Data Sheet: Technical Data Rev. 1

WCT1011B

Supports MWCT1011BVLH

MWCT1011B

The WCT1011B is a wireless power transmitter controller that integrates all required functions for WPC "Qi" compliant wireless power transmitter design. It is an intelligent device that works with the NXP touch sensing technology or uses periodically analog PING to detect a mobile device for charging while gaining super low standby power. Once the mobile device is detected, the WCT101x controls the power transfer by adjusting the rail voltage, the phase difference, or the duty cycle of the power stage according to message packets sent by the mobile device.

To maximize the design freedom and product differentiation, the WCT1011B supports the extended power profile industrial/consumer power transmitter design (WPC MP-Ax types, MP-Bx types or customization) using the fixed operation frequency control methods such as rail voltage control, phase difference control or duty cycle control etc. by software based solution, which can support wireless charging with both extended power profile power receiver and baseline power profile power receiver. In addition, the easy-to-use FreeMASTER GUI tool has configuration, calibration and debugging functions to provide the user-friendly design experience and reduce time-to-market.

The WCT1011B includes a digital demodulation module to reduce the external components, an FSK modulation module to support two-way communication, a protection module to handle the over-voltage/current/temperature protection, an FOD module to protect from overheating by misplaced metallic foreign objects, and general CAN/IIC/SCI/SPI interfaces for external communications. It also handles any abnormal condition and operational status and provides comprehensive indicator outputs for robust system design.

Features

- Compliant with the latest version Wireless Power Consortium (WPC) power class 0 specification power transmitter design.
- Supports wide transmitter DC input voltage range of 5 V to 24 V.
- · Integrated digital demodulation.
- Supports two-way communication, transmitter to receiver by FSK and receiver to transmitter by ASK.
- Supports Q factor detection and calibrated power loss based Foreign Object Detection (FOD) framework.
- · Supports low standby power.
- Supports operation frequency dithering technology to eliminate interference with specific frequency band electronic devices.

- Supports CAN/IIC/SCI/SPI interfaces.
- LED for system status indication.
- Over-voltage/current/temperature protection.
- Software based solution to provide maximum design freedom and product differentiation.
- Qualified to AEC-Q100 Test Group A & B

Applications

- Industrial/Consumer Extended Power Profile Power Transmitter:
 - WPC compliant or customer properties

