin Modes                    | Access to<br>DDRA6 | Access<br>Registe<br>P | to Data<br>er Latch<br>A6 |
|---|-------|------|--------|-----------|--------|------|-----|----------------------------------|--------------------|------------------------|---------------------------|
|   | DDR   | OL   | RMPE   | RMON      | RPOL   |      |     |                                  | Read/Write         | Read                   | Write                     |
| I | 0     | Х    | Х      | Х         | Х      | Х    | 0   | Port IN, Hi-Z                    | DDRA6              | Pin                    | Latch*                    |
| I | 0     | Х    | Х      | Х         | Х      | Х    | 1   | Port IN, Pullup                  | DDRA6              | Pin                    | Latch*                    |
|   | 1     | х    | 0      | Х         | Х      | 0    | х   | OUT, output latch,<br>CMOS       | DDRA6              | Latch                  | Latch,<br>Pin             |
|   | 1     | 0    | 0      | Х         | Х      | 1    | Х   | OUT, output latch,<br>OD         | DDRA6              | Latch                  | Latch,<br>Pin             |
|   | 1     | 1    | 0      | Х         | Х      | 1    | 0   | OUT, output latch,<br>OD, Hi-Z   | DDRA6              | Latch                  | Latch,<br>Pin             |
|   | 1     | 1    | 0      | Х         | Х      | 1    | 1   | OUT, output latch,<br>OD, Pullup | DDRA6              | Latch                  | Latch,<br>Pin             |
| 1 | 1     | Х    | 1      | 0         | 0      | 0    | Х   | OUT, remote idle,<br>CMOS = Vss  | DDRA6              | Latch                  | Latch*                    |
| 1 | 1     | Х    | 1      | 0         | 1      | 0    | Х   | OUT, remote idle,<br>CMOS = Vdd  | DDRA6              | Latch                  | Latch*                    |
| 1 | 1     | Х    | 1      | 1         | Х      | 0    | Х   | OUT, remote carrier, CMOS        | DDRA6              | Latch                  | Latch*                    |
| 1 | 1     | Х    | 1      | 1         | Х      | 1    | 0   | OUT, remote carrier, OD/Hi-Z     | DDRA6              | Latch                  | Latch*                    |
| 1 | 1     | Х    | 1      | 1         | Х      | 1    | 1   | OUT, remote carrier, OD/Pullup   | DDRA6              | Latch                  | Latch*                    |

### Table 7-5: PA6/RMO I/O Pin Functions

I

Semiconductor, Inc.

Freescale

Note:

OL = Output Latch
 X is don't care state.

3. \* Does not affect input, but stored to Data Register Latch

4. Vss/Hi-Z = output is either Vss (N-ch on) or Hi-Z (N- and P-ch off) depending on clock pulse

5. Vss/Pullup = output is either Vss (N-ch on) or Pullup (resistive) depending on clock pulse

Chapter 7: Input/Output Ports Page 48



Advance Information 20040224101845



| DDR | Out-<br>put | PWCE | AWOM | RAH | I/O Pin Modes         | Access to<br>DDRA7 | Access to Data Registe<br>Latch PA7 |            |
|-----|-------------|------|------|-----|-----------------------|--------------------|-------------------------------------|------------|
|     | Latch       |      |      |     |                       | Read/Write         | Read                                | Write      |
| 0   | Х           | 0    | Х    | 0   | Port IN, Hi-Z         | DDRA7              | Pin                                 | Latch*     |
| 0   | Х           | 0    | Х    | 1   | Port IN, Pullup       | DDRA7              | Pin                                 | Latch*     |
| 0   | Х           | 1    | Х    | 0   | Port IN, Hi-Z, PWCI   | DDRA7              | Pin                                 | Latch*     |
| 0   | Х           | 1    | Х    | 1   | Port IN, Pullup, PWCI | DDRA7              | Pin                                 | Latch*     |
| 1   | Х           | 0    | 0    | Х   | OUT, CMOS             | DDRA7              | Latch                               | Latch, Pin |
| 1   | 0           | 0    | 1    | Х   | OUT, OD               | DDRA7              | Latch                               | Latch, Pin |
| 1   | 1           | 0    | 1    | 0   | OUT, OD, Hi-Z         | DDRA7              | Latch                               | Latch, Pin |
| 1   | 1           | 0    | 1    | 1   | OUT, OD, Pullup       | DDRA7              | Latch                               | Latch, Pin |
| 1   | Х           | 1    | 0    | Х   | OUT, CMOS, PWCI       | DDRA7              | Latch                               | Latch, Pin |
| 1   | 0           | 1    | 1    | Х   | OUT, OD, PWCI         | DDRA7              | Latch                               | Latch, Pin |
| 1   | 1           | 1    | 1    | 0   | OUT, OD, Hi-Z, PWCI   | DDRA7              | Latch                               | Latch, Pin |
| 1   | 1           | 1    | 1    | 1   | OUT, OD, Pullup, PWCI | DDRA7              | Latch                               | Latch, Pin |

#### Table 7-6: PA7/PWCI I/O Pin Functions

Note:

**Please Comment** 

DRAFT COPY FOR REVIEW —

1. X is don't care state.

2. \* Does not affect input, but stored to Data Register Latch

Advance Information 20040224101845



Chapter 7: Input/Output Ports Page 49

#### 7.2 PORT B

Semiconductor, Inc.

0

eescal

Port B is an 8-bit bidirectional port that are shared with LCD Front Plane Drivers as shown in **Figure 7-11**. Each Port B pin is controlled by the corresponding bits in a data direction register and a data register. The Port B Data Register is located at address \$0001. The Port B Data Direction Register (DDRB) is located at address \$0001 of the option map. Reset clears the DDRB. The Port B Data Register is unaffected by reset. The LCD Front Plane Drivers are enabled on reset.





#### 7.2.1 PORT B DATA REGISTER

| ADDR   | REGISTER             | RW     | 7     | 6      | 5    | 4      | 3   | 2   | 1   | 0   |
|--------|----------------------|--------|-------|--------|------|--------|-----|-----|-----|-----|
| \$0001 | PORT B DATA<br>PORTB | R<br>W | PB7   | PB6    | PB5  | PB4    | PB3 | PB2 | PB1 | PB0 |
|        | R                    | ESET:  | U     | U      | U    | U      | U   | U   | U   | U   |
|        | Fic                  | IIIro  | 7-12. | Port P | Data | Ronist | ٥r  |     |     |     |

Each Port B I/O pin has a corresponding bit in the Port B Data Register. When a Port B pin is programmed as an output the state of the corresponding data register bit determines the state of the output pin. When a Port B pin is programmed as an input, any read of the Port B Data Register will return the logic state of the corresponding I/O pin. The Port B data register is unaffected by reset.

Chapter 7: Input/Output Ports Page 50



Advance Information 20040224101845



# 7.2.2 PORT B DATA DIRECTION REGISTER

| ADDR           | REGISTER                                     | RW     | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|----------------|----------------------------------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| OPTN<br>\$0001 | PORT B DATA DIRECTION<br>DDRB                | R      | DDRB7 | DDRB6 | DDRB5 | DDRB4 | DDRB3 | DDRB2 | DDRB1 | DDRB0 |
|                | ·                                            | RESET: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|                | Eigure 7.12, Dort P. Dete Direction Begister |        |       |       |       |       |       |       |       |       |

Figure 7-13: Port B Data Direction Register

Each Port B I/O pin may be programmed as an input by clearing the corresponding bit in the DDRB, or programmed as an output by setting the corresponding bit in the DDRB. The DDRB can be accessed at address \$0001 of the option map. The DDRB is cleared by reset.

# 7.2.3 PORT B PULLUP RESISTER

Each Port B pin may have software programmable pullup device enabled by the RCR select bits RBH and RBL. The pullup is activated whenever the corresponding bit in the RCR is set. The typical resistance at  $V_{DD}$ =3V is 50 K $\Omega$ . Since reset clears the RCR, all pins will initialize with the pullup devices disabled. See **Section 7.4.6**.

# 7.2.4 PORT B WIRED-OR MODE REGISTER

Port B bits 0:7 configured for output pins may have software programmable wired-or mode (open drain) output enabled by the BWOMH and BWOML bits in the WOMR. Since reset clears the WOMR, the wired-or mode disabled on reset. See **Section 7.4.8**.

Please Comment

DRAFT COPY FOR REVIEW

Advance Information 20040224101845



Chapter 7: Input/Output Ports Page 51

# :68HC705L26 Specificativeescale Semiconductor, Inc.

#### 7.2.5 **I/O PIN TRUTH TABLES**

Table 7-1 and Table 7-1 summarize the input or output and LCD mode programming for Port B.

| DDR | Output | LCD-<br>CR | BWOML | RBL | I/O Pin Modes         | Access to<br>DDRB0:3 | Access to D<br>Latch | ata Register<br>PB0:3 |
|-----|--------|------------|-------|-----|-----------------------|----------------------|----------------------|-----------------------|
|     | Laton  | PBEL       |       |     |                       | Read/Write           | Read                 | Write                 |
| Х   | Х      | 0          | Х     | 0   | LCD FP output         | DDRB0:3              | 0                    | Latch*                |
| Х   | Х      | 0          | Х     | 1   | LCD FP output, Pullup | DDRB0:3              | 0                    | Latch*                |
| 0   | Х      | 1          | Х     | 0   | Port IN, Hi-Z         | DDRB0:3              | Pin                  | Latch*                |
| 0   | Х      | 1          | Х     | 1   | Port IN, Pullup       | DDRB0:3              | Pin                  | Latch*                |
| 1   | Х      | 1          | 0     | Х   | OUT, CMOS             | DDRB0:3              | Latch                | Latch, Pin            |
| 1   | 0      | 1          | 1     | Х   | OUT, OD               | DDRB0:3              | Latch                | Latch, Pin            |
| 1   | 1      | 1          | 1     | 0   | OUT, OD, Hi-Z         | DDRB0:3              | Latch                | Latch, Pin            |
| 1   | 1      | 1          | 1     | 1   | OUT, OD, Pullup       | DDRB0:3              | Latch                | Latch, Pin            |

#### Table 7-7: PB0:PB3/FP24:FP21 I/O Pin Functions

Note:

1. X is don't care state.

2. \* Does not affect input, but stored to Data Register Latch

3. Do not turn on Pullup R (PBL=1) when using these pins as LCD port.

| DDR | Output |       | BWOMH | RBH | I/O Pin Modes         | Access to<br>DDRB4:7 | Access to D<br>Latch | ata Register<br>PB4:7 |
|-----|--------|-------|-------|-----|-----------------------|----------------------|----------------------|-----------------------|
|     | Laton  | FDLII |       |     |                       | Read/Write           | Read                 | Write                 |
| Х   | Х      | 0     | Х     | 0   | LCD FP output         | DDRB4:7              | 0                    | Latch*                |
| Х   | Х      | 0     | Х     | 1   | LCD FP output, Pullup | DDRB4:7              | 0                    | Latch*                |
| 0   | Х      | 1     | Х     | 0   | Port IN, Hi-Z         | DDRB4:7              | Pin                  | Latch*                |
| 0   | Х      | 1     | Х     | 1   | Port IN, Pullup       | DDRB4:7              | Pin                  | Latch*                |
| 1   | Х      | 1     | 0     | Х   | OUT, CMOS             | DDRB4:7              | Latch                | Latch, Pin            |
| 1   | 0      | 1     | 1     | Х   | OUT, OD               | DDRB4:7              | Latch                | Latch, Pin            |
| 1   | 1      | 1     | 1     | 0   | OUT, OD, Hi-Z         | DDRB4:7              | Latch                | Latch, Pin            |
| 1   | 1      | 1     | 1     | 1   | OUT, OD, Pullup       | DDRB4:7              | Latch                | Latch, Pin            |

### Table 7-8: PB4:PB7/FP20:FP17 I/O Pin Functions

Note:

1. X is don't care state.

2. \* Does not affect input, but stored to Data Register Latch

3. Do not turn on Pullup R (PBH=1) when using these pins as LCD port.



Go to: www.freescale.com

Advance Information 20040224101845

Semiconductor, Inc. ٩ reescal 11.



# 7.3 PORT C

Port C is an 4-bit I/O port which shares its pins with external interrupt IRQ and Serial Peripheral Interface (SPI) System as shown in **Figure 7-17** thru **Figure 7-17**. Each Port C pin is controlled by the corresponding bits in a wired-or mode register and a pullup register. The Port C Data Register is located at address \$0002. The Port C Pullup Register (RCR) is located at address \$0009 of the option map. The Wired-Or Mode Register (WOMR) is located at address \$000A of the option map. Reset clears the RCR and the WOMR.

The PC0 thru PC2 pins are shared with the Serial Peripheral Interface (SPI). When the SPI is enabled (SPE = 1), the pins PC0, PC1, and PC2 are configured as serial clock output or input (SCK), serial data output (SDO), and serial data input (SDI) pins, respectively. The direction of the SCK depends on the MSTR bit in the SPCR. When the PORTC is read, the pin state is read. See **Table 7-1** thru **Table 7-1**. The SCK pin should be at V<sub>DD</sub> level before SPI is enabled.

The PC3 pin is shared with the external interrupt  $\overline{IRQ}$  pin. The  $\overline{IRQ}$  pin has a Schmitt Trigger to improve noise immunity. The PC3 pin state may be read anytime regardless of the IRQ configurations.

Port C bits 2:3 when configured as output port is an open drain output. Maximum of twice the  $V_{DD}$  voltage ( $V_{pin} = 2xVDD$ ) may be applied to these pins. See **Section 15.1**.



For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW

# :68HC705L26 SpecificaFireescale Semiconductor, Inc.

NO

Semiconductor, Inc.

Freescale



Chapter 7: Input/Output Ports Page 54



Advance Information 20040224101845





Figure 7-16: PC2/SDI Circuitry

Freescale Semiconductor, Inc.

Advance Information 20040224101845



Chapter 7: Input/Output Ports Page 55

# :68HC705L26 Specifica **Fiveescale Semiconductor, Inc.**







For More Information On This Product, Go to: www.freescale.com Advance Information 20040224101845

DRAFT COPY FOR REVIEW — Please Comment

Inte Da



# 7.3.1 PORT C DATA REGISTER

| ADDR   | REGISTER    | RW    | 7 | 6 | 5 | 4 | 3   | 2    | 1   | 0   |
|--------|-------------|-------|---|---|---|---|-----|------|-----|-----|
| \$0002 | PORT C DATA | R     | 0 | 0 | 0 | 0 | PC3 | PC2  | PC1 | PCO |
| φ0002  | PORTC       | W     | _ | _ | — | _ | F03 | F 62 | FUI | FCU |
|        | RI          | ESET: | 0 | 0 | 0 | 0 | U   | U    | U   | U   |

| Figure /-18: Port C Data Registe | Figure 7-18: | Port C Data Registe |
|----------------------------------|--------------|---------------------|
|----------------------------------|--------------|---------------------|

Each Port C input pin has a corresponding bit in the Port C Data Register. Regardless of peripheral configuration, any read of the Port C Data Register will return the logic state of the corresponding I/O pin. The Port C data register is unaffected by reset.

# 7.3.2 PORT C DATA DIRECTION REGISTER

| ADDR   | REGISTER              | RW     | 7 | 6 | 5 | 4 | 3     | 2     | 1     | 0     |
|--------|-----------------------|--------|---|---|---|---|-------|-------|-------|-------|
| OPTN   | PORT C DATA DIRECTION | R      | 0 | 0 | 0 | 0 |       |       |       |       |
| \$0002 | DDRC                  | W      | _ | _ | — | _ | DDRCS | DDIGZ | DDIGT | DDRCO |
|        |                       | RESET: | 0 | 0 | 0 | 0 | 0     | 0     | 0     | 0     |

# Figure 7-19: Port C Data Direction Register

Each Port C I/O pin may be programmed as an input by clearing the corresponding bit in the DDRC, or programmed as an output by setting the corresponding bit in the DDRC. The DDRC can be accessed at address \$0002 of the option map. The DDRC is cleared by reset.

# 7.3.3 PORT C PULLUP REGISTER

Each Port C pin may have software programmable pullup device enabled by the RCR2 select bit RC. The pullup is activated whenever the RC bit in the RCR2 is set. The typical resistance at  $V_{DD}$ =3V is 10K $\Omega$ . Since reset clears the RCR2, all pins will initialize with the pullup devices disabled. See **Section 7.4.7**.

# 7.3.4 PORT C WIRED-OR MODE REGISTER

Port C bits 0:2 configured for output pins may have software programmable wired-or mode (open drain) output enabled by the CWOM bit in the WOMR. Since reset clears the WOMR, the wired-or mode disabled on reset. Port C bit 3, when configured as output port, has wired-or mode output only. See **Section 7.4.8**.

Please Comment

**DRAFT COPY FOR REVIEW** 

Advance Information 20040224101845



# 7.3.5 I/O PIN TRUTH TABLES

Table 7-1 thru Table 7-1 summarizes the input, pullup, wired-or mode, and SPI pin programming.

| DDR | Output | SPCR<br>SPE | SPCR<br>MSTR | WOMR<br>CWOM | RCR2<br>RC bit | I/O Pin Modes         | Access to<br>DDRC0 | Access to Data Register<br>Latch PC0 |            |
|-----|--------|-------------|--------------|--------------|----------------|-----------------------|--------------------|--------------------------------------|------------|
|     | Laton  |             |              |              |                |                       | Read/Write         | Read                                 | Write      |
| 0   | Х      | 0           | Х            | Х            | 0              | Port IN, Hi-Z         | DDRC0              | Pin                                  | Latch*     |
| 0   | Х      | 0           | Х            | Х            | 1              | Port IN, Pullup       | DDRC0              | Pin                                  | Latch*     |
| 1   | Х      | 0           | Х            | 0            | Х              | OUT, CMOS             | DDRC0              | Latch                                | Latch, Pin |
| 1   | 0      | 0           | Х            | 1            | Х              | OUT, OD               | DDRC0              | Latch                                | Latch, Pin |
| 1   | 1      | 0           | Х            | 1            | 0              | OUT, OD, Hi-Z         | DDRC0              | Latch                                | Latch, Pin |
| 1   | 1      | 0           | Х            | 1            | 1              | OUT, OD, Pullup       | DDRC0              | Latch                                | Latch, Pin |
| 0   | Х      | 1           | 0            | Х            | 0              | SCK IN, Hi-Z          | DDRC0              | Pin                                  | Latch*     |
| 1   | Х      | 1           | 0            | Х            | 0              | SCK IN, Hi-Z          | DDRC0              | Latch                                | Latch*     |
| 0   | Х      | 1           | 1            | 0            | 0              | SCK OUT, CMOS, Hi-Z   | DDRC0              | Pin                                  | Latch*     |
| 0   | Х      | 1           | 1            | 0            | 1              | SCK OUT, CMOS, Pullup | DDRC0              | Pin                                  | Latch*     |
| 1   | Х      | 1           | 1            | 0            | 0              | SCK OUT, CMOS, Hi-Z   | DDRC0              | Latch                                | Latch*     |
| 1   | Х      | 1           | 1            | 0            | 1              | SCK OUT, CMOS, Pullup | DDRC0              | Latch                                | Latch*     |
| 0   | Х      | 1           | 1            | 1            | 0              | SCK OUT, OD, Hi-Z     | DDRC0              | Pin                                  | Latch*     |
| 0   | Х      | 1           | 1            | 1            | 1              | SCK OUT, OD, Pullup   | DDRC0              | Pin                                  | Latch*     |
| 1   | Х      | 1           | 1            | 1            | 0              | SCK OUT, OD, Hi-Z     | DDRC0              | Latch                                | Latch*     |
| 1   | Х      | 1           | 1            | 1            | 1              | SCK OUT, OD, Pullup   | DDRC0              | Latch                                | Latch*     |

| Table 7-9: | PC0/SCK I/O P | in Functions |
|------------|---------------|--------------|
|            |               |              |

Note:

