

Freescale Semiconductor, Inc.

MPC603r_C PNS 980612

Application-Specific Information

MPE603RRX166LC MPE603RRX200LC MPE603RRX233LC MPE603RRX266LC MPE603RRX300LC Part Numbers Affected: MPC603RRX166LC MPC603RRX200LC MPC603RRX233LC MPC603RRX266LC MPC603RRX300LC MPC603RRX200TC MPC603RRX206TC

PowerPC 603e[™] RISC Microprocessor Family: MPC603r (Goldeneye) Part Number Specification

This document defines a unique part number for a PowerPC[™] PID7t-603e microprocessor manufactured by Motorola as part number MPC603R or EC603R. It describes changes to recommended operating conditions and revised electrical specifications, as applicable, from those described in the *PowerPC 603e RISC Microprocessor Family: MPC603r Hardware Specifications*.

Specifications provided in this data sheet supercede those in the *MPC603r Hardware Specifications* (order #: MPC603REC/D); specifications not addressed herein are unchanged.

Note that headings and tables in this data sheet are not numbered; however, they are intended to correspond directly to the heading or table affected in the general hardware specifications. Any additional information (including tables) not included in the hardware specification are noted.

Part numbers addressed in this document and a summary of their differences from the general specification are listed in the following table. For more detailed ordering infomation see "Ordering Information for the PID7t-603e Microprocessor".

Meterole Dert Number	Operating Conditions		2	Cignificant Differences	
Motorola Part Number	CPU Frequency	Vdd	Т _Ј (°С)	Significant Differences	
MPC603RRX166LC	166 MHz	2.5 ± 5%V	0 to 105	No electrical specification changes.	
MPC603RRX200LC	200 MHz	2.5 ± 5%V	0 to 105	No electrical specification changes.	
MPC603RRX233LC	233 MHz	2.5 ± 5%V	0 to 105	No electrical specification changes.	
MPC603RRX266LC	266 MHz	2.5 ± 5%V	0 to 105	No electrical specification changes.	
MPC603RRX300LC	300 MHz	2.5 ± 5%V	0 to 105	No electrical specification changes.	
MPE603RRX166LC	166 MHz	2.5 ± 5%V	0 to 105	No spec changes. Floating point not guaranteed.	
MPE603RRX200LC	200 MHz	2.5 ± 5%V	0 to 105	No spec changes. Floating point not guaranteed.	
MPE603RRX233LC	233 MHz	2.5 ± 5%V	0 to 105	No spec changes. Floating point not guaranteed.	
MPE603RRX266LC	266 MHz	2.5 ± 5%V	0 to 105	No spec changes. Floating point not guaranteed.	
MPE603RRX300LC	300 MHz	2.5 ± 5%V	0 to 105	No spec changes. Floating point not guaranteed.	
MPC603RRX200TC	200 MHz	2.5 ± 5%V	-40 to 105	Extended temperature range.	
MPC603RRX266TC	266 MHz	2.5 ± 5%V	-40 to 105	Extended temperature range.	

. Part Numbers Addressed by this Data Sheet

Feature Changes

This section summarizes significant feature changes between the revision of the PID7t-603e addressed by this document and the previous revision 1.0 (XPC603RRXnnnLA or XPC603RFEnnnLA where nnn is the core frequency).

This revision was for manufacturing improvements only; there are no functional differences between this revision 2.1 and the previous revision 1.0.

This revision is functionally equivalent to the PID7v-603e (Valiant) microprocessor Revision 2.1 (XPC603PFEnnnLE/ XPC603PRXnnnLE) including the following errata.

Errata

This section summarizes design defects or errors (errata) that are known to exist on this revision of the PID7t-603e. There may be additional errata that are not known or are not yet documented here which may cause the part to deviate from the functional description provided in the *MPC603e* & *EC603e*TM *RISC Microprocessor User's Manual* (order # MPC603EUM/AD Rev 1). Refer to the website at http://www.mot.com/SPS/PowerPC/ for the latest version of this Part Number Specification or to your local Motorola sales office for later and/or more detailed description of the errata.

Freescale Semiconductor, Inc.

The known errata as of the date of this document are summarized below.

#	Problem	Description	Impact 6	Solutions
1	Snoop copyback causes dcbi to broadcast wrong address.	A snoop which causes a copy- back and occurs in a one cycle window near a dcbi causes the dcbi to broadcast the address of the snoop copyback.	Only systems using both soft- ware and hardware coherency simultaneously.	Use software semaphores rather than rely on dcbi to invalidate cache lines shared across multiple processors.
2	Competition for reservation with lwarx/stwcx may cause live-lock	The problem occurs when two processors are competing on the bus for a reservation, and the bus is operating with address pipelining	System Hang	Insert a bus clock's worth of no-ops before lwarx
3	Touch load causes incorrect address to appear on memory bus	A touch load (dcbt) preceded by an instruction that generates an exception causes a random address to appear on the mem- ory bus	Systems issuing instructions which generate mmu excep- tions one cycle before using a touch load instruction	Disable touch loads with NOOPTI bit in HID0.
4	Write-thru stores followed by dcbz followed by a snoop, all to the same cache line, may cause incoherency.	The sequence of write-thru stores followed by dcbz fol- lowed by a snoop, all to the same cache line, may cause incoherency.	The write-thru store is completed after the dcbz.	Store zeroes rather than rely on dcbz to zero cache lines in areas of memory that are marked as write-thru and can be accessed via multiple logi- cal addresses.
5	The broadcasting of dcbz instructions may retry snoop accesses indefinately.	A sequence of broadcast bcbz instructions may retry snoop accesses indefinately.	Snoop originator may timeout.	Disable broadcasting of dcbz by marking the memory space being addressed by the dcbz instruction as not global in the BAT or PTE.

Electrical and Thermal Characteristics

This section provides any changes to the AC and DC electrical specifications and thermal characteristics for the PID6-603e parts described herein.

DC Electrical Characteristics

This section describes the changed thermal operating conditions for the PID7t-603e part numbers described herein.

Recommended	Operating	Conditions
	operating	Contantionio

Characteristic	Symbol	Value	Unit	Notes
Junction temperature	TJ	-40 to 105	°C	
Note: 1. Parts with TC suffix only.				

Freescale Semiconductor, Inc.

Ordering Information

The following table provides the ordering information for the PID7t-603e part numbers described herein.

Ordering Information	for the PID7t-603e	Microprocesso
----------------------	--------------------	---------------

Package Type	Device Rev	Process	Mask Code	CPU Frequency (MHz)	Motorola Part Number
255	2.1	PPC3.0	2H93J	166	MPC603RRX166LC
CBGA				200	MPC603RRX200LC
				233	MPC603RRX233LC
				266	MPC603RRX266LC
				300	MPC603RRX300LC
				166	MPE603RRX166LC
				200	MPE603RRX200LC
				233	MPE603RRX233LC
				266	MPE603RRX266LC
				300	MPE603RRX300LC
				200	MPC603RRX200TC
				266	MPC603RRX266TC

Part Marking

This section provides information on Motorola device marking standards. Parts are marked as the example shown below.

Notes:

MMMMMM is the 6-digit mask number

ATWLYYWWA is the traceability code

CCCCC is the country of assembly (this space is left blank if parts are assembled in the United States)

Part Marking for BGA Devices

Information in this document is provided solely to enable system and software implient copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license and of the applications inter det to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsicilaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized

For More Information On This Product, Go to: www.freescale.com