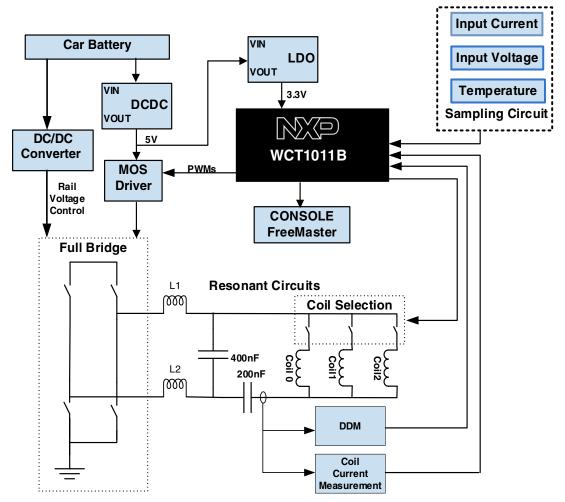


Figure 1. Wireless Charging System Functional Diagram

Table of Contents

1	Devi	ce Configuration	4	7.7	Supply Current Characteristics	5
2	Over	view	. 5	7.8	Power-On Reset, Low Voltage Detection	
	2.1	Features	5		Parameters	52
	2.2	Architecture block diagram	. 11	7.9	Voltage Regulator Specifications	50
3	Sign	al Connection Descriptions	. 14	7.1	0 AC Electrical Characteristics	53
	3.1	Pin allocations by functional group	. 14	7.1	1 Enhanced Flex PWM Characteristics	54
	3.2	Pin table sorted by function	14	7.1	2 Flash Memory Characteristics	54
	3.3	Signal and pin descriptions	16	7.1	3 External Clock Operation Timing Requirements	5
	3.4	Pin Assignment	24	7.1	4 Phase Locked Loop Timing	5
4	Mem	ory maps	25	7.1	5 External Crystal or Resonator Requirement	56
	4.1	Program Map	. 25	7.1	6 Relaxation Oscillator Timing	56
	4.2	Data map	. 26	7.1	7 Reset, Stop, Wait, Mode Select, and Interrupt	
	4.3	Interrupt Vector Table and Reset Vector	. 27		Timing	57
	4.4	Peripheral Memory-Mapped Registers	. 28	7.1	8 Queued Serial Peripheral Interface (SPI) Timing	58
	4.5	EOnCE Memory Map	29	7.1	9 Queued Serial Communication Interface (SCI)	
5	Gene	eral system control	. 30		Timing	62
	5.1	Power pins	. 30	7.2	20 Modular/Scalable Controller Area Network	
	5.2	Reset	. 31		(MSCAN)	60
	5.3	On-chip clock synthesis	. 31	7.2	21 Inter-Integrated Circuit Interface (I2C) Timing	60
	5.4	Interrupt controller	34	7.2	2 JTAG Timing	64
	5.5	System Integration Module (SIM)		7.2	23 Quad Timer Timing	6
	5.6	Inter-module connections	36	7.2	Analog-to-Digital Converter (ADC) Parameters	66
	5.7	Joint Test Action Group (JTAG)/Enhanced On-Chip		7.2	25 Digital-to-Analog Converter (DAC) Parameters	68
		Emulator (EOnCE)	42	7.2	26 5-Bit Digital-to-Analog Converter (DAC) Parameters	s.69
6	Secu	ırity features	. 43	7.2	7 HSCMP Specifications	70
	6.1	Operation with security enabled	43	7.2	28 Optimize Power Consumption	70
	6.2	Flash lock and unlock mechanisms	. 43	8 De	sign Considerations	72
	6.3	Product analysis	45	8.1	Thermal Design Considerations	72
7	Spec	cifications	. 45	8.2	P. Electrical Design Considerations	74
	7.1	General characteristics	. 45	9 Ord	dering Information	7!
	7.2	Absolute Maximum Ratings	. 46	10 Pa	ckage Mechanical Outline Drawings	76
	7.3	ESD Protection and Latch-up Immunity	47	10.	.1 64-pin LQFP Package	76
	7.4	Thermal characteristics			vision history	
	7.5	Recommended Operating Conditions	49	1 Inte	errupt Vector Table	78
	7.6	DC Electrical Characteristics				

1 Device Configuration

Feature WCT1011B							
	Operating frequency (MHz)	60					
	120						
Flash	memory size (KB) with 512 words per page	64					
	RAM size (KB)	8					
Enhanced Flex PWM	High resolution NanoEdge PWM (520 ps res.)	6					
(eFlexPWM)	Enhanced Flex PWM with Input Capture	3					
	PWM Fault Inputs (from Crossbar Input)	4					
12-b	it ADC with x1, 2x, 4x Programmable Gain	2 × 8Ch					
Analog con	nparators (ACMP) each with integrated 5-bit DAC	3					
	12-bit DAC	1					
	Cyclic Redundancy Check (CRC)	Yes					
	Inter-Integrated Circuit (IIC) / SMBus	2					
Qı	ueued Serial peripheral Interface (QSPI)	1					
High speed	Queued Serial Communications Interface (QSCI) ¹	2					
	Controller Area Network (MSCAN)	1					
High	Speed 16-bit multi-purpose timers (TMR) ¹	8					
Compu	tter operating properly (COP) watchdog timer	Yes					
Integrate	ed Power-On Reset and low voltage detection	Yes					
	Phase-locked loop (PLL)	Yes					
8 MHz	z (400 kHz at standby mode) on-chip ROSC	Yes					
	Crystal/resonator oscillator	Yes					
Cross bar	Input pins	6					
	Output pins	6					
	General-purpose I/O (GPIO) ²	54					
IEEE 11	49.1 Joint Test Action Group (JTAG) interface	Yes					
	Enhanced on-chip emulator (EOnCE)	Yes					
	Operating temperature range	-40°C to 105°C					
	Package	64LQFP					

^{1.} Can be clocked by high speed peripheral clock up to 120 MHz.