1. X is don't care state.

2. \* Does not affect input, but stored to Data Register Latch

Chapter 7: Input/Output Ports Page 58



Advance Information 20040224101845

For More Information On This Product, Go to: www.freescale.com

**Freescale Semiconductor, In**


| DDR | Output | SPCR | WOMR  | RCR2   | I/O Pin Modes         | Access to<br>DDRC1 | Access to D<br>Latch | ata Register<br>n PC1 |
|-----|--------|------|-------|--------|-----------------------|--------------------|----------------------|-----------------------|
|     | Laton  | 01 L | 00000 | INO DI |                       | Read/Write         | Read                 | Write                 |
| 0   | Х      | 0    | Х     | 0      | Port IN, Hi-Z         | DDRC1              | Pin                  | Latch*                |
| 0   | Х      | 0    | Х     | 1      | Port IN, Pullup       | DDRC1              | Pin                  | Latch*                |
| 1   | Х      | 0    | 0     | Х      | Port OUT, CMOS        | DDRC1              | Latch                | Latch, Pin            |
| 1   | 0      | 0    | 1     | Х      | Port OUT, OD          | DDRC1              | Latch                | Latch, Pin            |
| 1   | 1      | 0    | 1     | 0      | Port OUT, OD, Hi-Z    | DDRC1              | Latch                | Latch, Pin            |
| 1   | 1      | 0    | 1     | 1      | Port OUT, OD, Pullup  | DDRC1              | Latch                | Latch, Pin            |
| 0   | Х      | 1    | 0     | 0      | SDO OUT, CMOS, Hi-Z   | DDRC1              | Pin                  | Latch*                |
| 0   | Х      | 1    | 0     | 1      | SDO OUT, CMOS, Pullup | DDRC1              | Pin                  | Latch*                |
| 1   | Х      | 1    | 0     | 0      | SDO OUT, CMOS, Hi-Z   | DDRC1              | Latch                | Latch*                |
| 1   | Х      | 1    | 0     | 1      | SDO OUT, CMOS, Pullup | DDRC1              | Latch                | Latch*                |
| 0   | Х      | 1    | 1     | 0      | SDO OUT, OD, Hi-Z     | DDRC1              | Pin                  | Latch*                |
| 0   | Х      | 1    | 1     | 1      | SDO OUT, OD, Pullup   | DDRC1              | Pin                  | Latch*                |
| 1   | Х      | 1    | 1     | 0      | SDO OUT, OD, Hi-Z     | DDRC1              | Latch                | Latch*                |
| 1   | Х      | 1    | 1     | 1      | SDO OUT, OD, Pullup   | DDRC1              | Latch                | Latch*                |

### Table 7-10: PC1/SDO I/O Pin Functions

Note:

Please Comment

DRAFT COPY FOR REVIEW

1. X is don't care state.

2. \* Does not affect input, but stored to Data Register Latch

| DDR | Out-<br>put | SPCR | WOMR | RCR2 | I/O Pin Modes        | Access to<br>DDRC2 | Access to D<br>Latch | ata Register<br>n PC2 |
|-----|-------------|------|------|------|----------------------|--------------------|----------------------|-----------------------|
|     | Latch       |      |      |      |                      | Read/Write         | Read                 | Write                 |
| 0   | Х           | 0    | Х    | 0    | Port IN, Hi-Z        | DDRC2              | Pin                  | Latch*                |
| 0   | Х           | 0    | Х    | 1    | Port IN, Pullup      | DDRC2              | Pin                  | Latch*                |
| 1   | 0           | 0    | Х    | Х    | Port OUT, OD         | DDRC2              | Latch                | Latch, Pin            |
| 1   | 1           | 0    | Х    | 0    | Port OUT, OD, Hi-Z   | DDRC2              | Latch                | Latch, Pin            |
| 1   | 1           | 0    | Х    | 1    | Port OUT, OD, Pullup | DDRC2              | Latch                | Latch, Pin            |
| 0   | Х           | 1    | Х    | 0    | SDI IN, Hi-Z         | DDRC2              | Pin                  | Latch*                |
| 0   | Х           | 1    | Х    | 1    | SDI IN, Pullup       | DDRC2              | Pin                  | Latch*                |
| 1   | Х           | 1    | Х    | 0    | SDI IN, Hi-Z         | DDRC2              | Latch                | Latch*                |
| 1   | X           | 1    | Х    | 1    | SDI IN, Pullup       | DDRC2              | Latch                | Latch*                |

### Table 7-11: PC2/SDI I/O Pin Functions

Note:

1. X is don't care state.

2. \* Does not affect input, but stored to Data Register Latch

Advance Information 20040224101845

Chapter 7: Input/Output Ports Page 59 I

|   | DDR | Output |      | WOMR  | RCR2   | I/O Pin Modes             | Access to<br>DDRC3 | Access to D<br>Latch | ata Register<br>PC3 |
|---|-----|--------|------|-------|--------|---------------------------|--------------------|----------------------|---------------------|
| • |     | Laten  | INGL | 00000 | NO bit |                           |                    | Read                 | Write               |
| 1 | 0   | Х      | 0    | Х     | 0      | Port IN, Hi-Z             | DDRC3              | Pin                  | Latch*              |
| 1 | 0   | Х      | 0    | Х     | 1      | Port IN, Pullup           | DDRC3              | Pin                  | Latch*              |
| 1 | 0   | Х      | 1    | Х     | 0      | Port IN, Hi-Z, IRQ        | DDRC3              | Pin                  | Latch*              |
| 1 | 0   | Х      | 1    | Х     | 1      | Port IN, Pullup, IRQ      | DDRC3              | Pin                  | Latch*              |
|   | 1   | 0      | 0    | Х     | Х      | Port OUT, OD              | DDRC3              | Latch                | Latch, Pin          |
|   | 1   | 1      | 0    | Х     | 0      | Port OUT, OD, Hi-Z        | DDRC3              | Latch                | Latch, Pin          |
|   | 1   | 1      | 0    | Х     | 1      | Port OUT, OD, Pullup      | DDRC3              | Latch                | Latch, Pin          |
|   | 1   | 0      | 1    | Х     | Х      | Port OUT, OD, IRQ         | DDRC3              | Latch                | Latch, Pin          |
|   | 1   | 1      | 1    | Х     | 0      | Port OUT, OD, Hi-Z, IRQ   | DDRC3              | Latch                | Latch, Pin          |
|   | 1   | 1      | 1    | Х     | 1      | Port OUT, OD, Pullup, IRQ | DDRC3              | Latch                | Latch, Pin          |

### Table 7-12: PC3/IRQ I/O Pin Functions

Note:

1. X is don't care state.

2. \* Does not affect input, but stored to Data Register Latch

Chapter 7: Input/Output Ports Page 60



Advance Information 20040224101845 DRAFT COPY FOR REVIEW — Please Comment



## 7.4 I/O PORT PROGRAMMING

All bidirectional I/O pins can be programmed as inputs or outputs.

### 7.4.1 PIN DATA DIRECTION

The direction of a pin is determined by the state of its corresponding bit in the associated port Data Direction Register (DDR). A pin is configured as an output if its corresponding DDR bit is set to a logic one. A pin is configured as an input if its corresponding DDR bit is cleared to a logic zero.

The data direction bits DDRA0 thru DDRA7, DDRB0 thru DDRB7, and DDRC0 thru DDRC3 are read/write bits which can be manipulated with read-modify-write instructions. At power-on or reset, all DDRs are cleared, which configures all I/O port pins as input (except Port B is configured as an LCD port).

### 7.4.2 OUTPUT PIN

When an I/O pin is programmed as an output pin, the state of the corresponding data register bit will determine the state of the pin. The state of the data register bits can be altered by writing to address \$0000 for Port A, address \$0001 for Port B, and address \$0002 for Port C. Reads of the corresponding data register bit at address \$0000 or \$0003 will return the state of the data register bit (not the state of the I/O pin itself). Therefore bit manipulation is possible on all pins programmed as outputs.

### 7.4.3 INPUT PIN

When an I/O pin is programmed as an input pin, or for an input only pin, the state of the pin can be determined by reading the corresponding data register bit. Any writes to the corresponding data register bit for an input only pin will be ignored.

If the corresponding bit in the pullup register is set the input pin will have an activated pullup device. Since the pullup register bits are read-write, bit manipulation may be used on these register bits.

### 7.4.4 I/O PIN TRANSITIONS

A "glitch" can be generated on an I/O pin when changing it from an input to an output unless the data register is first pre-conditioned to the desired before changing the corresponding DDR bit from a zero to a one.

### 7.4.5 I/O PINS WITH SUB-SYSTEMS

An I/O pin that is shared with another sub-system is in general configured as an input pin during reset, except for LCD driver pins. The LCD driver output pins BP0:BP3 and FP0:FP24 are configured to output  $V_{DD}$  level during and after reset. See truth tables of each I/O ports for more details.

Advance Information 20040224101845



Chapter 7: Input/Output Ports Page 61

For More Information On This Product, Go to: www.freescale.com

Please Comment

| Port  | bit | DDR   | WOM      | Pull- | up R    | Мо         | dule Control  | Module  |
|-------|-----|-------|----------|-------|---------|------------|---------------|---------|
|       | 0   | DDRA0 | 1        |       |         |            | KWIE0         | KWI0    |
|       | 1   | DDRA1 | 1        | D / I |         | KWIE       | KWIE1         | KWI1    |
|       | 2   | DDRA2 | 1        | RAL   |         |            | KWIE2         | KWI2    |
| ^     | 3   | DDRA3 | 1        |       | 50 KO   | BZPE, KWIE | BZxx, KWIE3   | KWI3/BZ |
|       | 4   | DDRA4 |          |       | 50 122  | ADON, EVCE | CH2:0/EVxx    | AD0/EVI |
|       | 5   | DDRA5 |          | руп   |         | ADON       | CH2:0         | AD1     |
|       | 6   | DDRA6 | AVVOIVI  | NALL  | RME     |            | TBCLK, RMC4:0 | RMO     |
|       | 7   | DDRA7 |          |       |         | PWCE       | PWxx          | PWCI    |
|       | 0   | DDRB0 |          |       |         |            | F24B3:0       | FP24    |
|       | 1   | DDRB1 | BWOML    | RBL   |         |            | F23B3:0       | FP23    |
|       | 2   | DDRB2 |          |       |         | LODE, FDEL | F22B3:0       | FP22    |
| D     | 3   | DDRB3 |          |       | 50 KO   |            | F21B3:0       | FP21    |
| Б     | 4   | DDRB4 |          |       | 50 K22  |            | F20B3:0       | FP20    |
|       | 5   | DDRB5 |          | ррц   |         |            | F19B3:0       | FP19    |
|       | 6   | DDRB6 | DVVOIVIN | КОП   |         | LODE, PDEN | F18B3:0       | FP18    |
|       | 7   | DDRB7 |          |       |         |            | F17B3:0       | FP17    |
|       | 0   | DDRC0 | CWOM     |       |         |            | MSTR, SPR     | SCK     |
| C     | 1   | DDRC1 | CVVOIVI  | PC    | 10 KO   | SPE        |               | SDO     |
|       | 2   | DDRC2 | 1        |       | 10 1/22 |            |               | SDI     |
|       | 3   | DDRC3 | 1        |       |         | IRQE       | IRQS          | IRQ     |
| Note: |     |       |          |       |         |            |               |         |

 Table 7-13:
 Port Control Register Bits Summary

N

1. Pull-up Resistor resistances are typical values with V\_DD=3V.

2. Port C bits 2:3 are open drain outputs and do not have CMOS drive capability.

Chapter 7: Input/Output Ports Page 62



Advance Information 20040224101845



### 7.4.6 RESISTOR CONTROL REGISTER1 (RCR1)

| ADDR   | REGISTER              | RW    | 7 | 6 | 5 | 4 | 3   | 2   | 1   | 0    |
|--------|-----------------------|-------|---|---|---|---|-----|-----|-----|------|
| OPTN   | RESISTOR CONTROL REG. | R     | 0 | 0 | 0 | 0 | PBH | PBI | РАН | PAI  |
| \$0008 | RCR1                  | W     | _ | _ | — | _ | NDH | NDL |     | INAL |
|        | F                     | ESET: | 0 | 0 | 0 | 0 | 0   | 0   | 0   | 0    |

### Figure 7-20: Resistor Control Register 1

### BITS7:4 Reserved

These bits are not used and always read as 0.

### RBH Port B pull up Resistor (H)

When this bit is set, pull up resistor is connected to upper 4 bits of Port B pins. However for those pins configured as CMOS output, or open drain output with output of logic low the pull up resistors are disabled. This bit is cleared on reset.

### RBL Port B pull up Resistor (L)

When this bit is set, pull up resistor is connected to lower 4 bits of Port B pins. However for those pins configured as CMOS output, or open drain output with output of logic low the pull up resistors are disabled. This bit is cleared on reset.

### RAH Port A pull up Resistor (H)

When this bit is set, pull up resistor is connected to upper 4 bits of Port A pins. However for those pins configured as CMOS output, or open drain output with output of logic low the pull up resistors are disabled. This bit is cleared on reset.

### RAL Port A pull up Resistor (L)

When this bit is set, pull up resistor is connected to lower 4 bits of Port A pins. However for those pins configured as CMOS output, or open drain output with output of logic low the pull up resistors are disabled. This bit is cleared on reset.

Please Comment

I

DRAFT COPY FOR REVIEW

Advance Information 20040224101845



### 7.4.7 RESISTOR CONTROL REGISTER2 (RCR2)

| ADDR   | REGISTER              | RW    | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0  |
|--------|-----------------------|-------|---|---|---|---|---|---|---|----|
| OPTN   | RESISTOR CONTROL REG. | R     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | PC |
| \$0009 | RCR2                  | W     |   | — |   | — | _ | _ | — | RC |
|        | RI                    | ESET: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |

### Figure 7-21: Resistor Control Register 2

### BITS7:1 Reserved

These bits are not used and always read as 0.

### RC Port C pull up Resistor

When RC bit is set, pull up resistor is connected to all 4 bits of Port C pins. However for those pins configured as CMOS output, or open drain output with output of logic low the pull up resistors are disabled. This bit is cleared on reset.

Chapter 7: Input/Output Ports Page 64



Advance Information 20040224101845

DRAFT COPY FOR REVIEW — Please Comment



### 7.4.8 OPEN DRAIN OUTPUT CONTROL REGISTER (WOM)

| ADDR   | REGISTER          | RW     | 7        | 6     | 5 | 4 | 3 | 2       | 1     | 0 |
|--------|-------------------|--------|----------|-------|---|---|---|---------|-------|---|
| OPTN   | WIRED-OR MODE REG | R      | BWOME    | BWOM  | 0 | 0 | 0 | CWOM    |       | 0 |
| \$000A | WOMR              | W      | BWOIVIII | BWONL | — | _ | _ | CVVOIVI | AVUON | — |
|        | F                 | RESET: | 0        | 0     | 0 | 0 | 0 | 0       | 0     | 0 |

Figure 7-22: Wired-OR Mode Register

### BITS5:3 Reserved

These bits are not used and always return 0.

### CWOM Port C Open Drain Mode

When this bit is set, Port C pins that are configured as output becomes open drain outputs. This bit is cleared on reset.

### AWOM Port A Open Drain Mode (high nibble)

When this bit is set, upper 4 bits of Port A pins that are configured as output becomes open drain outputs. This bit is cleared on reset.

### BIT0 Reserved

This bit is not used and always return 0.

Please Comment

DRAFT COPY FOR REVIEW

Advance Information 20040224101845



Chapter 7: Input/Output Ports Page 65



## THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 7: Input/Output Ports Page 66



Advance Information 20040224101845 DRAFT COPY FOR REVIEW — Please Comment



# SECTION 80SCILLATORS AND CLOCK

The MC68HC705L26 has dual on-chip oscillators for typ. 4.0 MHz and 32.768 KHz crystals. Refer to **Figure 8-1**. The clock generated is used by the CPU and by the subsystem modules such as Time Base and LCD. Refer to **Figure 8-2**.

## 8.1 OSC CLOCK DIVIDER AND POR COUNTER

The OSC clock is divided by a 7 bit counter which is used for the system clock, Time Base and POR Counter. Clocks divided by 2, 4, and 64 are available for the system clock selections and clock divided by 128 is provided for the Time Base and POR Counter.

The POR counter is a 6 bit clock counter that is driven by the OSC divided by128. The overflow of this counter is used for setting FTUP bit, release of power on reset (POR), and resuming operation from STOP mode.

The 7 bit divider and POR counter are initialized to \$0078 by the following conditions.

- Power on detection
- When FOSCE bit is cleared

## 8.2 SYSTEM CLOCK CONTROL

The system clock is provided for all internal modules except Time Base.

Both OSC and XOSC are available as the system clock source. The divide ratio is selected by the SYS1 and SYS0 bits in the MISC register.

By default OSC divided by 2 is selected on reset.

| SVS1 | 0272 | Divide Ratio      | CPU Bus Frequency (Hz) |                |                 |  |  |
|------|------|-------------------|------------------------|----------------|-----------------|--|--|
| 5151 | 5150 |                   | OSC = 4.0 M            | OSC = 4.1943 M | XOSC = 32.768 K |  |  |
| 0    | 0    | OSC Divided by 2  | 2.0 M                  | 2.0972 M       | —               |  |  |
| 0    | 1    | OSC Divided by 4  | 1.0 M                  | 1.0486 M       | —               |  |  |
| 1    | 0    | OSC Divided by 64 | 62.5 K                 | 65.536 K       |                 |  |  |
| 1    | 1    | XOSC Divided by 2 |                        | —              | 16.384 K        |  |  |

| Table 8-1: | System Bus Frequency Selection |
|------------|--------------------------------|
|------------|--------------------------------|

## 8.3 OSC AND XOSC

The secondary oscillator (XOSC) runs continuously after Power-Up. The main oscillator (OSC) can be stopped to conserve power via the STOP instruction or the FOSCE bit in the MISC register. The effects of restarting the OSC will vary depending on current state of the MCU, including SYS0:1 and FOSCE bits.

Advance Information 20040224101845

Chapter 8: OSC and Clock Page 67

For More Information On This Product, Go to: www.freescale.com

Please Comment



### 8.3.1 OSC ON LINE

If the system clock is OSC, FOSCE should remain set. Executing the STOP instruction in this condition will halt OSC, put the MCU into a low power mode and clear the 6-bit POR counter. The 7-bit divider is not initialized. Exiting STOP with external IRQ or Reset re-starts the oscillator. When the POR counter overflows, internal Reset is released and execution can begin. The stabilization time will vary between 8064 and 8192 counts.

NOTE: Exiting STOP with external Reset will always return the MCU to the state as defined by the register definitions prior to executing the STOP instruction. i.e. SYS0:1=1:0, FOSCE=1.

### 8.3.2 XOSC ON LINE

Semiconductor, In

đ

eesca

If XOSC is the System Clock (SYS0:1=1:1), OSC can be stopped either by the STOP instruction or by clearing the FOSCE bit.

The sub oscillator (XOSC) never stops except during power down. This clock may also be used as the clock source of the system clock and Time Base.





### 8.3.2.1 XOSC WITH FOSCE=1

If the System Clock is XOSC and FOSCE=1, executing the STOP instruction will halt OSC, put the MCU into a low power mode and clear the 6-bit POR counter. The 7-bit divider is not initialized. Exiting STOP with external IRQ re-starts the oscillator, however execution begins immediately using XOSC. When the POR counter overflows, FTUP is set signaling that OSC is stable and OSC can be used as the System Clock. The stabilization time will vary between 8064 and 8192 counts.



Advance Information 20040224101845



### 8.3.2.2 XOSC WITH FOSCE=0

If XOSC is the System Clock, clearing FOSCE will stop OSC, and preset the 7-bit divider and 6-bit POR counter to \$0078. Execution will continue with XOSC and when FOSCE is set again, OSC will re-start. When the POR counter overflows, FTUP is set signaling that OSC is stable and OSC can be used as the System Clock. The stabilization time will be 8072 counts.