^{2.} Shared with other function pins

2 Overview

2.1 Features

2.1.1 Core

- Efficient 56800E digital signal processor (DSP) engine with dual Harvard architecture
 - Three internal address buses
 - Four internal data buses
- As many as 60 million instructions per second (MIPS) at 60 MHz core frequency
- 155 basic instructions in conjunction with up to 20 address modes
- 32-bit internal primary data buses supporting 8-bit, 16-bit, and 32-bit data movement, addition, subtraction, and logical operation
- Single-cycle 16 × 16-bit parallel multiplier-accumulator (MAC)
- Four 36-bit accumulators, including extension bits
- 32-bit arithmetic and logic multi-bit shifter
- Parallel instruction set with unique DSP addressing modes
- Hardware DO and REP loops
- Instruction set support for DSP and controller functions
- Controller-style addressing modes and instructions for compact code
- Efficient C compiler and local variable support
- Software subroutine and interrupt stack with depth limited only by memory
- JTAG/enhanced on-chip emulation (EOnCE) for unobtrusive, processor speed-independent, real-time debugging

2.1.2 Operating Range

- 3.0 V to 3.6 V operation (power supplies and I/O)
- From power-on-reset: approximately 2.7 V to 3.6 V
- Ambient temperature operating range: -40 °C to +105 °C

2.1.3 Memory

• Dual Harvard architecture that permits as many as three simultaneous accesses to program and data memory

- 64 KB (32K \times 16) on-chip flash memory with 2048 bytes (1024 \times 16) page size
- 8 KB $(4K \times 16)$ on-chip RAM with byte addressable
- EEPROM emulation capability using flash
- Support for 60 MHz program execution from both internal flash and RAM memories
- Flash security and protection that prevent unauthorized users from gaining access to the internal flash

2.1.4 Interrupt Controller

- Five interrupt priority levels:
 - Three user-programmable priority levels for each interrupt source: Level 0, 1, 2
 - Unmaskable level 3 interrupts include: illegal instruction, hardware stack overflow, misaligned data access, and SWI3 instruction
 - Maskable level 3 interrupts include: EOnCE step counter, EOnCE breakpoint unit, and EOnCE trace buffer
 - Lowest-priority software interrupt: level LP
- Nested interrupts: higher-priority level interrupt request can interrupt lower priority interrupt subroutine
- Two programmable fast interrupt that can be assigned to any interrupt source
- Notification to system integration module (SIM) to restart clock out of wait and stop states
- Can relocate interrupt vector table
- The core manages the masking of interrupt priority levels

2.1.5 Peripherals

- One Enhanced Flex Pulse Width Modulator (eFlexPWM) module
 - Nine output channels
 - 16 bits of resolution for center, edge aligned, and asymmetrical PWMs
 - Each complementary pair can operate with its own PWM frequency based and deadtime values
 - 4 Time base
 - Independent top and bottom deadtime insertion
 - PWM outputs can operate as complementary pairs or independent channels
 - Independent control of both edges of each PWM output
 - 6-channel NanoEdge high resolution PWM
 - Fractional delay for enhanced resolution of the PWM period and edge placement

- Arbitrary eFlexPWM edge placement PWM phase shifting
- NanoEdge implementation: 520 ps PWM frequency resolution
- 3-channel PWM with full input capture features:
 - Three PWM Channels PWMA, PWMB, and PWMX
 - Enhanced input capture functionality
- Synchronization to external hardware or other PWM supported
- Double buffered PWM registers:
 - Integral reload rates from 1 to 16
 - Half-cycle reload capability
- Multiple output trigger events can be generated per PWM cycle through hardware
- Support for double switching PWM outputs
- Up to four fault inputs can be assigned to control multiple PWM outputs
 - Programmable filters for fault inputs
- Independently programmable PWM output polarity
- Individual software-control for each PWM output
- All outputs can be programmed to change simultaneously via a FORCE_OUT event
- PWMX pin can optionally output a third PWM signal from each submodule
- Channels not used for PWM generation can be used for buffered output compare functions
- Channels not used for PWM generation can be used for input capture functions
- Enhanced dual-edge capture functionality
- Option to supply the source for each complementary PWM signal pair from any of the following:
 - external digital pin
 - internal timer channel
 - external ADC input, taking into account values set in ADC high and low limit registers
- Two independent 12-bit analog-to-digital converters (ADCs):
 - 2×8 channel external inputs
 - Built-in x1, x2, x4 programmable gain pre-amplifier
 - Maximum ADC clock frequency: up to 10 MHz
 - Single conversion time of 8.5 ADC clock cycles $(8.5 \times 100 \text{ ns} = 850 \,\mu\text{s})$
 - Additional conversion time of 6-ADC clock cycles ($6 \times 100 \text{ ns} = 600 \text{ ns}$)
 - Sequential, parallel, and independent scan mode
 - First 8 samples have Offset, Limit and Zero-crossing calculation supported
 - ADC conversions can be synchronized by eFlexPWM and timer modules through internal cross bar module