### 8.3.2.3 XOSC WITH FOSCE=0 AND STOP

If XOSC is the System Clock and FOSCE is cleared, further power reduction can be achieved by executing the STOP instruction. In this case OSC is stopped, the7-bit divider and 6-bit POR counter is preset to \$0078 (since FOSCE=0) and execution is halted. Exiting STOP with external IRQ does not re-start the OSC, however execution begins immediately using XOSC. OSC may be re-started by setting FOSCE, and when the POR counter overflows, FTUP be will set signaling that OSC is stable and can be used as the System Clock. The stabilization time will be 8072 counts.

## 8.4 STOP AND WAIT MODES

During STOP mode the main oscillator (OSC) is shut down and the clock path from the second oscillator (XOSC) is disconnected, such that all modules except Time Base are halted. Entering STOP mode clears FTUP flag in the MISC register, and initializes POR counter. The STOP mode is exited by RESET, IRQ, KWI, SPI (slave mode), or TBI Interrupt.

If OSC is selected as system clock source during STOP mode, CPU resumes after the overflow of POR counter and this overflow also sets FTUP status flag.

If XOSC is selected as system clock source during STOP mode, no stop recovery time is required for exiting STOP mode because XOSC never stops and re-start of main oscillator depends on FOSCE bit.

During WAIT mode, only the CPU clocks are halted and the peripheral modules are not affected. The WAIT mode is exited by the RESET and any interrupts.

Please Comment

DRAFT COPY FOR REVIEW

Advance Information 20040224101845



Chapter 8: OSC and Clock Page 69

| Before RESET     | or Interrupt |       | Power ON | External | Exit STOP |  |
|------------------|--------------|-------|----------|----------|-----------|--|
| CPU Clock Source | CPU          | FOSCE | RESET    | RESET    | Interrupt |  |
| —                | —            |       | Delay    | —        |           |  |
| OSC (OSC ON)     | RUN          | 1     | _        | No Delay |           |  |
|                  | RUN          | 01    | —        | Delay    |           |  |
| OSC (OSC OFF)    | STOP         | 1     | —        | Delay    | Delay     |  |
|                  | STOP         | 02    | —        | Delay    | Delay     |  |
| XOSC (OSC ON)    | RUN          | 1     | _        | No Delay |           |  |
|                  | RUN          | 0     | _        | Delay    | _         |  |
| XOSC (OSC OFF)   | STOP         | 1     | —        | Delay    | No Delay  |  |
|                  | STOP         | 0     | —        | Delay    | No Delay  |  |

### Table 8-2: CPU Start-up Time Requirements

Note:

1. Do not enter this state

2. This state does not exist

# NOTE: Power ON RESET is strictly for power on conditions and does not function as detecting drop in power.

Chapter 8: OSC and Clock Page 70



For More Information On This Product, Go to: www.freescale.com

Advance Information 20040224101845

Freescale Semiconductor, Inc.







NOTOROLA

Advance Information 20040224101845

Chapter 8: OSC and Clock Page 71

## 8.5 XOSC CLOCK DIVIDER AND POD COUNTER

The XOSC clock divided by a 14 bit counter, also called Power on Divider (POD), is used for the system clock. Oscillator clock divided by 2 is used by the system clock and oscillator clock divided by 64 or 128 is provided for the LCD module.

The overflow of POD counter is used for setting STUP bit and release of power on reset (POR). The 14 bit divider/ POD counter is initialized to \$0078 by Power on detection.

## 8.6 SYSTEM CLOCK CONTROL

The system clock (PH2) is provided for CPU and all internal modules.

## 8.7 XOSC

Semiconductor,

٩

eescal

The oscillator (XOSC) runs continuously after Power-Up. The XOSC never stops while power is applied.

## 8.8 STOP AND WAIT MODES

Power reduction can be achieved by executing the STOP instruction and halting the CPU. During STOP mode CPU and all modules except Time Base are halted. The STOP mode is exited by external RESET, COP reset, IRQ, SPI (slave mode), or TB Interrupt. The CPU resumes immediately from STOP mode since XOSC never stops oscillating during STOP mode.

The CPU clock is halted and the peripheral modules are not affected during WAIT mode. The WAIT mode is exited by the RESET or any interrupts.

|                    | Delay Time | e After RESET | or Interrupt |
|--------------------|------------|---------------|--------------|
| Mode Before        |            | COP and       | Exit STOP    |
| RESET or Interrupt | Power ON   | External      | Mode by      |
|                    | RESET      | RESET         | Interrupt    |
| POWER OFF          | Delay      | —             |              |
| RUN                | Ŧ          | No Delay      |              |
| STOP/WAIT          | Ť          | No Delay      | No Delay     |

NOTE: † Power ON RESET is strictly for power on conditions and does not function as detecting drop in power.

| Table o-5: Recovery Time Requirement | Table 8-3: | <b>Recovery</b> T | ime Requi | rements |
|--------------------------------------|------------|-------------------|-----------|---------|
|--------------------------------------|------------|-------------------|-----------|---------|



Advance Information 20040224101845



## 8.9 MISCELLANEOUS REGISTER (MISC)

| ADDR   | REGISTER               | RW | 7    | 6    | 5 | 4 | 3    | 2    | 1     | 0     |
|--------|------------------------|----|------|------|---|---|------|------|-------|-------|
| \$002E | MISCELLANEOUS REGISTER | R  | FTUP | STUP | 0 | 0 | SVS1 | even | EOSCE | OPTM  |
| \$003L | MISC                   | W  |      | —    | — | — | 5151 | 3130 | FUSCE | OFTIM |
|        | RE                     | U  | U    | 0    | 0 | 0 | 0    | 0    | 0     |       |

Figure 8-3: Miscellaneous Register

### FTUP OSC Time Up Flag

Power on detection and clearing FOSCE bit clears this bit. This bit is set by the overflow of the POR counter. An reset does not affect this bit.

read:

- 1 = OSC clock is available for the system clock
- 0 = during POR or OSC shut down

### STUP XOSC Time Up Flag

The power on detection clears this bit. This bit is set after the Time Base has counted 16264 clocks. An reset does not affect this bit.

read:

- 1 = XOSC clock is available for the system clock
- 0 = XOSC is not stabilized or no signal on XOSC1 : XOSC2 pins

### BITS5:4 Reserved

These bits are not used and always read as 0.

### SYS1:0 System Clock Select

These two bits select the system clock source. On reset the SYS1 and SYS0 bits are initialized to 0 and 0, respectively.

| eve1 | SVS0 | Divido Ratio      | $\Phi$ 2 CPU Bus Frequency (Hz) |                |                 |  |  |  |  |
|------|------|-------------------|---------------------------------|----------------|-----------------|--|--|--|--|
| 5151 | 3130 | Divide Ralio      | OSC = 4.0 M                     | OSC = 4.1943 M | XOSC = 32.768 K |  |  |  |  |
| 0    | 0    | OSC Divided by 2  | 2.0 M                           | 2.0972 M       | —               |  |  |  |  |
| 0    | 1    | OSC Divided by 4  | 1.0 M                           | 1.0486 M       |                 |  |  |  |  |
| 1    | 0    | OSC Divided by 64 | 62.5 K                          | 65.536 K       |                 |  |  |  |  |
| 1    | 1    | XOSC Divided by 2 |                                 | —              | 16.384 K        |  |  |  |  |

### Table 8-4: System Bus Frequency Selection

### OPTM Option Map Select

The OPTM bit selects one of two register maps at \$0000:\$000F. This bit is cleared on reset.

- 1 = Option map is selected
- 0 = Main register map is selected

Advance Information 20040224101845



I

For More Information On This Product, Go to: www.freescale.com

Please Comment

## 68HC705L26 Specifica**fivee.scale Semiconductor, Inc.**



Figure 8-4: Clock State and STOP/POD Delay Diagram

Chapter 8: OSC and Clock Page 74



Advance Information 20040224101845



# **SECTION 9TIME BASE**

Time Base is a 14 bit up-counter which is clocked by XOSC.

This 14 bit divider is initialized to \$0078 only upon power on reset (POD). After counting 16264 clocks, the STUP bit in the MISC register is set. See **Figure 8-2** for more information.

## 9.1 TIME BASE SUB-MODULES

The clock divided by the Time Base are used for LCDCLK, STUP, TBI, and COP. The Time Base clock can be provided either from OSC or XOSC.

### 9.1.1 LCDCLK

One of four clock frequency combinations may be selected for the LCD clock.

| TB          | CR1   | Divide Ratio | LCD Clock Frequency (Hz)<br>(F <sub>XOSC</sub> = 32.768 KHz) |               |                  |  |  |  |  |  |
|-------------|-------|--------------|--------------------------------------------------------------|---------------|------------------|--|--|--|--|--|
| .TB-<br>CLK | .LCLK | Divide Ratio | OSC = 2.0 MHz                                                | OSC = 4.0 MHz | OSC = 4.1943 MHz |  |  |  |  |  |
| 0           | 0     | XOSC / 64    | 512                                                          | 512           | 512              |  |  |  |  |  |
| 0           | 1     | XOSC / 128   | 256                                                          | 256           | 256              |  |  |  |  |  |
| 1           | 0     | OSC / 8192   | 244                                                          | 488           | 512              |  |  |  |  |  |
| 1           | 1     | OSC / 16384  | 122                                                          | 244           | 256              |  |  |  |  |  |

### Table 9-1: LCD Clock Frequency

### 9.1.2 STUP

Time Base divider is initialized to \$0078 at power on and when the count reaches 16264, STUP flag in the MISC register is set. Once STUP flag is set, it is never cleared while power is applied.

### 9.1.3 TBI

Time Base interrupt may be generated every 0.5, 0.25, 0.125, or 0.0039 seconds with 32.768 kHz crystal at XOSC pins. See **Table 9-2**.

Time Base Interrupt Flag (TBIF) is set every period and interrupt is requested if the enable bit (TBIE) is set. The clock divided by 128, 4096, 8192, or 16384 is used to set TBIF, and this clock is selected by the TBR1 and TBR0 bits in the TBCR2 register.

Advance Information 20040224101845



For More Information On This Product, Go to: www.freescale.com

Please Comment

| TBC  | CR2  | Divide Ratio  | Frequency (Hz) |                  |                   |  |  |  |  |
|------|------|---------------|----------------|------------------|-------------------|--|--|--|--|
| TBR1 | TBR0 | Divide Italio | OSC = 4.0 MHz  | OSC = 4.1943 MHz | XOSC = 32.768 KHz |  |  |  |  |
| 0    | 0    | TBCLK / 128   | 244            | 256              | 256               |  |  |  |  |
| 0    | 1    | TBCLK / 4096  | 7.63           | 8.00             | 8.00              |  |  |  |  |
| 1    | 0    | TBCLK / 8192  | 3.81           | 4.00             | 4.00              |  |  |  |  |
| 1    | 1    | TBCLK / 16384 | 1.91           | 2.00             | 2.00              |  |  |  |  |

 Table 9-2:
 Time Base Interrupt Frequency

Chapter 9: Time Base Page 76



For More Information On This Product, Go to: www.freescale.com

Advance Information 20040224101845



### 9.1.4 COP

The Computer Operating Properly Watchdog Timer (COP) on the MC68HC705L26 is controlled by the COPE and COPC bits in the TBCR2 register.

The COP uses the same clock as TBI that is selected by the TBR1 and TBR0 bits. The TBI clock is divided by 4 and overflow of this divider generates COP time-out reset if the COP enable (COPE) bit is set. The COP time-out reset has the same vector address as Power On and external RESET. To prevent the COP time-out the COP divider is cleared by writing a 1 to the COP Clear (COPC) bit.

When the Time Base divider is driven by the OSC clock, the clock for the divider is suspended during STOP mode or when FOSCE is equal to 0. This may cause stretching of the COP period or no COP timeout reset occurring when there is a processing error. Thus it is recommended that XOSC clock be used as the clock source for Time Base to avoid these problems.

When the COP is enabled during STOP mode and the Time Base is driven by the XOSC clock, the divider does not stop counting and the COPC bit must be triggered to prevent the COP time-out. Therefore it is recommended that the COP Watchdog should be disabled for a system that must have intentional use of the STOP mode period longer than the COP time-out period.

| TBC  | CR2   | COP Period (m Sec) |         |           |          |          |                  |  |  |
|------|-------|--------------------|---------|-----------|----------|----------|------------------|--|--|
| TRP1 | TRPO  | OSC = 4            | 4.0 MHz | OSC = 4.1 | 1943 MHz | XOSC = 3 | OSC = 32.768 KHz |  |  |
| TBIT | TDIXU | min                | max     | min       | max      | min      | max              |  |  |
| 0    | 0     | 12.3               | 16.4    | 11.7      | 15.6     | 11.7     | 15.6             |  |  |
| 0    | 1     | 393                | 524     | 375       | 500      | 375      | 500              |  |  |
| 1    | 0     | 786                | 1048    | 750       | 1000     | 750      | 1000             |  |  |
| 1    | 1     | 1573               | 2097    | 1500      | 2000     | 1500     | 2000             |  |  |

Table 9-3: COP Time-Out Period



Chapter 9: Time Base Page 77

For More Information On This Product, Go to: www.freescale.com

Freescale Semiconductor, Inc.

Please Comment

#### 9.1.5 **REMOTE CONTROL CARRIER GENERATOR**

The PA6/RMO pin functions as general purpose I/O port after RESET. The RMPE bit must be set in order to use this port as Remote control carrier output. The RMO outputs idle state is set by RPOL bit when RMON is cleared. The RMCLK signal selected by RMC4:0 bits is output on the pin when RMON is set.

|        | DMC2   | DMC2:0   | RMO  | Divider | Remote Carrie | r Frequency on RM0 | D pin (RMCLK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|--------|--------|----------|------|---------|---------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| RIVIC4 | RIVICS | RIVIC2.0 | Duty | Divider | OSC = 440 KHz | OSC = 3.6 MHz      | OSC = 4.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|        |        | 0        |      | 1/4     | 110 KHz       | 900 KHz            | 1000 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|        |        | 1        |      | 1/8     | 55.0 KHz      | 450 KHz            | 500 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|        | 1      | 2        | E09/ | 1/16    | 27.5 KHz      | 225 KHz            | 250 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|        | 1      | 3        | 50%  | 1/32    | 13.8 KHz      | 113 KHz            | 125 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|        |        | 4        |      | 1/64    | 6.88 KHz      | 56.3 KHz           | 62.5 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 0      |        | 5        |      | 1/128   | 3.44 KHz      | 28.1 KHz           | 31.3 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 0      |        | 0        |      | 1/12    | 36.7 KHz      | 300 KHz            | 333 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|        |        | 1        |      | 1/24    | 18.3 KHz      | 150 KHz            | 167 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|        | 0      | 2        | 50%  | 1/48    | 9.17 KHz      | 75.0 KHz           | 83.3 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|        | 0      | 3        |      | 1/96    | 4.58 KHz      | 37.5 KHz           | 41.7 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|        |        | 4        |      | 1/192   | 2.29 KHz      | 18.8 KHz           | 20.8 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|        |        | 5        |      | 1/384   | 1.15 KHz      | 9.38 KHz           | A.6 MHz         OSC = 4.0 MHz           KHz         1000 KHz           KHz         500 KHz           KHz         250 KHz           KHz         125 KHz           KHz         62.5 KHz           KHz         31.3 KHz           KHz         333 KHz           KHz         167 KHz           KHz         83.3 KHz           KHz         20.8 KHz           KHz         10.4 KHz           KHz         2000 KHz           KHz         1000 KHz           KHz         2000 KHz           KHz         1000 KHz           KHz         125 KHz           KHz         667 KHz           KHz         667 KHz           KHz         167 KHz |         |
|        |        | 0        |      | 1/2     | 220 KHz       | 1800 KHz           | 2000 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|        |        | 1        |      | 1/4     | 110 KHz       | 900 KHz            | 1000 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|        | 1      | 2        | 50%  | 1/8     | 55.0 KHz      | 450 KHz            | 500 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|        | 1      | 3        | 50 % | 1/16    | 27.5 KHz      | 225 KHz            | 250 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|        |        | 4        |      |         | 1/32          | 13.8 KHz           | 113 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125 KHz |
| 1      |        | 5        |      | 1/64    | 6.88 KHz      | 56.3 KHz           | 62.5 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| '      |        | 0        |      | 1/6     | 73.3 KHz      | 600 KHz            | 667 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|        |        | 1        |      | 1/12    | 36.7 KHz      | 300 KHz            | 333 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|        | 0      | 2        | 33%  | 1/24    | 18.3 KHz      | 150 KHz            | 167 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|        |        | 3        | 3370 | 1/48    | 9.17 KHz      | 75.0 KHz           | 83.3 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|        |        | 4        |      | 1/96    | 4.58 KHz      | 37.5 KHz           | 41.7 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|        |        | 5        |      | 1/192   | 2.29 KHz      | 18.8 KHz           | 20.8 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |

Table 9-4: Remote Carrier Frequency Selection

Semiconductor, Inc

0

reescal

LL.



Advance Information 20040224101845



## Freescale Semiconductor 6505 26 Specification 0.3



Figure 9-3: Remote Control Carrier Duty Control

Advance Information 20040224101845



Chapter 9: Time Base Page 79

For More Information On This Product, Go to: www.freescale.com

Please Comment

## 9.1.6 BUZZER TONE GENERATOR

The PA3/KWI3/BZ pin functions as general purpose I/O port after RESET. The BZPE bit must be set in order to use this port as Buzzer tone output. The BZ outputs idle state is set by BPOL bit when BZON is cleared. The BZCLK signal selected by BCLK bit is output on the pin when BZON is set. The BZ output pin is open drain.

|       | TBCR1      |                                      | Buzzer Frequency on BZ pin (BZCLK)     |                                      |                                             |  |  |  |  |  |  |  |  |
|-------|------------|--------------------------------------|----------------------------------------|--------------------------------------|---------------------------------------------|--|--|--|--|--|--|--|--|
| .BCLK | .TBCL<br>K | (Fosc = 2 MHz<br>Fxosc = 32 768 KHz) | (Fosc = 3.6 MHz<br>Exosc = 32 768 KHz) | (Fosc = 4 MHz<br>Exosc = 32 768 KHz) | (Fosc = 4.194304 MHz<br>Exosc = 32 768 KHz) |  |  |  |  |  |  |  |  |
| 0     | 0          | approx. 977 Hz                       | approx. 1758 Hz                        | approx. 1953 Hz                      | 2048 Hz                                     |  |  |  |  |  |  |  |  |
| 0     | 1          | 2048 Hz                              | 2048 Hz                                | 2048 Hz                              | 2048 Hz                                     |  |  |  |  |  |  |  |  |
| 1     | 0          | approx. 1953 Hz                      | approx. 3516 Hz                        | approx. 3906 Hz                      | 4096 Hz                                     |  |  |  |  |  |  |  |  |
| 1     | 1          | 4096 Hz                              | 4096 Hz                                | 4096 Hz                              | 4096 Hz                                     |  |  |  |  |  |  |  |  |





Figure 9-4: Buzzer Tone Output Control

Chapter 9: Time Base Page 80



Advance Information 20040224101845

For More Information On This Product, Go to: www.freescale.com



#### 9.2 TIME BASE CONTROL REGISTER 1 (TBCR1)

| ADDR                                     | REGISTER                | RW    | 7     | 6 | 5    | 4     | 3      | 2     | 1     | 0      |
|------------------------------------------|-------------------------|-------|-------|---|------|-------|--------|-------|-------|--------|
| \$0010                                   | TIME BASE CONTROL REG 1 |       | TROLK | 0 |      | PMCA  | PMC2   | PMC2  | PMC1  | PMCO   |
| \$0010                                   | TBCR1                   | W     | IDOLI | — | LOLK | KINC4 | RIVIC3 | KING2 | RIMC1 | RIVICO |
|                                          | RE                      | ESET: | 0     | 0 | 0    | 0     | 0      | 0     | 0     | 0      |
| Figure 0 F. Time Deep Control Devictor 4 |                         |       |       |   |      |       |        |       |       |        |

### Figure 9-5: Time Base Control Register 1

#### TBCLK Clock Source

This bit selects the Time Base clock source. This bit is cleared on reset.

- 1 = OSC is selected for Time Base clock source
- 0 = XOSC is selected for the Time Base clock source

#### BIT6 Reserved

This bit is not used and always read as 0.

#### LCLK LCD Clock

The LCLK bit selects clock for the LCD driver. This bit is cleared on reset.

When TBCLK=0:

- 1 = XOSC Divide by 128 is selected for the LCD clock
- 0 = XOSC Divide by 64 is selected for the LCD clock

When TBCLK=1:

- 1 = OSC Divide by 16384 is selected for the LCD clock
- 0 = OSC Divide by 8192 is selected for the LCD clock

#### RMC4 **Remote Control Generator Divider**

This bit selects the remote control carrier duty cycle. This bit is cleared on reset.

- 1 = 33-67% duty is selected if RMC3=0. 0 = 50-50% duty is selected.

#### **RMC3:0 Remote Control Generator Divider**

These bits select the remote control carrier frequency. See **Table 9-4**. These bits are cleared on reset.

Please Comment

DRAFT COPY FOR REVIEW

Advance Information 20040224101845



## 9.3 TIME BASE CONTROL REGISTER 2 (TBCR2)

| $\begin{array}{c c} & \text{TIME BASE CONTROL REG 2} \\ \hline \$0011 \\ \hline TBCR2 \end{array} \xrightarrow[]{\text{TIME BASE CONTROL REG 2}} & R & TBIF \\ \hline W & \end{array} \xrightarrow[]{\text{TBIE TBIE TBIE TBRD}} \begin{array}{c} & 0 & 0 \\ \hline TBRD \\ \hline RTBIF \\ \hline \end{array} \xrightarrow[]{\text{COPE TBRD }} \begin{array}{c} 0 \\ \hline COPE \\ \hline COPC \\ \hline COPC$ | ADDR  | REGISTER                | RW | 7    | 6    | 5    | 4    | 3     | 2 | 1    | 0    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------|----|------|------|------|------|-------|---|------|------|
| W     Bit     Bit     Bit     Bit     COPC       W     -     -     -     COPC     COPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ¢0011 | TIME BASE CONTROL REG 2 | R  | TBIF | TRIE | TDD1 | TRPO | 0     | 0 | COPE | 0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | φυστι | TBCR2                   | W  | —    | TDIL | IDNI | TBRU | RTBIF |   | COFL | COPC |
| RESET: 0 0 1 1 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | RE                      | 0  | 0    | 1    | 1    | 0    | 0     | 0 | 0    |      |

Figure 9-6: Time Base Control Register 2

### TBIF Time Base Interrupt Flag

The TBIF bit is set every time-out interval of the Time Base Interrupt. This bit is read only bit and is cleared by writing a 1 to the TBIF bit. Reset clears TBIF bit. Time Base interrupt period between reset and first TBIF depends on the time elapsed during reset, since time base divider is not initialized on reset.

### TBIE Time Base Interrupt Enable

The TBIE bit enables the Time Base Interrupt capability. If TBIF = 1 and TBIE = 1, the Time Base Interrupt is generated.

- 1 = TB Interrupt requested when TBIF = 1
- 0 = TB interrupt is disabled

### TBR1:0 Time Base Interrupt Rate Select

The TBR1 and TBR0 bits select one of four rates for the Time Base Interrupt period. The TBI rate is also related to the COP time-out reset period. See **Table 9-1** and **Table 9-3**. These bits are set to 1 on reset.

### RTBIF Reset TB Interrupt Flag

The RTBIF bit is a write only bit and always read as 0. Writing 1 to this bit clears the TBIF bit and writing 0 to this bit has no effect.

- 1 = reset TBIF
- 0 = no effect

### COPE COP Enable

Semiconductor,

đ

Ca

G

When the COPE bit is 1, COP reset function is enabled. This bit is cleared on reset (including COP time-out reset) and write to this bit is allowed only once after reset.

- 1 = COP is enabled
- 0 = COP is disabled

### COPC COP Clear

Writing 1 to COPC bit clears the 2 bit divider to prevent COP time out. (The COP time-out period depends on the TBI rate.) This bit is write only bit and returns 0 when read.

- 1 = Clear COP time-out divider
- 0 = no effect





## 9.4 TIME BASE CONTROL REGISTER 3 (TBCR3)

| ADDR   | REGISTER                | RW | 7 | 6     | 5    | 4    | 3    | 2    | 1    | 0    |
|--------|-------------------------|----|---|-------|------|------|------|------|------|------|
| \$001F | TIME BASE CONTROL REG 3 | R  | 0 |       |      | DMDE | BCIK | BZON |      | B7DE |
| φυση   | TBCR3                   | W  |   | KINON | RFUL |      | DOLK | BZON | BPOL | DZFL |
|        | RE                      | 0  | 0 | 0     | 0    | 0    | 0    | 0    | 0    |      |
|        |                         |    |   |       |      |      |      |      |      |      |

Figure 9-7: Time Base Control Register 3

### BIT7 Reserved

This bit is not used and always reads as 0.

### RMON ReMote control generator signal ON

When the port is used as Remote control output (RMPE=1) this bit turns on or off the remote control signal. The idle state is output when cleared. This bit is cleared on reset.

- 1 = Carrier is on
- 0 = Carrier is off; idle state defined by RPOL is output

### RPOL Remote control idle POLarity

This bit controls the idle state of the remote control generator output on the port. This bit is cleared on reset.

- 1 = Remote idle state outputs logic "1".
- 0 = Remote idle state outputs logic "0".

### RMPE ReMote control generator Port output Enable

This bit enables the remote control generator output on the port. The actual remote signal on/off is controlled by RMON bit. This bit is cleared on reset.

- 1 = Port pin functions as remote control output
- 0 = Port pin functions as general I/O port

### BCLK Buzzer CLocK select

This bit selects the Buzzer tone output frequency. This bit is cleared on reset.

- 1 =  $OSC/2^{11}$  or  $XOSC/2^4$  is selected for Buzzer clock
- $0 = OSC/2^{10}$  or XOSC/2<sup>3</sup> is selected for Buzzer clock

### BZON Buzzer signal ON

When the port is used as Buzzer output (BZPE=1) this bit turns on or off the buzzer signal. This bit is cleared on reset.

This bit turns on the Buzzer output. This bit is cleared on reset.

- 1 = Buzzer is on
- 0 = Buzzer is off; idle state defined by BPOL is output

### BPOL Buzzer output POLarity

This bit selects the buzzer output pin's polarity during buzzer idle (standby) period (BZON=0). When BZE=0, this bit has no effect. This bit is cleared on reset.

- 1 = Buzzer idle state outputs logic "1".
- 0 = Buzzer idle state outputs logic "0".

Advance Information 20040224101845



Chapter 9: Time Base Page 83

For More Information On This Product, Go to: www.freescale.com

Please Comment

I

### BZPE Buzzer output Port Enable

This bit controls whether the port functions as buzzer output or a general I/O port. The actual buzzer signal on/off is controlled by BZON bit. See **Table 7-1**. This bit is cleared on reset.

- 1 = Port pin functions as buzzer output
- 0 = Port pin functions as general I/O port

Chapter 9: Time Base Page 84



For More Information On This Product, Go to: www.freescale.com

Advance Information 20040224101845



DRAFT COPY FOR REVIEW — Please Comment

THIS PAGE INTENTIONALLY LEFT BLANK

Advance Information 20040224101845



Chapter 9: Time Base Page 85



Chapter 9: Time Base Page 86



For More Information On This Product, Go to: www.freescale.com Advance Information 20040224101845



# **SECTION 10SPI**

## **10.1 INTRODUCTION**

SPI is an interface built into the MC68HC705L26 to transmit or receive synchronous serial data. In this format, the serial clock is not included in the data stream and must be provided as a separate signal.

When the SPI is enabled reading Port C will return the actual pin level.

The MSTR bit selects the source of the serial clock from internal or the external clock. The internal clock speed is selectable as 1/2 or 1/16 of the system clock.

### 10.1.1 FEATURES

- Full Duplex 3 wire synchronous transfers
- Master or Slave operation
- Bit rate selection
- End of transmission interrupt
- Data collision flag
- Master mode maximum serial clock speed at 1/2 the CPU system clock
- Slave mode maximum serial clock speed up until the CPU system clock

Please Comment

I

DRAFT COPY FOR REVIEW

Advance Information 20040224101845



Chapter 10: SPI Page 87

## 10.2 BLOCK DIAGRAM

The following figure describes the block diagram of SPI module.



Figure 10-1: SPI Block Diagram

### 10.2.1 CONTROL

Semiconductor, Inc

٩

eescal

ы.

The control logic is an interface to the HC05 internal bus. It generates the clock start signal, when writing to SPDR is detected in the Master mode. It also generates flag clear signal and interrupt request to the CPU.

### 10.2.2 SPDR

The Serial Peripheral Data Register (SPDR) is an 8-bit shift register. This register can be read or written by the CPU. It can also change parallel data to serial or vice versa.

### 10.2.3 SPCR

The Serial Peripheral Control Register (SPCR) contains bit SPIE, SPE, DORD, SPR, and MSTR. The description on each bit can be found in the section on register description.

### 10.2.4 CLOCK GENERATOR

The clock generator includes a 3 bit serial clock counter. The counter starts after detecting the serial clock, and halts after setting SPIF when the counter overflows.

In Master mode, this block generates Serial Clock (SCK) when CPU writes to the data register (SPDR) and the clock rate is selected by SPR bit in the control register (SPCR).

In Slave Mode, external clock from the SCK pin is used instead of master mode clock and SPR has no effect.

Chapter 10: SPI Page 88



Advance Information 20040224101845



### 10.2.5 OTHERS

The SPI does not use the data register of Port C. Therefore, regardless of whether the SPI is used, the data register can be read from Port C.

### **10.3 SIGNAL DESCRIPTION**

The basic signals, SDO, SDI, and SCK of SPI are described in the following paragraphs. SCK, SDO, and SDI pins are shared with Port C pins PC0, PC1, and PC2, respectively.

### 10.3.1 SERIAL DATA OUT (SDO)

SDO is an output pin. This pin is shared with Port C pin PC1. When the SPI is enabled by SPE bit in the SPCR, this pin becomes an output pin. When the SPE is cleared, the pin becomes PC1 and thus becomes an input pin. The state of PC1/SDO may be read thru PC1 data register anytime.

When the SPI is enabled and PC1/SDO is an output, data output becomes valid at the falling edge of the serial clock.

### 10.3.2 SERIAL DATA IN (SDI)

The SDI pin is multiplexed with an general purpose I/O pin. This becomes an input only pin and accepts serial input data when the SPI is enabled.

### 10.3.3 SERIAL CLOCK (SCK)

The SCK pin is used for synchronization of both input and output data stream through SDI and SDO pins. The SCK pin should be at VDD level before SPI is enabled.

The Master and Slave devices are capable of exchanging a data byte during a sequence of eight clock pulses. Since SCK is generated by the Master, Slave data transfer is accomplished by synchronization of SCK.

When the MSTR bit in the SPCR is set, SCK becomes an output and the serial clock is supplied to the internal and external systems. When the serial clock is idling, high level is being output. When MSTR bit is "1", the CPU writes data to SPCR and outputs 8 clock pulses. After the end of the eighth clock, high level is being output while idling. The clock speed in Master mode is 1/2 the system clock.

When the MSTR bit in the SPCR is cleared, SCK becomes an input and the external system supplies the serial clock while the internal system operates by synchronizing to this clock. After eight serial clocks are input to the SCK pin, the SPIF bit in the SPSR is set and will not receive the next serial clock input until the SPIF bit is cleared. The clock speed in Slave mode is dependent upon the speed of the external system and has a maximum speed up till the internal system clock.

## **10.4 FUNCTIONAL DESCRIPTION**

A block diagram of the SPI module is shown in **Figure 10-1**. In the SPI, if the SPE bit (SPI enable) of SPCR is set, bits 0, 1, and 2 of Port C will be connected. During this time, bit 0

Advance Information 20040224101845



Chapter 10: SPI Page 89

For More Information On This Product, Go to: www.freescale.com

Please Comment



is used as the SCK (serial clock), bit 1 as the SDO (serial data out), and bit 2 will become SDI. When SPE is "0", SPI system is disabled.

In Master mode (MSTR=1), SCK becomes an output. When the CPU writes data to SPDR, start trigger will be applied from the control logic to the clock generator. The clock generator divides the system clock of the CPU (by 2 or 16) to generate the serial clock which is then output to the SCK pin. This clock is also used in the 3-bit clock counter and 8-bit shift register (SPDR). Data is output

In Slave mode (MSTR=0), SCK becomes an input, and the external serial clock is used. Therefore, the internal clock generator will not generate the serial clock. After detecting the external clock, the clock will be used by the 3-bit clock counter and the 8-bit shift register (SPDR) located in the clock generator. The SCK is used to latch incoming data.

Either in Master/Slave mode, the SPIF flag is set after the end of the transmission and if the SPIE bit in the SPCR is set, interrupt request is send to the CPU. This interrupt request is accepted when the I mask bit of Condition Code Register (CCR) is "0", and is inhibited when the bit is "1" or until the mask is released. Also, if the SPIE bit is cleared, the interrupt request will not be accepted by the CPU.

To clear the SPIF while it is still set, the SPDR must be read or written after accessing SPSR.

Regardless of the Master/Slave I/O conditions, the DCOL bit of SPSR will be set when SPDR is accessed while the shift register is operating and while SPSR is not being accessed with SPIF set. DCOL is used to indicate that the data is not being properly read or written into SPDR.

To clear DCOL flag while it is still set, the SPDR must be read or written after accessing SPSR.

## 10.5 REGISTER DESCRIPTION

There are three registers in the SPI. They are Control register (SPCR), Status register (SPSR), and Data register (SPDR). SPCR and SPDR can be read or written by the CPU but SPSR can only be read.

Semiconductor, Inc

eescale



Advance Information 20040224101845



#### 10.5.1 SERIAL PERIPHERAL CONTROL REGISTER (SPCR)

|        |                          |    | 40.0 |     |      |      |   |   |   |     |
|--------|--------------------------|----|------|-----|------|------|---|---|---|-----|
|        | RE                       | 0  | 0    | 0   | 0    | 0    | 0 | 0 | 0 |     |
| 9000A  | SPCR                     | W  |      | SIL | DOND | WOTK | — | — | _ | SIR |
| \$0004 | SERIAL PERI. CONTROL REG | R  | SPIE | SPE | DORD | MSTR | 0 | 0 | 0 | SPR |
| ADDR   | REGISTER                 | RW | 7    | 6   | 5    | 4    | 3 | 2 | 1 | 0   |

U-2: SPI Control Register

#### SPIE SPI Interrupt Enable

When SPIE (SPI Interrupt Enable) is set, it allows the occurrence of processor interrupt when SPIF in the SPSR is set. This interrupt request is accepted when the I-bit in the CCR is cleared but inhibited when I-bit is set. If the interrupt request is send repeatedly while the I-bit and only when SPIE and SPIF are set, the interrupt will occur immediately after I-bit is cleared. Reset clears this bit.

- = SPI interrupt is enabled
- 0 = SPI interrupt is disabled

#### SPE SPI Enable

When SPE (SPI Enable) is set, it enables the SPI system and connects bit 0 and bit 1 of Port C to SCK and SDIO. Clearing SPE initializes SPI system and disconnects SPI from Port C. Reset clears this bit.

- 1 = SPI is enabled
- 0 = SPI is disabled

#### DORD **Data transmission ORDer**

When DORD is set, the data in the 8-bit shift register (SPDR) is shifted in/out from LSB first. When clear, the data is shifted MSB first. Reset clears this bit.

- 1 = LSB first
- 0 = MSB first

#### MSTR MaSTeR mode select

This bit MSTR (Master mode select) determines whether to output the serial clock internally or input the clock externally. When set, SPI is in Master mode and SCK is configured as an output pin. SCK outputs the serial clock when CPU writes data to SPDR. When cleared, SPI is in Slave mode and SCK is configured as an input pin. SCK receives the serial clock externally. Reset clears this bit.

- 1 = Master mode
- 0 =Slave mode

#### **BIT3:1** Reserved

These bits are reserved and always read as 0.

#### SPR SPI clock rate select

This is the clock rate selection bit. When set, the Master mode SCK rate is the system clock divided by 16. When clear, the rate system clock divided by 2. Reset clears this bit.

- 1 = system clock divided by 16
- 0 = system clock divided by 2

Advance Information 20040224101845



Chapter 10: SPI Page 91

For More Information On This Product, Go to: www.freescale.com

Please Comment

### 10.5.2 SERIAL PERIPHERAL STATUS REGISTER (SPSR)

| ADDR   | REGISTER                | RW | 7    | 6    | 5 | 4 | 3 | 2 | 1 | 0 |  |
|--------|-------------------------|----|------|------|---|---|---|---|---|---|--|
| \$000B | SERIAL PERI. STATUS REG | R  | SPIF | DCOL | 0 | 0 | 0 | 0 | 0 | 0 |  |
| \$000B | SPSR                    | W  | —    | —    | — | _ | _ | _ | — | — |  |
|        | RE                      | 0  | 0    | 0    | 0 | 0 | 0 | 0 | 0 |   |  |
|        |                         |    |      |      |   |   |   |   |   |   |  |

### SPIF Serial transfer complete flag

SPIF (Serial Peripheral Interface Flag) notifies the user that the data transfer between MC68HC705L26 and the external device have completed. Upon completion of the data transfer, the rising edge of the eighth serial clock pulse sets SPIF. If SPIE in the SPCR is set, the SPI interrupt (SPII) will be generated.

While SPIF is set, all access to the SPDR is inhibited until SPSR is read by CPU. Also, even if the ninth serial clock is detected, the shift register (SPDR) will not operate.

Clearing the SPIF is accomplished by a software sequence of accessing the SPSR while SPIF is set, and followed by the SPDR access. (SPIF and DCOL can be cleared simultaneously.)

Reset clears this bit.

- 1 = serial data transfer complete
- 0 = serial data transfer in progress

### DCOL Data COLlision

Semiconductor, Inc

đ

eescal

ы.,

DCOL (Data Collision) notifies the user that an invalid access to the SPDR has been made. This bit is set when an attempt was made to read or write to SPDR while a data transfer was taking place with an external device. When DCOL is set, access to the SPDR becomes invalid. The transfer continues uninterrupted without any affect from the SPDR access. This flag does not generate SPI interrupt. It is read-only.

DCOL is cleared by reading the SPSR with SPIF set followed by a read or write to the SPDR. If the last part of the clearing sequence is done after another transmission has started, DCOL will be set again. (DCOL and SPIF can be cleared simultaneously.)

Reset clears this bit.

- 1 = data collision occurred
- 0 = data collision did not occur

### BITS 5:0 Reserved

These bits are unused and always read as 0.



Advance Information 20040224101845



#### SPI DATA REGISTER (SPDR) 10.5.3

| Figure 10-4: SPI Data Register |                       |       |                |      |      |      |      |      |      |      |
|--------------------------------|-----------------------|-------|----------------|------|------|------|------|------|------|------|
|                                |                       | RESET | : U            | U    | U    | U    | U    | U    | U    | U    |
| \$000C                         | SPDR                  | W     | - 3F <i>D1</i> | SFD0 | 3603 | 3604 | 3603 | 3FD2 | SFDT | 3FD0 |
|                                | SERIAL PERI. DATA REG | R     | SPD7           | SPD6 | SPD5 | SPD4 | 5003 | SDD2 |      | SPDO |
| ADDR                           | REGISTER              | RW    | 7              | 6    | 5    | 4    | 3    | 2    | 1    | 0    |

The SPDR is used to transmit and receive data on the serial bus.

In Master mode, a write to SPDR initiates the transmission/reception of data byte. At the completion of transfer, SPIF status bit set.

In Slave mode, a write to SPDR will not initiate the serial clock. The serial clock is input to the SCK pin by the external device.

In either Master or Slave mode, a write to the SPDR is inhibited while this register is shifting (this condition cause DCOL to set) or when SPIF is set without reading SPSR. In this case, even if an access has occurred, the access becomes invalid. Refer to SPIF and DCOL description for more information.