WCT1011B, Rev. 1, 06/2021

- Simultaneous and software triggering conversions
- Multi-triggering mode with programmable a number of conversions on each trigger
- Inter-module Crossbar Switch (XBAR)
 - Programmable internal module connections between and among the eFlexPWM, ADCs, Quad Timers, 12-bit DAC, HSCMPs, and package pins
 - User-defined input/output pins for PWM fault inputs, Timer input/output, ADC triggers, and Comparator outputs
- Three analog comparators (CMPs):
 - Selectable input source includes external pins, internal DACs
 - Programmable output polarity
 - Output can drive timer input, eFlexPWM fault input, eFlexPWM source, external pin output, and trigger ADCs
 - Output falling and rising edge detection able to generate interrupts
 - 32-tap programmable voltage reference per comparator
- One 12-bit digital-to-analog converter (12-bit DAC)
 - 12-bit resolution
 - Power down mode
 - Output can be routed to an internal comparator or externally off the device
- Two four-channel 16-bit multi-purpose timer (TMR) modules
 - Four independent 16-bit counter/timers with cascading capability per module
 - Up to 120 MHz operating clock
 - Each timer has capture and compare and quadrature decoder capability
 - Up to 12 operating modes
 - Four external inputs and two external outputs
- Two queued serial communication interface (QSCI) modules with LIN slave functionality
 - Up to 120 MHz operating clock
 - Four-byte-deep FIFOs available on both transmit and receive buffers
 - Full-duplex or single-wire operation
 - Programmable 8- or 9-bit data format
 - Two receiver wakeup methods:
 - Idle line
 - Address mark
 - 1/16 bit-time noise detection
 - Support LIN slave operation
- One queued serial peripheral interface (QSPI) module
 - Full-duplex operation
 - Four-word deep FIFOs available on both transmit and receive buffers
 - Master and slave modes

- Programmable length transactions (2 to 16 bits)
- Programmable transmit and receive shift order (MSB as first or last bit transmitted)
- Maximum slave module frequency = module clock frequency/2
- 13-bit baud rate divider for low speed communication
- Two inter-integrated circuit (I²C) ports
 - Operation at up to 400 kbps
 - Master and slave operation
 - 10-bit address mode and broadcasting mode
 - SMBus, Version 2
- One Modular/Scalable Controller Area Network (MSCAN) module
 - Fully compliant with CAN protocol Version 2.0 A/B
 - Standard and extended data frames
 - Data rate up to 1 Mbps
 - Five receive buffers and three transmit buffers
- Computer operating properly (COP) watchdog timer that can select different clock sources:
 - Programmable prescaler and timeout period
 - Programmable wait, stop, and partial powerdown mode operation
 - Causes loss of reference reset 128 cycles after loss of reference clock to the PLL is detected
 - Choice of clock sources from four sources for EN60730 and IEC61508:
 - On-chip relaxation oscillator
 - External crystal oscillator/external clock source
 - System clock (IP bus to 60 MHz)
- Power supervisor (PS) / Power management controller (PMC)
 - Internal linear regulator for digital and analog circuitry to lower cost and reduce noise
 - Integrated low voltage detection to generate warning interrupt if VDD is below low voltage detection (LVI) threshold
 - Integrated power-on reset (POR):
 - Reliable reset process during power-on procedure
 - POR is released after VDD passes low voltage detection (LVI) threshold
 - Integrated brown-out reset
 - Run, wait, and stop modes
- Phase lock loop (PLL) providing a high-speed clock to the core and peripherals
 - 2x system clock provided to Quad Timers and SCIs
 - Loss of lock interrupt
 - Loss of reference clock interrupt
- Clock sources:

- Internal relaxation oscillator with two user selectable frequencies: 400 kHz for low speed mode, 8 MHz for normal operation
- External clock: crystal oscillator, ceramic resonator, and external clock source
- Cyclic Redundancy Check (CRC) Generator
 - Hardware CRC generator circuit using 16-bit shift register
 - CRC16-CCITT compliancy with $x^{16} + x^{12} + x^5 + 1$ polynomial
 - Error detection for all single, double, odd, and most multi-bit errors
 - Programmable initial seed value
 - High-speed hardware CRC calculation
 - Optional feature to transpose input data and CRC result via transpose register, required on applications where bytes are in LSb (Least Significant bit) format.
- Up to 54 general-purpose I/O (GPIO) pins
 - 5 V tolerant I/O
 - Individual control for each pin to be in peripheral or GPIO mode
 - Individual input/output direction control for each pin in GPIO mode
 - Individual control for each output pin to be in push-pull mode or open-drain mode
 - Hysteresis and configurable pullup device on all input pins
 - Ability to generate interrupt with programmable rising or falling edge and software interrupt
 - Configurable drive strength: 4 mA / 8 mA sink/source current
- JTAG/EOnCE debug programming interface for real-time debugging
 - IEEE 1149.1 Joint Test Action Group (JTAG) interface
 - EOnCE interface for real-time debugging

2.1.6 Power Saving Features

- Two low-power modes:
 - Low-speed run, wait, and stop modes: 200 kHz IP bus clock provided by ROSC
 - Partial power-down mode
- Low-power external oscillator for use in any low-power mode to provide accurate clock to active peripherals
- Low power real-time counter for use in run, wait, and stop modes with internal and external clock sources
- 32 µs typical wakeup time from partial power down modes
- Each peripheral can be individually disabled to save power

2.2 Architecture block diagram

The controller's architecture appears in the following two figures. The first figure illustrates how the 56800E core system buses communicate with internal memories and the IP bus interface as well as the internal connections among the units of the 56800E core.

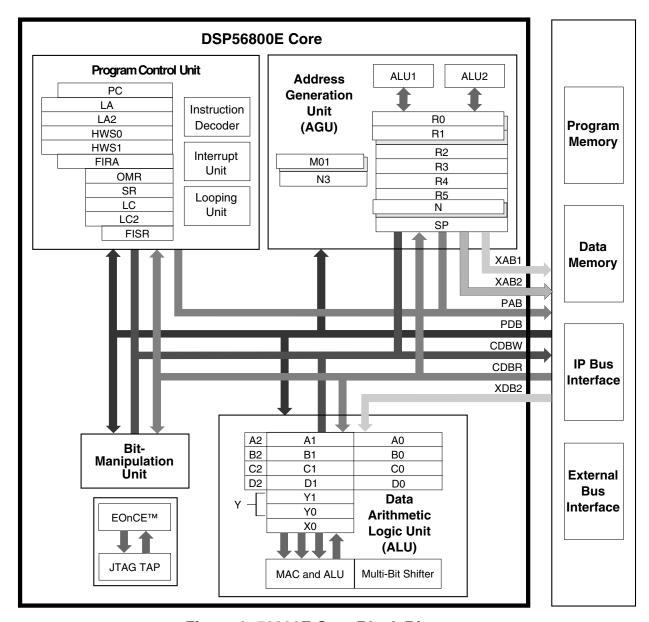


Figure 2. 56800E Core Block Diagram

Features

The second figure shows the peripherals and control blocks connected to the IP bus bridge. All functional pins on this device are multiplexed with one of the GPIO ports. To use one of the pins as a peripheral pin, enable the peripheral function by programming the corresponding bit in the GPIO port's peripheral enable register. If a pin is multiplexed with different peripheral functions, control the selection of the peripheral function by using one of the GPIO peripheral select registers in the System Integration Module (SIM). Refer to the SIM chapter in the device's reference manual for more detailed information about which signals are multiplexed with those of other peripherals.