When SPI is not being used, SPDR can be used as a data storage. This byte is not affected by reset.

eescale

Please Comment

DRAFT COPY FOR REVIEW

Advance Information 20040224101845



Chapter 10: SPI Page 93

10.6 TIMING DIAGRAM



## 10.7 STOP/WAIT CONDITION

### 10.7.1 STOP

Semiconductor, Inc

eescale

ы.

The SPI configured as Master Mode is not operational during STOP mode since the system clock and SPI clock generator is halted. If STOP mode occurs while SPI is in progress (transmitting/ receiving) and in Master mode, the access will halt and remains halted until STOP is released.

Due to the static architecture, the previous conditions of SCK and SDIO are preserved during STOP mode.

In Slave mode, all access are possible during STOP mode. However, at the end of transmission, interrupt occurs but SPIF will not be set immediately until after the system clock starts operating. (This operation is transparent to the programmer.)

### 10.7.2 WAIT

In WAIT mode, the CPU halts but will not affect the SPI operation. Therefore, SPI interrupt in Master and Slave modes can be executed to wake-up the CPU.



Advance Information 20040224101845


# **SECTION 11LCD DRIVER**

### 11.1 INTRODUCTION

The MC68HC705L26 has 25 or 24 Front Plane (FP) and 3 or 4 Back Plane drivers. The number of drivers for the FP and BP can be selected by software option. The maximum number of segments configurable are either  $24 \times 4 = 96$  or  $25 \times 3 = 75$  segments.

The MC68HC705L26 uses 1/3 biasing method. The bias voltages are supplied from an external source using VLCD pin. Voltages VLCD1, VLCD2, and VLCD3 are generated internally with resistor divider.

There are 11 bytes of data latch for selection (turned on) or non-selection (turned off) of segments. Each byte consists of 2 FP drivers and either 3 or 4 BP drivers depending on the duty configured. The data latch is available in memory locations \$21-\$2D and can be accessed by the CPU using the conventional memory access method (LOAD, STORE, BIT operations, etc.).

The clock which forms the LCD FP and BP waveforms is supplied by the Time Base module.

# 11.2 BLOCK DIAGRAM

The following figure describes the block diagram of the LCD module.



Figure 11-1: LCD Block Diagram

Advance Information 20040224101845



Chapter 11: LCD Driver Page 95

For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW

# 11.3 FUNCTIONAL DESCRIPTION

## 11.3.1 LCD CONTROL REGISTERS

| ADDR   | REGISTER        | RW    | 7    | 6     | 5     | 4    | 3 | 2 | 1  | 0 |
|--------|-----------------|-------|------|-------|-------|------|---|---|----|---|
| \$0020 | LCD CONTROL REG | R     |      | DREU  | עדווס | DREI | 0 | 0 | FC |   |
| φ0020  | LCDCR           | W     | LCDL | FDLIT | DOTT  | FDEL | — | — |    |   |
|        | RI              | ESET: | 0    | 0     | 0     | 0    | 0 | 0 | 0  | 0 |

Figure 11-2: LCD Control Register

### LCDE LCD Enable

Setting this bit enables the LCD waveforms to appear on the pins. Reset clears this bit.

- 1 = LCD drivers are operational. Each FP and BP driver outputs the driver waveform specified by the data latch.
- 0 = LCD drivers are halted. All FP, BP drivers have the same electric potential as V<sub>DD</sub>. R<sub>LCD</sub>'s are disconnected to reduce DC current.

### PBEH Port B Enable High nibble

This bit enables the Port B I/O bits 4:7 that are multiplexed with Front Plane Drivers 20:17. Reset clears this bit.

- 1 = PB4:7/FP20:17 pins function as Port B bits 4:7.
- 0 = PB4:7/FP20:17 pins function as LCD Front Plane Drivers 20:17.

#### DUTY DUTY cycle select

Semiconductor, I

đ

SCa

00

This bit selects the duty cycle of the LCD waveforms between 1/3 duty and 1/4 duty and selects either BP3 or FP0 for the muxed pin. Reset clears this bit.

- 1 = 1/3 duty cycle is selected and BP3/FP0 pin functions as FP0.
- 0 = 1/4 duty cycle is selected and BP3/FP0 pin functions as BP3.

### PBEL Port B Enable Low nibble

This bit enables the Port B I/O bits 0:3 that are multiplexed with Front Plane Drivers 24:21. Reset clears this bit.

- 1 = PB0:3/FP24:21 pins function as Port B bits 0:3.
- 0 = PB0:3/FP24:21 pins function as LCD Front Plane Drivers 24:21.

### BIT3:2 Reserved

These bits are unused and always read as 0.

### FC,LC Fast Charge, Low Current

These bits are used to select various values of resistors in the voltage generator resistor chain. Reset clears these bits.

| LC | FC | Action                                                                                                             |  |  |  |  |
|----|----|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0  | Х  | Default value of approx. $30K\Omega$ per resistor                                                                  |  |  |  |  |
| 1  | 0  | Resistor value of approx. 170K $\Omega$ per resistor                                                               |  |  |  |  |
| 1  | 1  | Fast-Charge: For a period of LCDCLK/128 in each frame the resistor values are reduced to default (value for LC=0). |  |  |  |  |

### Table 11-1: RLCD Configuration



Advance Information 20040224101845



### 11.3.2 FAST CHAGE OPTION

The R<sub>LCD</sub> as shown in **Figure 11-9** is approximately  $30K\Omega$  at VDD=3V by default. This value may be inappropriate for some applications. For those applications that require less DC current drain through the R<sub>LCD</sub> chain, it may be increased to approximately  $168K\Omega$  at VDD=3V by setting the LC bit in LCDCR. Some application may require the default resistance ( $30K\Omega$ ) to drive the capacitive load of the LCD panel, yet do not wish to have the DC current drain of it while the LCD segments are not switching. For a compromise a Fast-Charge option is available. The R<sub>LCD</sub> values are reduced to the default resistance for

a fraction of the LCD segment cycle before the LCD segments change, and then are set to low current mode for the remainder of the LCD cycle frame. The DC current increase for is very negligible and will be within few percent increase of the low current mode.



Please Comment

DRAFT COPY FOR REVIEW ---

Advance Information 20040224101845



Chapter 11: LCD Driver Page 97



# 11.3.3 LCD DATA REGISTER

The LCD data latches LDAT1:LDAT11 maintain the ON/OFF data for the FP and BP segments of the LCD.

Four bits of data latch are assigned to each front plane driver, from address space \$21:\$2D as in the following figure.

When "1" is written to the bits in the data latch the applicable FP-BP segment turns ON. When "0" is written to the bits, the segment is turned OFF.

The values in the data latches are not initialized and are unknown on reset.

If 1/3 duty is selected, each BP3 bit in the data latches are ignored.

|   | ADDR   | REGISTER NAME               | READ   |       |       | Bi    | t Number | Significand | ce    |       |       |
|---|--------|-----------------------------|--------|-------|-------|-------|----------|-------------|-------|-------|-------|
|   | (hex)  | ABBREV.                     | WRITE  | 7     | 6     | 5     | 4        | 3           | 2     | 1     | 0     |
|   | \$0020 | LCD CONTROL REG<br>LCDCR    | R<br>W | LCDE  | PBEH  | DUTY  | PBEL     | 0           | 0     | FC    | LC    |
|   | \$0021 | LCD DATA REGISTER<br>LDAT1  | R<br>W | F1B3  | F1B2  | F1B1  | F1B0     | F0B3        | F0B2  | F0B1  | F0B0  |
|   | \$0022 | LCD DATA REGISTER<br>LDAT2  | R<br>W | F3B3  | F3B2  | F3B1  | F3B0     | F2B3        | F2B2  | F2B1  | F2B0  |
|   | \$0023 | LCD DATA REGISTER<br>LDAT3  | R<br>W | F5B3  | F5B2  | F5B1  | F5B0     | F4B3        | F4B2  | F4B1  | F4B0  |
|   | \$0024 | LCD DATA REGISTER<br>LDAT4  | R<br>W | F7B3  | F7B2  | F7B1  | F7B0     | F6B3        | F6B2  | F6B1  | F6B0  |
| I | \$0025 | LCD DATA REGISTER<br>LDAT5  | R<br>W | F9B3  | F9B2  | F9B1  | F9B0     | F8B3        | F8B2  | F8B1  | F8B0  |
| I | \$0026 | LCD DATA REGISTER<br>LDAT6  | R<br>W | F11B3 | F11B2 | F11B1 | F11B0    | F10B3       | F10B2 | F10B1 | F10B0 |
| I | \$0027 | LCD DATA REGISTER<br>LDAT7  | R<br>W | F13B3 | F13B2 | F13B1 | F13B0    | F12B3       | F12B2 | F12B1 | F12B0 |
| I | \$0028 | LCD DATA REGISTER<br>LDAT8  | R<br>W | F15B3 | F15B2 | F15B1 | F15B0    | F14B3       | F14B2 | F14B1 | F14B0 |
| 1 | \$0029 | LCD DATA REGISTER<br>LDAT9  | R<br>W | F17B3 | F17B2 | F17B1 | F17B0    | F16B3       | F16B2 | F16B1 | F16B0 |
| I | \$002A | LCD DATA REGISTER<br>LDAT10 | R<br>W | F19B3 | F19B2 | F19B1 | F19B0    | F18B3       | F18B2 | F18B1 | F18B0 |
| I | \$002B | LCD DATA REGISTER<br>LDAT11 | R<br>W | F21B3 | F21B2 | F21B1 | F21B0    | F20B3       | F20B2 | F20B1 | F20B0 |
| I | \$002C | LCD DATA REGISTER<br>LDAT12 | R<br>W | F23B3 | F23B2 | F23B1 | F23B0    | F22B3       | F22B2 | F22B1 | F22B0 |
| 1 | \$002D | LCD DATA REGISTER<br>LDAT13 | R<br>W | 0     | 0     | 0     | 0        | F24B3       | F24B2 | F24B1 | F24B0 |

Figure 11-3: LCD Data Registers (LDAT1:LDAT13)

Semiconductor, Inc.

٩

eescal



Advance Information 20040224101845



Please Comment

DRAFT COPY FOR REVIEW

## 11.4 TERMINAL DESCRIPTION

There are total of 27 pins dedicated to the LCD driver.

#### 11.4.1 VLCD BIAS INPUTS

VLCD1:VLCD3 are internal bias voltages for the LCD driver waveforms. VLCD3 potential is available externally as VLCD pin, and a variable resistor for contrast may be placed between VLCD and VSS. See **Figure 11-9**.

The LCD uses the 3 bias voltages typically as follows:

VLCD1 = VDD - 1/3VLCDA (VLCDA is the ON voltage for the LCD modules) VLCD2 = VDD - 2/3VLCDA (Usually, VLCDA <= VDD is used) VLCD3 = VDD - VLCDA = VLCD (VLCD is the external pin)

The 3 voltages shown above are arranged so that the external voltages will have VLCD1 > VLCD2 > VLCD3 relationship in a voltage divider configuration.

### 11.4.2 BACK PLANE DRIVERS (BP0:BP3)

DUTY=1/3

Pins BP0:BP3 are the output terminals for the back plane drivers.

These are connected to the back plane of the LCD panel. Depending on the duty, the following waveforms appear on the back plane pins.



\* At 1/3 duty, 1FRAME has 3 times the cycle of LCD waveform base clock.

Figure 11-4: 1/3 Duty LCD Backplane Driver Waveforms

Advance Information 20040224101845



Chapter 11: LCD Driver Page 99

**Freescale Semiconductor, Inc** 

#### :68HC705L26 Specificaliteescale Semiconductor, Inc.

DUTY=1/4







Advance Information 20040224101845



#### 11.4.3 FRONT PLANE DRIVERS

Pins FP0:FP24 are the output terminals for the front plane drivers. These are connected to the front plane of the LCD panel. Depending on the content of the data latch, the following waveforms appear on the Front Plane drivers.

DUTY=1/3 DATA LATCH: "1" . . . . ON (Selected) "0" . . . . OFF (Not Selected)



Advance Information 20040224101845



Chapter 11: LCD Driver Page 101

For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW ---

# 68HC705L26 Specifica Five escale Semiconductor, Inc.

DUTY=1/4 (Only a portion is illustrated)



\* The fundamental elements which select or does not select the front plane waveforms are as follow.



Figure 11-7: 1/4 Duty LCD Front Plane Driver Waveforms

Chapter 11: LCD Driver Page 102



Advance Information 20040224101845



# 11.5 LCD PANEL CONNECTION& LCD DRIVER OPERATION

This section will discuss the connection between the MC68HC705L26 and the 7 segments of the LCD panel.

• A 1/3 duty example is illustrated below:



\* The segment assignments for each bit in the data latch are as follow.



\* To display a "4" using the assignments above will have the following data written to LDAT1 and LDAT2.



Advance Information 20040224101845



Chapter 11: LCD Driver Page 103

**Freescale Semiconductor, Inc** 

Please Comment

DRAFT COPY FOR REVIEW —

# :68HC705L26 Specificativesscale Semiconductor, Inc.

• Pins BP0, BP1, BP2, FP0, FP1, FP2 output the following waveforms.



• The electric potential waveform for the F segment (between FP0 and BP1) will be as follows.



• As shown above, the LCD ON voltage (VLCD) of the AC waveform is attained, so the F segment will turn ON.

Chapter 11: LCD Driver Page 104



Advance Information 20040224101845

For More Information On This Product, Go to: www.freescale.com DRAFT COPY FOR REVIEW — Please Comment

NP



• The electric potential waveform for the E segment (between FP0 and BP2) will be as follows. This segment is not turned ON.



• The methods described will determine whether to turn ON or turn OFF the LCD segment. The waveform elements which select or not select the BP and FP waveforms are as follow.

| FP Data Latch ->               | 1                                                                      | 0                                                                     |
|--------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                | Selected<br>Vdd                                                        | Not Selected                                                          |
| FP                             | VLCD2                                                                  | VLCD2<br>VLCD3                                                        |
| BP                             |                                                                        |                                                                       |
| Selected                       | <u>ON</u> +VLCD                                                        | OFF+VLCD                                                              |
| Vdd<br>VLCD1<br>VLCD2<br>VLCD3 | +2VLCD/3<br>0<br>0<br>VLCD/3<br>2VLCD/3<br>VLCD                        | +2VLCD/3<br>+VLCD/3<br>0<br>0<br>VLCD/3<br>VLCD/3<br>VLCD             |
| Not Selected                   | OFF +VLCD<br>+2VLCD/3<br>+VLCD/3<br>0<br>0<br>VLCD/3<br>VLCD/3<br>VLCD | ON +VLCD<br>+2VLCD/3<br>+VLCD/3<br>0<br>0<br>VLCD/3<br>VLCD/3<br>VLCD |

DRAFT COPY FOR REVIEW — Please Comment

Semiconductor, Inc

eescale

Advance Information 20040224101845



Chapter 11: LCD Driver Page 105

# 11.6 LCD WAVEFORM BASE CLOCK & LCD CYCLE FRAME

The clock which produce the LCD FP and BP output waveforms, the LCD Waveform Back clock, is generated from the Time Base module.

The frequency for the LCD waveform base clock can be changed by the time base control register.

# 11.6.1 TIME BASE CONTROL REGISTER 1 (TBCR1)

| ADDR   | REGISTER                 | RW | 7      | 6 | 5    | 4    | 3    | 2    | 1    | 0    |
|--------|--------------------------|----|--------|---|------|------|------|------|------|------|
| \$0010 | TIME BASE CONTROL REG. 1 | R  |        | 0 | LCLK | RMC4 | RMC3 | RMC2 | RMC1 | RMC0 |
| \$0010 | TBCR1                    | W  | TOOLIC | — |      |      |      |      |      |      |
|        | RE                       | 0  | 0      | 0 | 0    | 0    | 0    | 0    | 0    |      |

### Figure 11-8: Time Base Control Register 1

## LCLK LCD Clock

The LCLK bit selects clock for the LCD driver. This bit is cleared on reset.

When TBCLK=0:

- 1 = XOSC Divide by 128 is selected for the LCD clock
- 0 = XOSC Divide by 64 is selected for the LCD clock

When TBCLK=1:

Semiconductor.

٩

Freescal

- 1 = OSC Divide by 16384 is selected for the LCD clock
- 0 = OSC Divide by 8192 is selected for the LCD clock

## Table 11-2: LCD Waveform Base Clock Frequency

| TBCR1       |       | Divide Ratio | LCD Waveform Base Clock Frequency (Hz)<br>(F <sub>XOSC</sub> = 32.768 KHz) |               |                  |  |  |  |  |
|-------------|-------|--------------|----------------------------------------------------------------------------|---------------|------------------|--|--|--|--|
| .TB-<br>CLK | .LCLK | Divide Ratio | OSC = 2.0 MHz                                                              | OSC = 4.0 MHz | OSC = 4.1943 MHz |  |  |  |  |
| 0           | 0     | XOSC / 64    | 512                                                                        | 512           | 512              |  |  |  |  |
| 0           | 1     | XOSC / 128   | 256                                                                        | 256           | 256              |  |  |  |  |
| 1           | 0     | OSC / 8192   | 244                                                                        | 488           | 512              |  |  |  |  |
| 1           | 1     | OSC / 16384  | 122                                                                        | 244           | 256              |  |  |  |  |

# 11.6.2 LCD CYCLE FRAME

The LCD Cycle Frame with respect to LCD Waveform Base Clock and Duty is

$$(\text{LCD Cycle Frame}) = \frac{1}{(\text{LCD Waveform Base Clock}) \cdot (\text{Duty})}$$

For Example, given 1/3 duty and 256 Hz waveform base clock,

 $(\text{LCD Cycle Frame}) = \frac{1}{256 \cdot \frac{1}{3}}$ = 11.72 mS

Chapter 11: LCD Driver Page 106



For More Information On This Product, Go to: www.freescale.com

Advance Information 20040224101845



# 11.7 SIMPLIFIED LCD SCHEMATIC

The following figure is a simplified schematic of the LCD driver.

DRAFT COPY FOR REVIEW — Please Comment

Advance Information 20040224101845



Chapter 11: LCD Driver Page 107

Advance Information 20040224101845





DRAFT COPY FOR REVIEW — Please Comment

MC68HC705L26 Specification 0.3



DRAFT COPY FOR REVIEW — Please Comment

THIS PAGE INTENTIONALLY LEFT BLANK

Advance Information 20040224101845



Chapter 11: LCD Driver Page 109



Chapter 11: LCD Driver Page 110



For More Information On This Product, Go to: www.freescale.com Advance Information 20040224101845



# **SECTION 12PULSE WIDTH COUNTER**

The Pulse Width Counter (PWC) measures length of input pulses. Input pulse is sampled every  $T_{NOI}$  to reduce noise. Lengths of either full period or high- and low-level of input pulses may be measured. The PWC can measure pulse length of  $T_{CLK}$  to 255 x  $T_{CLK}$  at  $T_{CLK}$  resolution. The lengths measured are stored in to a 6-level queue. See **1.3**.

- Noise cancel sampling rate of  $T_{NOI} = 30.5 \,\mu\text{S}$ ,  $3.81 \,\mu\text{S}$ ,  $7.63 \,\mu\text{S}$ , or  $15.3 \,\mu\text{S}$
- Counter clock rate of  $T_{SAM} = 61.0 \ \mu$ S, 7.63  $\mu$ S, 15.3  $\mu$ S, 30.5  $\mu$ S, or 122  $\mu$ S
- Measures pulse width of (with XOSC=32.768KHz; OSC=4.19 MHz), using XOSC: 61.0 μS to 15.5 mS at 61.0 μS resolution, using OSC: 7.63 μS to 1.95 mS at 7.63 μS resolution, using OSC: 15.3 μS to 3.89 mS at 15.3 μS resolution, using OSC: 30.5 μS to 7.78 mS at 30.5 μS resolution, or using OSC: 122 μS to 31.1 mS at 122 μS resolution
- 8 bit counter with 9 bit x 6 queue
- Interrupts generated at every edge, after 4 bytes in queue, or counter overflow



Figure 12-1: Queued Pulse Width Counter Block Diagram

Advance Information 20040224101845



Section 12: PWC Page 111

For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW

# 12.1 NOISE CANCEL

The PWCI pin is sampled to reduce noise. One of four sampling rate may be selected using NCK1:0 bits. The following table assumes 32.768 KHz for XOSC and 4.19 MHz for OSC.

|      | -    |              |                            |                     |
|------|------|--------------|----------------------------|---------------------|
| NCK1 | NCK0 | Clock Source | Noise Cancel<br>Clock Rate | Maximum Noise Width |
| 0    | 0    | OSC / 16     | 3.82 μS                    | 11.44 μS            |
| 0    | 1    | OSC / 32     | 7.63 μS                    | 22.89 μS            |
| 1    | 0    | OSC / 64     | 15.3 μS                    | 45.78 μS            |
| 1    | 1    | XOSC         | 30.5 μS                    | 91.55 μS            |

Table 12-1: PWC Counter Clock Rate

# 12.2 COUNTER

The 8-bit counter starts counting when an edge is detected in the sampled input signal. The edge may either be a rising edge or rising and falling edges, depending on the PWCCR.EM bit. The counter value when the next edge is detected is stored in the queue and the counter is cleared to \$00. However, if an edge was detected while PWCSR.COVF flag is set, the overflow count of \$FF is not stored in the queue.

When the 8-bit counter overflows the counter stops at \$FF, PWCSR.COVF flag is set, and an interrupt request is generated. However, if a falling edge is detected while COVF flag is set, the counter is cleared to \$00 and the counter resumes counting the width of the low pulse.

One of five counter clock rate may be selected using NCK1:0 and CCK1:0. The following table assumes 32.768 KHz for XOSC and 4.19 MHz for OSC. If NCK1:0 = 1:1 then CCK1:0 are ignored and XOSC/2 is used for the counter clock source.

The counter rate selected by CCK1:0 must not be faster than the noise cancel rate selected by NCK1:0.

| NCK1 | NCK0      | КО ССК1 ССКО |             | Clock Source | Counter Clock Rate | Maximum Pulse Width |  |  |
|------|-----------|--------------|-------------|--------------|--------------------|---------------------|--|--|
|      |           | 0            | 0           | OSC / 32     | 7.63 μS            | 1.945 mS            |  |  |
|      | 0,<br>1   | 0            | 1           | OSC / 64     | 15.3 μS            | 3.890 mS            |  |  |
| or   | 1,<br>1 0 | 1            | 0           | OSC / 128    | 30.5 μS            | 7.782 mS            |  |  |
|      |           | 1            | 1 OSC / 512 |              | 122 μS             | 31.12 mS            |  |  |
| 1    | 1 1 X X   |              | XOSC / 2    | 61.0 μS*     | 15.55 mS           |                     |  |  |

# Table 12-2: PWC Counter Clock Rate

Note:

Page 112

1. \* This rate is selected when NCK1:0 = 1:1 regardless of CCK.

Semiconductor, I

đ

SCa



For More Information On This Product, Go to: www.freescale.com

Advance Information 20040224101845



# 12.3 PWC QUEUE

The PWC Queue is a 6 byte FIFO that stores the width measured using the 8-bit counter. Data is stored in the queue after the width of the input pulse (either full period or each pulse) is measured. If the queue is empty (PWCSR.QEMP = 1), data is stored in the first byte. If the queue already contains data, data is stored in the next open byte. When all 6 bytes are stored in the queue, PWCSR.QFUL bit is turned on. Subsequent data are stored in the last byte, overwriting latest byte stored.

The counter data stored in the queue may be read at location 000F. The 9th bit (PWCSR.PL) is updated only after the counter data is read. When a byte is read, the oldest byte in the queue is discarded and a new byte may be stored from the counter. When all bytes are read, the queue becomes empty (PWCSR.QEMP = 1). If the queue is read when empty, undefined data is returned.

Data in the queue may be initialized by disabling and enabling PWC by first clearing and then setting PWCCR.PWCE bit.

## 12.4 SOFTWARE CONSIDERATIONS

The data in Queue is undefined after reset or when it is cleared. Data read when the Queue is empty is undefined.

If the Queue is overrun, last data written is destroyed. Thus first clear the Queue by disabling and enabling PWC and re-measure the data. Care should be taken not to overrun the queue.

Do not change the selections of noise cancel clock rate, counter clock rate, input polarity, interrupt mode, or pulse measurement mode after enabling the PWCE.

Since interrupt may be requested due to one of three sources, when servicing interrupt, first check COVF flag. If this flag is set, the interrupt was due to counter overflow. Otherwise, if this flag is clear, interrupt was due to 4 counts are stored in buffer (IS=0) or an edge was detected (IS=1).

## 12.5 PWC DURING WAIT MODE

During WAIT Mode the PWC continues to operate normally. Pulse width may be measured during WAIT and WAIT Mode may be exited when the appropriate interrupt condition is met. To decrease power consumption during WAIT, the PWCE should be disabled if PWC subsystem is not being used.

# 12.6 PWC DURING STOP MODE

During STOP Mode the PWC continues to operate normally if XOSC is used for noise cancel clock source. Pulse width may be measured during STOP using XOSC and STOP Mode may be exited when the appropriate interrupt condition is met. If OSC is selected as clock source, PWC will not function during STOP. To decrease power consumption during STOP, the PWCE should be disabled if PWC subsystem is not being used.

Advance Information 20040224101845



Section 12: PWC Page 113

For More Information On This Product, Go to: www.freescale.com

Please Comment

**DRAFT COPY FOR REVIEW** 

#### PULSE WIDTH COUNTER CONTROL REGISTER (PWCCR) 12.7

| ADDR                                                                                   | REGISTER                 | RW     | 7    | 6  | 5  | 4   | 3    | 2    | 1    | 0    |
|----------------------------------------------------------------------------------------|--------------------------|--------|------|----|----|-----|------|------|------|------|
| \$000D                                                                                 | PWC CONTROL REG<br>PWCCR | R<br>W | PWCE | EM | IS | POL | CCK1 | CCK0 | NCK1 | NCK0 |
| RESET:         0         0         0         0         1         1         1         1 |                          |        |      |    |    |     |      | 1    |      |      |

Figure 12-2: PWC Control Register

#### **PWCE PWC Enable**

This bit enables the PWC sub-system. When the PWC is disabled, clocks to the PWC module are disabled, queue is initialized, and all flags bits are cleared to the reset state.

Read/Write:

- 1 = PWC is enabled; PA7/PWCI functions as PWCI input pin.
- 0 = PWC is disabled: PA7/PWCI functions as Port A I/O pin.

#### EM Edge Mode

This bit selects the measurement mode. Pulse width of either both high- and low-level or full period is measured.

Read/Write:

emiconductor,

eescal

- 1 = Measures pulse width of both high- and low-level
- 0 = Measures pulse width of full period

#### IS Interrupt Select

This bit selects the PWC interrupt sources. An interrupt will be generated after every rising edge on the input pin or after 4 counts are stored in the gueue, if enabled by PWČIE=1.

Read/Write:

- 1 = PWCIF is set at rising edge of SIG
- 0 = PWCIF is set after 4 counts are stored in the queue

#### POL **PWC POLarity**

This bit selects the polarity of input pulses.

Read/Write:

- 1 = Invert input pulses
- 0 = Do not invert input pulses

#### CCK1:0 Counter ClocK 1:0

These bits select the counter clock. See **Section 12.2** for more information.

#### **NCK1:0** Noise cancel ClocK 1:0

These bits select the noise cancel clock. See **Section 12.1** for more information.

Section 12: PWC Page 114



Advance Information 20040224101845



# 12.8 PULSE WIDTH COUNTER STATUS REGISTER (PWCSR)

| ADDR   | REGISTER       | RW   | 7  | 6   | 5     | 4    | 3     | 2   | 1    | 0    |
|--------|----------------|------|----|-----|-------|------|-------|-----|------|------|
| \$000E | PWC STATUS REG | R    | PL | SIG | DWCIE | COVF | PWCIF | QOR | QFUL | QEMP |
| PWCSR  | PWCSR          | W    |    |     | IWOL  |      | —     | —   |      | _    |
|        | RE             | SET: | 0  | U   | 0     | 0    | 0     | 0   | 0    | 1    |

Figure 12-3: PWC Status Register

#### PL Pulse Level

This bit is the pulse level stored in the PWC queue. This bit is updated AFTER reading the PWCDR.

This bit is cleared while PWCE is cleared.

Read:

1 = Pulse Level in the buffer (9th bit) is 1

0 = Pulse Level in the buffer (9th bit) is 0

Write:

No action. This bit is read only.

#### SIG SIGnal

This bit is the output of noise cancel circuit. This bit may be read any time.

Read:

1 = noise cancelled signal level is 1

0 = noise cancelled signal level is 0

Write:

No action. This bit is read only.

#### PWCIE PWC Interrupt Enable

This bit enables the PWC interrupts.

Read/Write:

1 = Interrupts are enabled

0 = Interrupts are disabled

### COVF Counter OVerFlow

This bit indicates that the 8-bit counter has overflowed. An interrupt request is generated if PWC Interrupt is enabled. This flag is cleared by disabling the PWC.

Read:

- 1 = Counter has overflowed.
- 0 = Counter has not overflowed.

Advance Information 20040224101845



Section 12: PWC Page 115 For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW

### PWCIF PWC interrupt Flag

This bit is the status of PWC interrupt. There are three sources of interrupts: counter overflow (COVF=1), 4 bytes in queue (IS=1), or edge detect (IS=0). Clearing this flag is done by reading the PWCSR while this bit is set and then accessing the PWCDR. This flag must be serviced before the next time it is set.

Read:

- 1 = interrupt requested
- 0 = no interrupt requested

| Table 12-3: | PWC Interrupt | Sources |
|-------------|---------------|---------|
|-------------|---------------|---------|

| PWCIF | COVF | IS | Source               |
|-------|------|----|----------------------|
| 0     | 0    | Х  | No Interrupt         |
| 1     | Х    | 0  | 4 bytes in queue     |
| 1     | Х    | 1  | rising edge detected |
| Х     | 1    | Х  | counter overflowed   |

Write:

No action. This bit is read only.

### QOR Queue OverRUN

This bit is the status of the queue. This bit is cleared by disabling the PWC.

#### Read:

Semiconductor, I

đ

SCa

00

- 1 = queue overrun; data was written to the queue when full
- 0 = no queue overrun; data in queue is valid

Write:

No action. This bit is read only.

### QFUL Queue FULI

This bit is the status of the queue. This bit is cleared by reading a byte from the queue, or disabling the PWC.

Read:

1 = Queue is full

0 = Queue is not full

Write:

No action. This bit is read only.

### QEMP Queue EMPty

This bit is the status of the queue. This bit is cleared when a counter byte is stored.

For More Information On This Product, Go to: www.freescale.com

Read:

1 = Queue is empty

0 = Queue has data

Write:

No action. This bit is read only.

Section 12: PWC Page 116



Advance Information 20040224101845



## 12.9 PULSE WIDTH COUNTER DATA REGISTER (PWCDR)

| ADDR   | REGISTER     | RW    | 7     | 6    | 5      | 4       | 3    | 2    | 1    | 0    |
|--------|--------------|-------|-------|------|--------|---------|------|------|------|------|
| \$000E | PWC DATA REG | R     | PWC7  | PWC6 | PWC5   | PWC4    | PWC3 | PWC2 | PWC1 | PWC0 |
| \$000F | PWCDR        | W     | —     | —    |        | —       |      | —    | —    | —    |
|        | RI           | ESET: | 0     | 0    | 0      | 0       | 0    | 0    | 0    | 0    |
|        | Fig          | qure  | 12-4: | PWC  | Data F | Registe | er   |      |      |      |

This register contains the data stored in the queue. Undefined data is returned if the queue is read when it is empty.

This register is a read-only register.

DRAFT COPY FOR REVIEW — Please Comment

Advance Information 20040224101845



Section 12: PWC Page 117



# THIS PAGE INTENTIONALLY LEFT BLANK

MOTOROLA

Advance Information 20040224101845

Section 12: PWC Page 118

For More Information On This Product, Go to: www.freescale.com

DRAFT COPY FOR REVIEW — Please Comment



Please Comment

DRAFT COPY FOR REVIEW

# SECTION 13ANALOG SUBSYSTEM

The MC68HC05P6 includes a 2-channel, multiplexed input, 8-bit, successive approximation A/D converter. The A/D subsystem shares its inputs with Port A pins PA4:PA5.

#### 13.1 ANALOG SECTION

The following paragraphs describe the operation and performance of analog modules within the analog subsystem.

#### 13.1.1 **RATIOMETRIC CONVERSION**

The A/D converter is ratiometric, with pin  $V_{RFFH} = V_{DD}$  supplying the high reference voltage. Applying an input voltage equal to V<sub>REFH</sub> produces a conversion result of \$FF (full scale). Applying an input voltage equal to V<sub>SS</sub> produces a conversion result of \$00. An input voltage greater than V<sub>REFH</sub> will convert to \$FF with no overflow indication. For ratiometric conversions, V<sub>REFH</sub> should be at the same potential as the supply voltage being used by the analog signal being measured and be referenced to  $V_{SS}$ .

#### 13.1.2 V<sub>REFH</sub>

The reference supply for the A/D converter is tied to V<sub>DD</sub> internally. The low reference is tied to the  $V_{SS}$  pin internally.

#### 13.1.3 ACCURACY AND PRECISION

The 8-bit conversion result is accurate to within  $\pm 1 \ 1/2 \ \text{LSB}$ , including quantization; however, the accuracy of conversions is tested and guaranteed only with external oscillator operation at VDD=5V. The error will increase at VDD less than 3V.

#### 13.2 CONVERSION PROCESS

The A/D reference inputs are applied to a precision digital-to-analog converter. Control logic drives the D/A and the analog output is successively compared to the selected analog input which was sampled at the beginning of the conversion cycle. The conversion process is monotonic and has no missing codes.

#### 13.3 DIGITAL SECTION

The following paragraphs describe the operation and performance of digital modules within the analog subsystem.

#### 13.3.1 **CONVERSION TIMES**

Each input conversion requires 32 PH2 (bus) clock cycles, which must be at a frequency equal to or greater than 1 MHz.

Advance Information 20040224101845



Go to: www.freescale.com

Section 13: Analog Subsystem Page 119 For More Information On This Product,

#### 13.3.2 **INTERNAL VS. EXTERNAL OSCILLATOR**

If the MCU PH2 clock frequency is less than 1 MHz (2 MHz external oscillator), the internal RC oscillator (approximately 1.5 MHz) must be used for the A/D converter clock. The internal RC clock is selected by setting the ADRC bit in the ADSC register.

When the internal RC oscillator is being used these limitations apply:

Since the internal RC oscillator is running asynchronously with respect to the PH2 clock, the Conversion Complete bit (CC) in register ADSC must be used to determine when a conversion sequence has been completed.

- 1. Electrical noise will slightly degrade the accuracy of the A/D converter. The A/D converter is synchronized to read voltages during the quiet period of the clock driving it. Since the internal and external clocks are not synchronized the A/D converter will occasionally measure an input when the external clock is making a transition.
- 2. If the PH2 clock is 1 MHz or greater (i.e. external oscillator 2 MHz or greater and SYS1:0 = 0:0), the internal RC oscillator must be turned off and the external oscillator used as the conversion clock.

#### 13.3.3 **MULTI-CHANNEL OPERATION**

An input multiplexer allows the A/D converter to select from one of two external analog signals. Port A pins PA4 thru PA5 are shared with the inputs to the multiplexer.

NOTE: Applying analog voltage to A/D input pin that is not selected (used as an I/O port may result in excessive I\_.

#### 13.4 A/D SUBSYSTEM OPERATION DURING WAIT MODES

The A/D subsystem continues normal operation during WAIT modes. To decrease power consumption during WAIT, the ADON and ADRC bits in the A/D Status and Control Register should be cleared if the A/D subsystem is not being used.

#### 13.5 A/D SUBSYSTEM OPERATION DURING STOP MODE

Execution of the STOP instruction will terminate all A/D subsystem functions. Any pending conversion is aborted. When the oscillator resumes operation upon leaving the Stop Mode, a finite amount of time passes before the A/D subsystem stabilizes sufficiently to provide conversions at its rated accuracy. The delays built into the MC68HC(7)05L26 when coming out of Stop Mode are sufficient for this purpose. No explicit delays need to be added to the application software.



Advance Information 20040224101845

For More Information On This Product. Go to: www.freescale.com

Semiconductor, I

0

eescal



Please Comment

**DRAFT COPY FOR REVIEW** 

# 13.6 A/D STATUS AND CONTROL REGISTER (ADSC)

The ADSC register reports the completion of A/D conversion and provides control over oscillator selection, analog subsystem power, and input channel selection.

| ADDR   | REGISTER               | RW    | 7  | 6    | 5    | 4 | 3 | 2   | 1    | 0   |
|--------|------------------------|-------|----|------|------|---|---|-----|------|-----|
| \$001E | A/D STATUS/CONTROL REG | R     | CC |      |      | 0 | 0 | CH3 | CH1  | CHO |
| \$001L | ADSCR                  | W     |    | ADIC | ADON |   | _ | GHZ | CIII | CHU |
|        | R                      | ESET: | 0  | 0    | 0    | 0 | 0 | 0   | 0    | 0   |

Figure 13-1: A/D Status and Control Register

### 13.6.1 CC - CONVERSION COMPLETE

This read-only status bit is set when a conversion sequence has completed and data is ready to be read from the ADC register. CC is cleared when a channel is selected for conversion, when data is read from the ADC register, or when the A/D subsystem is turned off. Once a conversion has been started, conversions of the selected channel will continue every 32 PH2 clock cycles until the ADSC register is written to again. During continuous conversion operation the ADC register will be updated with new data, and the CC bit set, every 32 PH2 clock cycles. Also, data from the previous conversion will be overwritten regardless of the state of the CC bit.

### 13.6.2 ADRC - RC OSCILLATOR CONTROL

When ADRC is set, the A/D subsystem operates from the internal RC oscillator instead of the PH2 clock. The RC oscillator requires a time  $t_{RCON}$  to stabilize before accurate conversion results can be obtained. See **Section 13.3.2** for more information.

### 13.6.3 ADON - A/D SUBSYSTEM ON

When the A/D subsystem is turned on (ADON = 1), it requires a time  $t_{ADON}$  to stabilize before accurate conversion results can be attained.

### 13.6.4 CH2-CH0 - CHANNEL SELECT BITS

CH2, CH1, and CH0 form a 3-bit field which is used to select an input to the A/D converter. Channels 0-1 correspond to Port A input pins PA4:PA5. Channels 4-6 are used for reference measurements. In Single-Chip Mode channels 2, 3, and 7 are reserved. If a conversion is attempted with channel 2, 3, or 7 selected the result will be undefined. **Table 13-1** lists the inputs selected by bits CH0:CH2 bits.

If the ADON bit is set, and an input from channels 0 or 1 is selected, the corresponding Port A pin will not function as a digital port. If the Port A data register is read when DDR=0 while the A/D is on, and one of the shared input channels is selected using bit CH0-CH2, the corresponding Port A pin will read as a logic zero. If the DDR=1, the Port A data register will read the output latch value; The remaining Port A pins will read normally. To digitally read a multiplexed Port A pin as an input port, the A/D subsystem must be disabled (ADON = 0), or input channel 2-7 must be selected. See **Table 7-1** and **Table 7-1**.