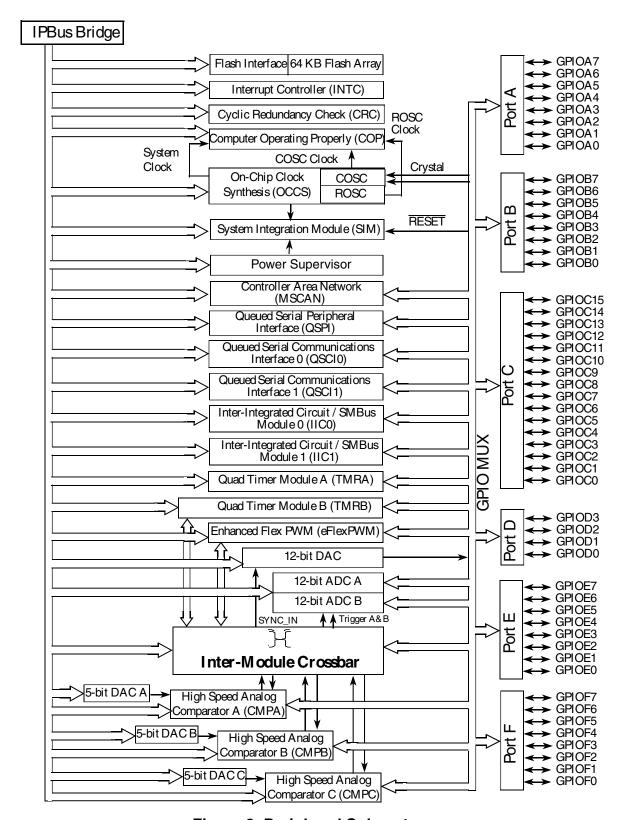


Figure 3. Peripheral Subsystem

3 Signal Connection Descriptions

3.1 Pin allocations by functional group

Functional group	Number of pins in 64 LQFP
Power inputs (V _{DD} , V _{DDA} , V _{CAP})	6
Ground (V _{SS} , V _{SSA})	4
Reset ¹	1
Enhanced Flex Pulse Width Modulator (eFlexPWM) ports ¹	9
Queued Serial Peripheral Interface (SPI) ports ¹	4
Queued Serial Communications Interface 0&1 (QSCI0 & QSCI1) ports ¹	9
Inter-Integrated Circuit Interface 0&1 (I ² C0 and I ² C0) ports ¹	6
Analog-to-Digital Converter (ADC) inputs ¹	16
High Speed Analog Comparator inputs/outputs ¹	15
12-bit Digital-to-Analog Converter (DAC_12B) output	1
Quad Timer Module (TMRA & TMRB) ports ¹	8
Freescale's Scalable Controller-Area-Network (MSCAN) ¹	2
Inter-Module Cross Bar package inputs/outputs ¹	17
Clock ¹	4
JTAG/Enhanced On-Chip Emulation (EOnCE) ¹	4

^{1.} Pins may be shared with other peripherals. See the Pin table below.

3.2 Pin table sorted by function

64 LQFP	Primary	Alt 1	Alt 2	Alt 3
1	GPIOD2	TCK		
2	GPIOD4		RESET	
3	GPIOC0		XTAL/ CLKIN	
4	GPIOC1		EXTAL	
5	GPIOC2	TB0	TXD0	XB_IN2
6	GPIOF8	TB1	RXD0	
7	GPIOC3	TA0	RXD0	CMPA_O
8	GPIOC4	TA1		CMPB_O
9	GPIOA7	ANA7		
10	GPIOA6	ANA6		