Advance Information 20040224101845

(M) MOTOROLA

Section 13: Analog Subsystem Page 121

| CHANNEL | SIGNAL                                     |
|---------|--------------------------------------------|
| 0       | AD0 PORT A BIT 4                           |
| 1       | AD1 PORT A BIT 5                           |
| 2       | reserved                                   |
| 3       | reserved                                   |
| 4       | $V_{REFH} = V_{DD}$                        |
| 5       | (V <sub>REFH</sub> + V <sub>REFL</sub> )/2 |
| 6       | V <sub>REFL</sub> = V <sub>SS</sub>        |
| 7       | FACTORY TEST                               |

### Table 13-1: A/D Multiplexer Input Channel Assignments

# 13.7 A/D CONVERSION DATA REGISTER (ADC)

This register contains the output of the A/D converter.

| ADDR   | REGISTER          | RW    | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|--------|-------------------|-------|-----|-----|-----|-----|-----|-----|-----|-----|
| ¢001D  | A/D DATA REGISTER | R     | AD7 | AD6 | AD5 | AD4 | AD3 | AD2 | AD1 | AD0 |
| \$001D | ADC               | W     |     | _   | _   | —   | _   | _   | —   | _   |
|        | RI                | ESET: | U   | U   | U   | U   | U   | U   | U   | U   |

Figure 13-2: A/D Conversion Value Data Register

Section 13: Analog Subsystem Page 122

Semiconductor, Inc

reescale



Advance Information 20040224101845



# **SECTION 14EVENT COUNTER**

The Event Counter consists of a 16-bit counter externally driven from the event counter pin, with input gate generation and filtering circuitry. Average frequency measurements can be made over user specified intervals ranging from 4 to 60 msec (with 2MHz bus clock). Measurements are continuously repeated at a user specified rate. A maskable and reset-able Event Count Complete Interrupt and Event Counter Overflow Interrupt are available. Using the Overflow interrupt, an effective 18-bit count can be achieved. See **Figure 7-11**.

- Asynchronous input up to 6Mhz
- Overflow Interrupt
- Event Count Complete Interrupt
- Variable Gate Generation
- "Spike" filter
- Effective 18-bit resolution



Figure 14-1: Event Counter Block Diagram

Advance Information 20040224101845



Section 14: Event Counter Page 123

For More Information On This Product, Go to: www.freescale.com

Please Comment

DRAFT COPY FOR REVIEW

# 14.1 EVENT COUNTER STATUS/CONTROL REGISTER (EVSC)

| ADDR   | REGISTER                 | RW    | 7    | 6     | 5    | 4    | 3    | 2    | 1    | 0 |
|--------|--------------------------|-------|------|-------|------|------|------|------|------|---|
| \$002E | EVENT CNTR STAT/CONT REG | R     | EVCE | E\/IE | EVOE | EVIF | EVOF | 0    | 0    | 0 |
| 9002L  | EVSCR                    | W     | LVCL |       |      | —    | _    | RCCF | ROFF | — |
|        | RI                       | ESET: | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0 |

EVCE - EVent Counter Enable

Semiconductor, I

eescale

- 1 = Event Counter enabled
- 0 = Event Counter disabled
- EVIE EVent count complete Interrupt Enable
  - 1 = Event Count Complete Interrupt enabled
  - 0 = Event Count Complete Interrupt disabled
- EVOE EVent counter Overflow Enable
  - 1 = Event Counter Overflow interrupt enabled
  - 0 = Event Counter Overflow interrupt disabled
- EVIF EVent count complete Interrupt Flag (read only)
  - 1 = Flag set when Gate Delay time expires
  - 0 = Flag cleared when "1" is written to ROFF
- EVOF EVent counter Overflow Flag (read only)
  - 1 = Flag set when Gate Delay time expires
  - 0 = Flag cleared when "1" is written to ROFF
- ROIF Reset Overflow Interrupt Flag (write only)
- When a "1" is written to this bit, EVOF is cleared. Always reads as "0".
- RCCF Reset Count Complete interrupt Flag (write only)
- When a "1" is written to this bit, EVIF is cleared. Always reads as "0".



Advance Information 20040224101845



#### 14.2 EVENT COUNTER TIMING REGISTER (EVTR)

| ADDR   | REGISTER                 | RW     | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|--------|--------------------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|
| \$002F | EVENT COUNTER TIMING REG | R<br>W | WT3 | WT2 | WT1 | WT0 | MT3 | MT2 | MT1 | MT0 |
|        | RI                       | SET:   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |

#### Figure 14-3: Event Counter Timing Register

This register controls generation of the gate signal which is used to control the input to the Event Counter. See Figure 14-4.

The value in the Event Counter Timing register determines the length of the measurement and the length of the wait time between measurements. See Table 14-1 and Table 14-2. The measurement time bits, MT3:0, determine the length of time that the input gate on the EVI pin is open. During this time the gate signal is a logic '1'. The wait time bits, WT3:0, determine the length of time that the gate signal is a logic '0'. T<sub>qc</sub> is the length of a unit count. The specification for  $T_{ac}$  may be found in Section 15.8 and Section 15.9.

After being enabled, EVCE = 1, the Event Counter will continuously make measurements. If the Event Counter Timing register is written, the current measurement will be aborted, and a new measurement will be initiated.



The input to the Event Counter is the logical AND of the signal on the EVI pin and the internally generated gate signal. The rising edges of counter input signal are used to generate the events that increment the counter. If the pulse width of the AND'ed signal is less than that which the circuitry is capable of detecting, the narrow pulse will not be allowed to pass through the filter.

Advance Information 20040224101845



Section 14: Event Counter Page 125

For More Information On This Product, Go to: www.freescale.com

Please Comment

| MT3:0 | Measurement Time | MT3:0 | Measurement Time |
|-------|------------------|-------|------------------|
| \$X0  | 0 msec           | \$X8  | 31.250 msec      |
| \$X1  | 3.9063           | \$X9  | 35.156           |
| \$X2  | 7.8125           | \$XA  | 39.063           |
| \$X3  | 11.719           | \$XB  | 42.969           |
| \$X4  | 15.625           | \$XC  | 46.875           |
| \$X5  | 19.531           | \$XD  | 50.781           |
| \$X6  | 23.438           | \$XE  | 54.688           |
| \$X7  | 27.344           | \$XF  | 58.593           |

#### Table 14-1: Measurement Time Nibble

Table 14-2: Wait Time Nibble

| WT3:0 | Wait Time | WT3:0 | Wait Time   |
|-------|-----------|-------|-------------|
| \$0X  | 0 msec    | \$8x  | 31.250 msec |
| \$1X  | 3.9063    | \$9x  | 35.156      |
| \$2X  | 7.8125    | \$Ax  | 39.063      |
| \$3X  | 11.719    | \$BX  | 42.969      |
| \$4X  | 15.625    | \$CX  | 46.875      |
| \$5X  | 19.531    | \$DX  | 50.781      |
| \$6X  | 23.438    | \$EX  | 54.688      |
| \$7X  | 27.344    | \$FX  | 58.593      |

Note: SYS0:1 = 00, Fosc = 4.1943 MHz

Semiconductor, Inc.

eescale

Ľ

Section 14: Event Counter Page 126



Advance Information 20040224101845





Note: MT3:0 = \$X1

#### Figure 14-5 Event Counter Gate Signal Timing Example

The above example illustrates the relation of the Gate Signal to external oscillator clocks for the case of MT3:0 =\$1.

The beginning of the gate signal can be caused by a write to the Event Counter Timing Register or expiration of the Wait Time. If the Event Counter Timing Register is written, the rising edge of the gate signal will occur on the fourth internal processor clock cycle of the write to the Event Counter Timing register. The Event Counter Data Registers are cleared on the rising edge of the internal Gate Signal. The external Gate signal rises two clock cycles later.

After MT3:0 X  $T_{gt}$ , the Gate Signal will rise, terminating the measurement time. The Gate Signal will be the same length for all successive measurements.

Unless the start of the gate delay signal and the Event Counter Input signal are externally synchronized, the value of the least significant bit of the Event Counter Data Low Register may arbitrarily change.

If the fast oscillator, OSC, is disabled, the Event Counter will not function properly.

# 14.3 EVENT COUNTER INTERRUPTS

The Event Count Complete Interrupt, ECCI is generated at the falling edge of the gate signal. This interrupt indicates the presence of valid data in the Event Counter Data Registers. Since reading the data registers during the measurement time may give invalid results, the CPU must read the data registers before the rising edge of the gate signal. The Event Count Complete Interrupt may be cleared by writing a '1' to RCCF. The Event Count Complete Interrupt is automatically cleared at the beginning of each measurement.

The Event Counter Overflow Interrupt, EVOF is generated if the count exceeds 65,535, the maximum value of the 16-bit Event Counter. This interrupt may be used to indicate an invalid measurement or to increase the resolution of the Event Counter, as will be described later. The Event Counter Overflow Interrupt may be cleared by writing a '1' to ROIF. The Event Counter Overflow Interrupt is automatically cleared at the beginning of each measurement.

Advance Information 20040224101845



Section 14: Event Counter Page 127

For More Information On This Product, Go to: www.freescale.com

Please Comment

**DRAFT COPY FOR REVIEW** 

# 

If an overflow occurs (the counter increments beyond \$FFFF), the Event Counter Overflow Flag (EVOF) will be set. If EVOE is set, an interrupt will be generated. Following an overflow, the Event Counter will increment from zero.

The resolution of the Event Counter can be increased by using the Event Counter Overflow Interrupt. If a count of more than 65,535, the maximum value of the 16-bit Event Counter, is encountered, the Event Counter overflow interrupt service routine should note the number of "roll-overs" that occur. The Overflow Interrupt service routine should not clear the Event Counter Interrupt. In this way, the user can be assured that the correct count has been recorded.

# 14.4 EVENT COUNTER DATA REGISTERS (EVDH) & (EVDL)

| ADDR   | REGISTER                      | RW     | 7     | 6     | 5     | 4     | 3     | 2     | 1    | 0    |
|--------|-------------------------------|--------|-------|-------|-------|-------|-------|-------|------|------|
| \$0030 | EVENT CNTR DATA REG H<br>EVDH | R<br>W | BIT15 | BIT14 | BIT13 | BIT12 | BIT11 | BIT10 | BIT9 | BIT8 |
|        |                               | RESET: | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    |

Figure 14-6: Event Counter Data High Register

| r     |                       |        |      | 1    | 1    | 1            | 1    |      | 1    | 1    |
|-------|-----------------------|--------|------|------|------|--------------|------|------|------|------|
| ADDR  | REGISTER              | RW     | 7    | 6    | 5    | 4            | 3    | 2    | 1    | 0    |
| ¢0021 | EVENT CNTR DATA REG L | R      | DIT7 | PITE | PIT5 | <b>BIT</b> 4 | DIT2 | DIT2 | DIT1 | BITO |
| φ0031 | EVDL                  | W      | ып   | БПО  | ытэ  | BI14         | DITS | DITZ | ып   | BITU |
|       |                       | RESET: | 0    | 0    | 0    | 0            | 0    | 0    | 0    | 0    |

Figure 14-7: Event Counter Data Low Register

These read only registers are the basis of all Event Counter operations. While the gate signal is low, the value of the most recent event count will remain in the Event Counter Data Registers. Following the Event Counter Interrupt, the result of the event count can be read. If the Event Counter Data Registers are read while the gate signal is high, an incorrect value may result.

# 14.5 EVENT COUNTER DURING WAIT MODE

The Event Counter continues to operate in WAIT mode. If EVOE is set and an event counter overflow interrupt occurs, the processor will exit WAIT mode. If EVIE is set and an event counter interrupt occurs, the processor will exit WAIT mode.

# 14.6 EVENT COUNTER DURING STOP MODE

In the STOP mode, the event counter is disabled.

Semiconductor, I

đ

eescal



Advance Information 20040224101845



# **SECTION 15ELECTRICAL SPECIFICATIONS**

## 15.1 MAXIMUM RATINGS

(Voltages referenced to V<sub>SS</sub>)

| Rating                                                                                                                                                                                                                                                            | Symbol                                                                              | Value                                                                                                                                                                                                           | Unit                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Supply Voltage                                                                                                                                                                                                                                                    | V <sub>DD</sub>                                                                     | -0.3 to +7.0                                                                                                                                                                                                    | V                               |
| Input Voltage (normal digital level)                                                                                                                                                                                                                              | V <sub>IN</sub>                                                                     | V <sub>SS</sub> -0.3 to V <sub>DD</sub> +0.3                                                                                                                                                                    | V                               |
| High Voltage (PA0:3, PC3, and PC2 only)                                                                                                                                                                                                                           | V <sub>IN</sub>                                                                     | V <sub>SS</sub> -0.3 to 9.3                                                                                                                                                                                     | V                               |
| Current Drain Per Pin Excluding $V_{DD}$ and $V_{SS}$                                                                                                                                                                                                             | I                                                                                   | 25                                                                                                                                                                                                              | mA                              |
| Operating Temperature Range                                                                                                                                                                                                                                       | T <sub>A</sub>                                                                      | T <sub>L</sub> to T <sub>H</sub>                                                                                                                                                                                | °C                              |
| MC68HC705L26 (Standard)                                                                                                                                                                                                                                           |                                                                                     | 0 to +70                                                                                                                                                                                                        |                                 |
| Storage Temperature Range                                                                                                                                                                                                                                         | T <sub>STG</sub>                                                                    | -65 to +150                                                                                                                                                                                                     | °C                              |
|                                                                                                                                                                                                                                                                   |                                                                                     |                                                                                                                                                                                                                 |                                 |
| Rating                                                                                                                                                                                                                                                            | Symbol                                                                              | Value                                                                                                                                                                                                           | Unit                            |
| Rating Supply Voltage                                                                                                                                                                                                                                             | Symbol                                                                              | Value<br>-0.3 to +7.0                                                                                                                                                                                           | Unit<br>V                       |
| Rating Supply Voltage Input Voltage (normal digital level)                                                                                                                                                                                                        | Symbol       V <sub>DD</sub> V <sub>IN</sub>                                        | Value           -0.3 to +7.0           V <sub>SS</sub> -0.3 to V <sub>DD</sub> +0.3                                                                                                                             | Unit<br>V<br>V                  |
| Rating         Supply Voltage         Input Voltage (normal digital level)         High Voltage (PA0:3, PC3, and PC2 only)                                                                                                                                        | Symbol       V <sub>DD</sub> V <sub>IN</sub> V <sub>IN</sub>                        | Value           -0.3 to +7.0           V <sub>SS</sub> -0.3 to V <sub>DD</sub> +0.3           V <sub>SS</sub> -0.3 to 9.3                                                                                       | Unit<br>V<br>V<br>V             |
| Rating         Supply Voltage         Input Voltage (normal digital level)         High Voltage (PA0:3, PC3, and PC2 only)         Current Drain Per Pin Excluding V <sub>DD</sub> and V <sub>SS</sub>                                                            | Symbol       V <sub>DD</sub> V <sub>IN</sub> V <sub>IN</sub> I                      | Value           -0.3 to +7.0           V <sub>SS</sub> -0.3 to V <sub>DD</sub> +0.3           V <sub>SS</sub> -0.3 to 9.3           25                                                                          | Unit<br>V<br>V<br>V<br>mA       |
| Rating         Supply Voltage         Input Voltage (normal digital level)         High Voltage (PA0:3, PC3, and PC2 only)         Current Drain Per Pin Excluding V <sub>DD</sub> and V <sub>SS</sub> Operating Temperature Range                                | Symbol       V <sub>DD</sub> V <sub>IN</sub> V <sub>IN</sub> I       T <sub>A</sub> | Value           -0.3 to +7.0           V <sub>SS</sub> -0.3 to V <sub>DD</sub> +0.3           V <sub>SS</sub> -0.3 to 9.3           25           T <sub>L</sub> to T <sub>H</sub>                               | Unit<br>V<br>V<br>V<br>mA<br>°C |
| Rating         Supply Voltage         Input Voltage (normal digital level)         High Voltage (PA0:3, PC3, and PC2 only)         Current Drain Per Pin Excluding V <sub>DD</sub> and V <sub>SS</sub> Operating Temperature Range         MC68HC05L25 (Standard) | Symbol       V <sub>DD</sub> V <sub>IN</sub> V <sub>IN</sub> I       T <sub>A</sub> | $\begin{tabular}{ c c c c } \hline Value \\ \hline -0.3 to +7.0 \\ \hline V_{SS} -0.3 to V_{DD} +0.3 \\ \hline V_{SS} -0.3 to 9.3 \\ \hline 25 \\ \hline T_L to T_H \\ \hline 0 to +70 \\ \hline \end{tabular}$ | Unit<br>V<br>V<br>V<br>mA<br>°C |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that  $V_{IN}$  and  $V_{OUT}$  be constrained to the range  $V_{SS} \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{DD}$ . Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (e.g., either  $V_{SS}$  or  $V_{DD}$ ).

Advance Information 20040224101846



Section 14: Electrical Specs Page 125

For More Information On This Product, Go to: www.freescale.com

DRAFT COPY FOR REVIEW — Please Comment

NOTE: Values specified as TBD are to be determined after a full characterization. These figures are design target values and do not reflect actual measurements.

# 15.2 DC OPERATING CHARACTERISTICS

 $(V_{SS} = 0 \text{ VDC}, T_A = +25^{\circ}C)$ 

| Characteristic                                                                                                                                                                                                                                               | Symbol                                                                   | Min                      | Max                      | Unit             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|--------------------------|------------------|
| Operating Voltage<br>MC68HC05L26 external clock source $f_{osc} = 1.0$ MHz<br>MC68HC705L26 external clock source $f_{osc} = 2.0$ MHz<br>MC68HC(7)05L26 external clock source $f_{osc} = 4.0$ MHz<br>MC68HC(7)05L26 external clock source $f_{osc} = 5.0$ MHz | V <sub>DD</sub><br>V <sub>DD</sub><br>V <sub>DD</sub><br>V <sub>DD</sub> | 2.2<br>2.8<br>3.0<br>3.7 | 5.5<br>5.5<br>5.5<br>5.5 | V<br>V<br>V<br>V |
| Characteristic                                                                                                                                                                                                                                               | Symbol                                                                   | Min                      | Max                      | Unit             |
| Operating Voltage<br>MC68HC05L25 external clock source $f_{osc} = 1.0$ MHz<br>MC68HC05L25 external clock source $f_{osc} = 4.0$ MHz                                                                                                                          | V <sub>DD</sub><br>V <sub>DD</sub>                                       | 2.2<br>3.0               | 5.5<br>5.5               | V<br>V           |

Section 14: Electrical Specs Page 126



Advance Information 20040224101846


### 15.3 DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V)

(VDD = 3.3 VDC 10%, VSS = 0 VDC, TA = -40°C to +85°C, unless otherwise noted)

| Characteristic                                            | Symbol          | Min                   | Тур | Max                 | Unit |
|-----------------------------------------------------------|-----------------|-----------------------|-----|---------------------|------|
| Output Voltage                                            |                 |                       |     |                     |      |
| $I_{Load} = 10.0 \ \mu A$                                 | V <sub>OL</sub> | -                     | —   | 0.1                 | V    |
|                                                           | V <sub>OH</sub> | 0.1 - <sub>مر</sub> ۷ | _   | _                   |      |
| Output High Voltage                                       | 011             |                       |     |                     |      |
| (I <sub>Load</sub> = -0.8 mA) PA0:7, PB0:7, PC0:PC1       | V <sub>ОН</sub> | V <sub>DD</sub> - 0.8 | —   | -                   | V    |
| Output Low Voltage                                        |                 |                       |     |                     |      |
| (I <sub>Load</sub> = 1.6 mA) PA0:7, PD0:7, PC0:3          | Vol             | -                     | —   | 0.3                 | V    |
| (I <sub>Load</sub> = 20 mA) PA0:3                         |                 | _                     | —   | 0.8                 | V    |
| Input High Voltage                                        |                 |                       |     |                     |      |
| (I <sub>Load</sub> = -0.8 mA) PA0:7, PB0:7, PC0:3         | ∨ <sub>IH</sub> | $0.7 \times V_{DD}$   | —   | V <sub>DD</sub>     | V    |
| IRQ, RESET, XOSC1                                         |                 |                       |     |                     |      |
| Input Low Voltage                                         |                 |                       |     |                     |      |
| (I <sub>Load</sub> = 1.6 mA) PA0:7, PB0:7, PC0:3          | V <sub>IL</sub> | V <sub>SS</sub>       | —   | $0.2 \times V_{DD}$ | V    |
| IRQ, RESET, XOSC1                                         |                 |                       |     |                     |      |
| Supply Current (see Notes)                                |                 |                       |     |                     |      |
| Run ( $f_{op} = 1.0 \text{ MHz}$ )                        | I <sub>DD</sub> | -                     | 1.0 | 5.0                 | mA   |
| Wait (f <sub>op</sub> = 1.0 MHz)                          | I <sub>DD</sub> | -                     | 0.5 | 3.0                 | mA   |
| Stop (with Time Base running; LCD off)                    |                 |                       |     |                     |      |
| 25 °C                                                     | I <sub>DD</sub> | -                     | 5.0 | 10                  | μΑ   |
| 0 $^{\circ}$ C to +70 $^{\circ}$ C (Standard)             | I <sub>DD</sub> | -                     | —   | 30                  | μΑ   |
| I/O Ports Hi-Z Leakage Current                            |                 |                       |     |                     |      |
| (without individual pullup activated) PA0:7, PB0:7, PC0:3 | IIL             | _                     | _   | ±10                 | μA   |
| Pullup Resistor (with individual pullup activated)        |                 |                       |     |                     |      |
| PA0:7, PB0:7                                              | R <sub>p</sub>  | 25                    | 50  | 200                 | KΩ   |
| PC0:3                                                     | Rp              | 5                     | 10  | 40                  | KΩ   |
| Input Current                                             |                 |                       |     |                     |      |
| RESET, IRQ, XOSC1                                         | l <sub>in</sub> | —                     | —   | ±1                  | μΑ   |
| Capacitance                                               |                 |                       |     |                     |      |
| Ports (as Input or Output)                                | Cout            | -                     | —   | 12                  | pF   |
| RESET, IRQ, XOSC1, XOSC2                                  | C <sub>in</sub> | —                     | _   | 8                   | pF   |
| Crystal Oscillator Mode Feedback Resistor                 |                 |                       |     |                     |      |
| OSC1 to OSC2                                              | R <sub>OF</sub> | 1.0                   | 2.0 | 4.0                 | MΩ   |
| XOSC1 to XOSC2                                            | RXOF            | 1.0                   | 2.0 | 4.0                 | MΩ   |
| Crystal Oscillator Mode Damping Resistor                  |                 |                       |     |                     |      |
| on XOSC2                                                  | RXOD            | 1.0                   | 2.0 | 4.0                 | MΩ   |

1. All values shown reflect average measurements. (These values are design targets and not characterization results.)

2. Typical values at midpoint of voltage range, 25°C only.

3. Wait I<sub>DD</sub>: Only time Base active.

Run (Operating) I<sub>DD</sub>, Wait I<sub>DD</sub>: Measured using external square wave clock source to OSC1 (f<sub>OP</sub> = 1.0 MHz), all inputs 0.2 VDC from rail; no DC loads, less than 50pF on all outputs, C<sub>L</sub> = 20 pF on OSC2.