64 LQFP	Primary	Alt 1	Alt 2	Alt 3
11	GPIOA5	ANA5		
12	GPIOA4	ANA4		
13	GPIOA0	ANA0&VREFHA		CMPA_P2/ CMPC_O
14	GPIOA1	ANA1&VREFLA		CMPA_M0
15	GPIOA2	ANA3		CMPA_M1
16	GPIOA3	ANA3		CMPA_M2
17	GPIOB7	ANB7		CMPB_M2
18	GPIOC5		DACO	XB_IN7
19	GPIOB6	ANB6		CMPB_M1
20	GPIOB5	ANB5		CMPC_M2
21	GPIOB4	ANB4		CMPC_M1
22	VDDA	VDDA		
23	VSSA	VSSA		
24	GPIOB0	ANB0&		CMPB_P2
25	GPIOB1	ANB1&VREFLB		CMPB_M0
26	VCAP	VCAP		
27	GPIOB2	ANB2		CMPC_P2
28	GPIOB3	ANB3		CMPC_MO
29	VDD	VDD		
30	VSS	VSS		
31	GPIOC6	SS	XB_IN3	TA2
32	GPIOC7		TXD0	SS
33	GPIOC8		RXD0	MISO
34	GPIOC9		SCLK	XB_IN4
35	GPIOC10		MOSI/ MISO	XB_IN5
36	GPIOF0			XB_IN6
37	GPIOC11	SCL1	TXD1	CANTX
38	GPIOC12	SDA1	RXD1	CANRX
39	GPIOF2	SCL1		XB_OUT2
40	GPIOF3	SDA1		XB_OUT3
41	GPIOF4		TXD1	XB_OUT4
42	GPIOF5		RXD1	XB_OUT5
43	VSS	VSS		
44	VDD	VDD		
45	GPIOE0	TA3	PWM0B	
46	GPIOE1	TA3	PWM0A	
47	GPIOE2	TA3	PWM1B	
48	GPIOE3	TA3	PWM1A	

64 LQFP	Primary	Alt 1	Alt 2	Alt 3
49	GPIOC13	TA3		XB_IN6
50	GPIOF1		CLKO	XB_IN7
51	GPIOE4		PWM2B	XB_IN2
52	GPIOE5		PWM2A	XB_IN3
53	GPIOE6		PWM3B	XB_IN4
54	GPIOE7		PWM3A	XB_IN5
55	GPIOC14	SDA0		XB_OUT0
56	GPIOC15	SCL0		XB_OUT1
57	VCAP	VCAP		
58	GPIOF6	TB2	PWM3X	
59	GPIOF7	TB3		
60	VDD	VDD		
61	VSS	VSS		
62	GPIOD1	TDO		
63	GPIOD3	TMS		
64	GPIOD0	TDI		

3.3 Signal and pin descriptions

After reset, each pin is configured for its primary function (listed first). Any alternative functionality, shown in parentheses, must be programmed through the GPIO module peripheral enable registers (GPIO_x_PER) and the SIM module GPIO peripheral select (GPSx) registers.

Table 1. Signal descriptions

Signal Name	Pin in 64 LQFP	Туре	State During Reset	Signal Description
V_{DD}	29	Supply	Supply	I/O Power — Supplies 3.3 V power to the chip I/O interface.
V_{DD}	44			
V_{DD}	60			
V _{SS}	30	Supply	Supply	I/O Ground — Provide ground for the device I/O interface.
V _{SS}	43			
V _{SS}	61			
V_{DDA}	22	Supply	Supply	Analog Power — Supplies 3.3 V power to the analog modules. It must be connected to a clean analog power supply.
V _{SSA}	23	Supply	Supply	Analog Ground — Supplies an analog ground to the analog modules. It must be connected to a clean power supply.

Table 1. Signal descriptions (continued)