5. Wait, Stop I<sub>DD</sub>: All ports configured as inputs,  $V_{IL} = 0.2$  VDC,  $V_{IH} = V_{DD}$ -0.2 VDC.

6. Wait, Stop I<sub>DD</sub> is affected linearly by the OSC2, XOSC2 capacitance.

Advance Information 20040224101846



Section 14: Electrical Specs Page 127

For More Information On This Product, Go to: www.freescale.com

DRAFT COPY FOR REVIEW — Please Comment

# 15.4 DC ELECTRICAL CHARACTERISTICS (VDD = 5.0V)

(VDD = 5.0 VDC 10%, VSS = 0 VDC, TA = -40°C to +85°C, unless otherwise noted)

| Characteristic                                                         | Symbol           | Min                   | Тур | Max                        | Unit |
|------------------------------------------------------------------------|------------------|-----------------------|-----|----------------------------|------|
| Output Voltage                                                         |                  |                       |     |                            |      |
| I <sub>Load</sub> = 10.0 μA                                            | VOL              | _                     | —   | 0.1                        | V    |
|                                                                        | V <sub>OH</sub>  | 0.1 - <sub>חס</sub> ۷ | _   | _                          |      |
| Output High Voltage                                                    |                  |                       |     |                            |      |
| (I <sub>Load</sub> = -0.8 mA) PA0:7, PB0:7, PC0:PC1                    | V <sub>OH</sub>  | V <sub>DD</sub> - 0.8 | —   | -                          | V    |
| Output Low Voltage                                                     |                  |                       |     |                            |      |
| (I <sub>Load</sub> = 1.6 mA) PA0:7, PD0:7, PC0:3                       | Vol              | _                     | —   | 0.3                        | V    |
| (I <sub>Load</sub> = 20 mA) PA0:3                                      | UL               | _                     | —   | 0.8                        | V    |
| Input High Voltage                                                     |                  |                       |     |                            |      |
| (I <sub>Load</sub> = -0.8 mA) PA0:7, PB0:7, PC0:3<br>IRQ, RESET, XOSC1 | VIH              | $0.7 \times V_{DD}$   | _   | V <sub>DD</sub>            | V    |
| Input Low Voltage                                                      |                  |                       |     |                            |      |
| (I <sub>Load</sub> = 1.6 mA) PA0:7, PB0:7, PC0:3<br>IRQ, RESET, XOSC1  | VIL              | V <sub>SS</sub>       | —   | $0.2 \times V_{\text{DD}}$ | V    |
| Supply Current (see Notes)                                             |                  |                       |     |                            |      |
| Run ( $f_{op} = 2.1 \text{ MHz}$ )                                     | Inn I            | _                     | 10  | 15                         | mA   |
| Wait (f <sub>op</sub> = 2.1 MHz)                                       |                  | _                     | 4.0 | 7                          | mA   |
| Stop (with Time Base running)                                          |                  |                       |     |                            |      |
| 25 °C                                                                  | חח               | _                     | 10  | 20                         | μA   |
| 0 °C to +70 °C (Standard)                                              | םם <sup>ו</sup>  | _                     | —   | 60                         | μΑ   |
| I/O Ports Hi-Z Leakage Current                                         |                  |                       |     |                            |      |
| (without individual pullup activated) PA0:7, PB0:7, PC0:3              | L.               | _                     | —   | ±10                        | μA   |
| Pullup Resistor (with individual pullup activated)                     |                  |                       |     |                            |      |
| PA0:7, PB0:7                                                           | R <sub>p</sub>   | TBD                   | TBD | TBD                        | KΩ   |
| PC0:3                                                                  | R <sub>p</sub>   | TBD                   | TBD | TBD                        | KΩ   |
| Input Current                                                          |                  |                       |     |                            |      |
| RESET, IRQ, XOSC1                                                      | lin              | -                     | —   | ±1                         | μΑ   |
| Capacitance                                                            |                  |                       |     |                            |      |
| Ports (as Input or Output)                                             | Cout             | -                     | —   | 12                         | pF   |
| RESET, IRQ, XOSC1, XOSC2                                               | C <sub>in</sub>  | —                     | _   | 8                          | pF   |
| Crystal Oscillator Mode Feedback Resistor                              |                  |                       |     |                            |      |
| OSC1 to OSC2                                                           | R <sub>OF</sub>  | TBD                   | TBD | TBD                        | MΩ   |
| XOSC1 to XOSC2                                                         | R <sub>XOF</sub> | TBD                   | TBD | TBD                        | MΩ   |
| Crystal Oscillator Mode Damping Resistor                               |                  |                       |     |                            |      |
| on XOSC2                                                               | RXOD             | TBD                   | TBD | TBD                        | MΩ   |

DRAFT COPY FOR REVIEW — Please Comment

NOTES:

1. All values shown reflect average measurements. (These values are design targets and not characterization results.)

2. Typical values at midpoint of voltage range, 25°C only.

3. Wait I<sub>DD</sub>: Only time Base active.

Run (Operating) I<sub>DD</sub>, Wait I<sub>DD</sub>: Measured using external square wave clock source to OSC1 (f<sub>OP</sub> = 32.768 KHz), all inputs 0.2 VDC from rail; no DC loads, less than 50pF on all outputs, C<sub>L</sub> = 20 pF on OSC2.

5. Wait, Stop I<sub>DD</sub>: All ports configured as inputs,  $V_{IL} = 0.2 \text{ VDC}$ ,  $V_{IH} = V_{DD}$ -0.2 VDC.

6. Wait, Stop I<sub>DD</sub> is affected linearly by the OSC2, XOSC2 capacitance.



Advance Information 20040224101846



# 15.5 LCD DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V)

(VDD = 3.3 VDC 10%, VSS = 0 VDC, VLCD=0 VDC, TA = 25°C, unless otherwise noted)

| Characteristic                                     | Symbol           | Min       | Тур       | Max        | Unit     |
|----------------------------------------------------|------------------|-----------|-----------|------------|----------|
| LCD bias resistance<br>Default<br>Low current mode | R <sub>LCD</sub> | 15<br>100 | 30<br>200 | 120<br>800 | ΚΩ<br>ΚΩ |
| Output Current, Backplanes and Frontplanes         |                  |           |           |            |          |
| High-Current State (Default)V <sub>O</sub> = 2.85V |                  |           | - 235     | _          |          |
| V <sub>O</sub> = 1.85V                             | I <sub>BH</sub>  | TBD       | -10.9     | _          |          |
| V <sub>O</sub> = 1.15V                             |                  |           | 10.9      | _          |          |
| V <sub>O</sub> = 0.15V                             |                  |           | 235       | _          | μA       |
| Low-Current StateV <sub>O</sub> = 2.85V            |                  |           | - 235     |            |          |
| V <sub>O</sub> = 1.85V                             | I <sub>BL</sub>  | TDD       | - 0.94    | _          |          |
| V <sub>O</sub> = 1.15V                             |                  | IBD       | 0.94      | _          |          |
| V <sub>O</sub> = 0.15V                             |                  |           | 235       | _          |          |

NOTES:

Please Comment

DRAFT COPY FOR REVIEW

1. All values shown reflect average measurements. (These values are design targets and not characterization results.)

 If the FC option is selected, for time 1/(32 x fLCD) after the backplane or frontplane waveform changes to a new voltage level, the circuit is maintained in the high current state to allow the load capacitors to charge quickly. Then the circuit is returned to the low-current state until the next voltage level change occurs.

# 15.6 LCD DC ELECTRICAL CHARACTERISTICS (VDD = 5.0V)

(VDD =5.0 VDC 10%, VSS = 0 VDC, VLCD=0 VDC, TA = 25°C, unless otherwise noted)

| Characteristic                                                                                   | Symbol           | Min                 | Тур       | Max        | Unit     |  |
|--------------------------------------------------------------------------------------------------|------------------|---------------------|-----------|------------|----------|--|
| LCD bias resistance<br>Default<br>Low current mode                                               | R <sub>LCD</sub> | 15<br>100           | 30<br>200 | 120<br>800 | ΚΩ<br>ΚΩ |  |
| Output Current, Backplanes and Frontplanes<br>High-Current State (Default)V <sub>O</sub> = 4.85V |                  |                     | - 395     | _          |          |  |
| V <sub>O</sub> = 3.18V                                                                           | I <sub>ВН</sub>  | I <sub>BH</sub> TBD | - 13.6    | _          |          |  |
| V <sub>O</sub> = 1.82V                                                                           |                  |                     | 13.6      | _          |          |  |
| V <sub>O</sub> = 0.15V                                                                           |                  |                     | 395       | _          | μA       |  |
| Low-Current StateV <sub>O</sub> = 4.85V                                                          | I <sub>BL</sub>  |                     | - 395     | _          |          |  |
| V <sub>O</sub> = 3.18V                                                                           |                  | TDD                 | - 0.96    | _          |          |  |
| V <sub>O</sub> = 1.82V                                                                           |                  | <sup>I</sup> BL IBD | IBD       | 0.96       | _        |  |
| V <sub>O</sub> = 0.15V                                                                           |                  |                     |           | 395        |          |  |

NOTES:

1. All values shown reflect average measurements. (These values are design targets and not characterization results.)

2. If the FC option is selected, for time 1/(32 x fLCD) after the backplane or frontplane waveform changes to a new voltage level, the circuit is maintained in the high current state to allow the load capacitors to charge quickly. Then the circuit is returned to the low-current state until the next voltage level change occurs.

Advance Information 20040224101846



Section 14: Electrical Specs Page 129

### 15.7 A/D CONVERTER CHARACTERISTICS

(V<sub>DD</sub> = 5.0 V<sub>dc</sub>  $\pm$ 10%, V<sub>SS</sub> = 0 V<sub>dc</sub>, T<sub>A</sub> = -40°C to +85°C, unless otherwise noted)

| Characteristic                                                                                                   | Min                           | Мах                      | Units                 | Comments                             |  |  |
|------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-----------------------|--------------------------------------|--|--|
| Resolution                                                                                                       | TBD                           | 8                        | Bit                   |                                      |  |  |
| Absolute Accuracy<br>$(V_{DD} = 5.0V)$<br>$(V_{DD} = 3.0V)$                                                      | _                             | ±1 <sup>1</sup> /2<br>±2 | LSB<br>LSB            | Refer to Note 1.<br>Refer to Note 1. |  |  |
| Conversion Range                                                                                                 | V <sub>SS</sub>               | <br>مر <sub>ا</sub>      | V                     |                                      |  |  |
| Power-up Time                                                                                                    |                               | 100                      | μs                    |                                      |  |  |
| Conversion Time (Includes Sampling Time)<br>External Clock (MCU System Clock)<br>Internal RC Oscillator (ADRC=1) | 32<br>32                      | 32<br>32                 | T <sub>AD</sub><br>μs | Refer to Note 3.                     |  |  |
| Monotonicity                                                                                                     | Inherent (Within Total Error) |                          |                       |                                      |  |  |
| Zero Input Reading                                                                                               | 00                            | 01                       | Hex                   | V <sub>in</sub> = 0V                 |  |  |
| Ratiometric Reading                                                                                              | FF                            | FF                       | Hex                   | V <sub>in</sub> = V <sub>DD</sub>    |  |  |
| Sample Acquisition Time<br>External Clock (MCU System Clock)<br>Internal RC Oscillator (ADRC=1)                  | 12                            | 12<br>12                 | T <sub>AD</sub><br>μs | Refer to Note 2.<br>Refer to Note 3. |  |  |
| Input Capacitance                                                                                                | _                             | 8                        | pF                    |                                      |  |  |
| Analog Input Voltage                                                                                             | V <sub>SS</sub>               | V <sub>DD</sub>          | V                     |                                      |  |  |
| Input Leakage<br>AD0, AD1                                                                                        | _                             | ±400                     | nA                    | Refer to Note 4.                     |  |  |

Note:

Semiconductor, Inc.

reescale

1. Error includes quantization. A/D accuracy may decrease proportionately as  $V_{DD}$  is reduced below 3.0 V.

2. Souce impedances greater than  $10k\Omega$  adversely affect internal RC charging time during input sampling.

3.  $T_{AD} = t_{cyc}$  if clock source equals MCU.

4. The external system error caused by input leakage current is approximately equal to the product of R source and input current.



Advance Information 20040224101846



#### 15.8 CONTROL TIMING (VDD = 3.3V)

(V<sub>DD</sub> = 3.3 VDC  $\pm$ 10%, V<sub>SS</sub> = 0 VDC, T<sub>A</sub> = -40°C to +85°C, unless otherwise noted)

| Characteristic                                               | Symbol            | Min    | Тур      | Max   | Unit             |
|--------------------------------------------------------------|-------------------|--------|----------|-------|------------------|
| Frequency of Operation                                       |                   |        |          |       |                  |
| OSC Crystal Oscillator Option                                | f <sub>OSC</sub>  | TBD    | 2.097152 | 4.0   | MHz              |
| XOSC Crystal Oscillator Option                               | f <sub>xosc</sub> | TBD    | 32.768   | TBD   | kHz              |
| External Clock Source                                        | f <sub>OSC</sub>  | DC     | —        | 4.0   | MHz              |
| Internal Operating Frequency                                 |                   |        |          |       |                  |
| Crystal Oscillator ( $f_{OSC} \div 2$ )                      | f <sub>OP</sub>   | _      | 1.048576 | 2.0   | MHz              |
| External Clock (f <sub>OSC</sub> ÷ 2)                        | f <sub>OP</sub>   | DC     | 1.048576 | 2.0   | MHz              |
| Cycle Time (1/f <sub>OP</sub> )                              | t <sub>CYC</sub>  | 500    |          |       | nS               |
| Crystal Oscillator Start-up Time (Crystal Oscillator option) | t <sub>OXON</sub> | _      | _        | 100   | mS               |
| RESET Pulse Width Low                                        | t <sub>RL</sub>   | 1.5    | _        | _     | t <sub>CYC</sub> |
| IRQ Interrupt Pulse Width Low (Edge-Triggered)               | t <sub>ILIH</sub> | 125    | _        | _     | nS               |
| IRQ Interrupt Pulse Period                                   | t <sub>ILIL</sub> | note 1 | _        | _     | t <sub>CYC</sub> |
| OSC1 Pulse Width                                             | t                 | 100    | —        | _     | nS               |
| Event Counter Gate Count                                     | T <sub>GC</sub>   | 16384  | 16384    | 16384 | f <sub>osc</sub> |

NOTES:

 The minimum period t<sub>ILIL</sub> or t<sub>IHIH</sub> should not be less than the number of cycles it takes to execute the interrupt service routine plus 21 t<sub>CYC</sub>.

2. Effects of processing, temperature, and supply voltage (excluding tolerances of external R and C).

DRAFT COPY FOR REVIEW — Please Comment

Advance Information 20040224101846



Section 14: Electrical Specs Page 131

## 15.9 CONTROL TIMING (VDD = 5.0V)

(V<sub>DD</sub> = 5.0 VDC  $\pm$ 10%, V<sub>SS</sub> = 0 VDC, T<sub>A</sub> = -40°C to +85°C, unless otherwise noted)

| Characteristic                                               | Symbol            | Min    | Тур      | Max   | Unit             |
|--------------------------------------------------------------|-------------------|--------|----------|-------|------------------|
| Frequency of Operation                                       |                   |        |          |       |                  |
| OSC Crystal Oscillator Option                                | f <sub>OSC</sub>  | TBD    | 4.194304 | 8.0   | MHz              |
| XOSC Crystal Oscillator Option                               | f <sub>XOSC</sub> | TBD    | 32.768   | TBD   | kHz              |
| External Clock Source                                        | f <sub>OSC</sub>  | DC     | —        | 8.0   | MHz              |
| Internal Operating Frequency                                 |                   |        |          |       |                  |
| Crystal Oscillator (f <sub>OSC</sub> ÷ 2)                    | f <sub>OP</sub>   | —      | 2.097152 | 4.0   | MHz              |
| External Clock (f <sub>OSC</sub> ÷ 2)                        | f <sub>OP</sub>   | DC     | 2.097152 | 4.0   | MHz              |
| Cycle Time(1/f <sub>OP</sub> )                               | t <sub>CYC</sub>  | 250    |          | —     | nS               |
| Crystal Oscillator Start-up Time (Crystal Oscillator option) | t <sub>OXON</sub> | _      |          | 100   | mS               |
| RESET Pulse Width Low                                        | t <sub>RL</sub>   | 1.5    |          | _     | t <sub>CYC</sub> |
| IRQ Interrupt Pulse Width Low (Edge-Triggered)               | t <sub>ILIH</sub> | 62.5   | —        | —     | nS               |
| IRQ Interrupt Pulse Period                                   | t <sub>ILIL</sub> | note 1 | —        | —     | t <sub>CYC</sub> |
| OSC1 Pulse Width                                             | t                 | 50     |          | _     | nS               |
| Event Counter Gate Count                                     | т <sub>GC</sub>   | 16384  | 16384    | 16384 | f <sub>osc</sub> |

NOTES:

Semiconductor, Inc.

reescale

1. The minimum period t<sub>ILIL</sub> or t<sub>IHIH</sub> should not be less than the number of cycles it takes to execute the interrupt service routine plus 21 t<sub>CYC</sub>.

2. Effects of processing, temperature, and supply voltage (excluding tolerances of external R and C).



Advance Information 20040224101846