Signal Name	Pin in 64 LQFP	Туре	State During Reset	Signal Description
V _{CAP}	26 57	Supply	Supply	Connect a 2.2uF or greater bypass capacitor between this pin and V_{SS} to stabilize the core voltage regulator output required for proper device operation. See the section "Electrical Design Considerations".
TDI	64	Input	Input, internal pullup	Test Data Input — Provides a serial input data stream to the JTAG/EOnCE port. It is sampled on the rising edge of TCK and has an internal pullup resistor. After reset, the default state is TDI.
(GPIOD0)		Input/ Output	enabled	Port D GPIO — Can be individually programmed as an input or output GPIO pin.
TDO	62	Output	Output	Test Data Output — This tri-stateable pin provides a serial output data stream from the JTAG/EOnCE port. It is driven in the shift-IR and shift-DR controller states, and it changes on the falling edge of TCK. After reset, the default state is TDO
(GPIOD1)		Input/ Output		Port D GPIO — Can be individually programmed as a GPIO input or output pin
TCK	1	Input	Input, internal pullup enabled	Test Clock Input — This input pin provides a gated clock to synchronize the test logic and shift serial data to the JTAG/EOnCE port. The pin is connected internally to a pullup resistor. A Schmitt-trigger input is used for noise immunity. After reset, the default state is TCK
(GPIOD2)		Input/ Output		Port D GPIO — Can be individually programmed as an input or output GPIO pin.
TMS	63	Input	Input, internal pullup enabled	Test Mode Select Input — Used to sequence the JTAG TAP controller state machine. It is sampled on the rising edge of TCK and has an internal pullup resistor. After reset, the default state is TMS. NOTE: Always tie the TMS pin to V _{DD} through a 2.2K resistor if need to keep on-board debug capability. Otherwise, directly tie to V _{DD} .
(GPIOD3)		Input/ Output	_	Port D GPIO — Can be individually programmed as an input or output GPIO pin.
RESET	2	Input	Input, internal pullup enabled	Reset — A direct hardware reset on the processor. When RESET is asserted low, the device is initialized and placed in the reset state. A Schmitt-trigger input is used for noise immunity. The internal reset signal is deasserted synchronous with the internal clocks after a fixed number of internal clocks. After reset, the default state is RESET.
(GPIOD4)		Input/ Open-drain Output		Port D GPIO — Can be individually programmed as an input or opendrain output pin. RESET functionality is disabled in this mode and the device can be reset only through POR, COP reset, or software reset.
GPIOA0	13	Input/ Output	Input, internal	Port A GPIO — Can be individually programmed as an input or output GPIO pin.
(ANA0& VREFHA& CMPA_P2)		Input pullup enabled	pullup enabled	ANA0 and VREFHA and CMPA_P2 — Analog input to channel 0 of ADCA and analog references high of ADCA and positive input 2 of analog comparator A. After reset, the default state is GPIOA0.
(CMPC_O)		Output		Analog comparator C output — When used as an analog input, the signal goes to the ANA0 and VREFHA and CMPA_P2. The ADC control register configures this input as ANA0 or VREFHA
GPIOA1	14	Input/ Output	Input, internal	Port A GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOA1.

Table 1. Signal descriptions (continued)

Signal Name	Pin in 64 LQFP	Туре	State During Reset	Signal Description
(ANA1& VREFLA& CMPA_M0)		Input	pullup enabled	ANA1 and VREFLA and CMPA_M0 — Analog input to channel 1 of ADCA and analog references low of ADCA and negative input 0 of analog comparator A. When used as an analog input, the signal goes to the ANA1 and VREFLA and CMPA_M0. The ADC control register configures this input as ANA1 or VREFLA
GPIOA2	15	Input/ Output	Output internal	Port A GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOA2.
(ANA2& CMPA_M1)		Input	pullup enabled	ANA2 and CMPA_M1 — Analog input to channel 2 of ADCA and negative input 1 of analog comparator A. When used as an analog input, the signal goes to both ANA2 and CMPA_M1.
GPIOA3	16	Input/ Output	Input, internal	Port A GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOA3.
(ANA3& CMPA_M2)		Input	pullup enabled	ANA3 and CMPA_M2 — Analog input to channel 3 of ADCA and negative input 2 of analog comparator A.
GPIOA4	12 Input/ Output		internal	Port A GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOA4.
(ANA4)		Input	pullup enabled	ANA4 — Analog input to channel 4 of ADCA.
GPIOA5	11 Input/ Input, Output internal		Port A GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOA5.	
(ANA5)		Input	pullup enabled	ANA5 — Analog input to channel 5 of ADCA.
GPIOA6	10	Input/ Output	Input, internal	Port A GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOA6.
(ANA6)		Input	pullup enabled	ANA6 — Analog input to channel 5 of ADCA.
GPIOA7	9	Input/ Output	Input, internal	Port A GPIO — Can be individually programmed as an input or output pin. After reset, the default state is GPIOA7.
(ANA7)		Input	pullup enabled	ANA7 — Analog input to channel 7 of ADCA.
GPIOB0	24	Input/ Output	Input, internal	Port B GPIO — Can be individually programmed as an input or output pin. After reset, the default state is GPIOB0.
(ANB0& VREFHB& CMPB_P2)		Input	pullup enabled	ANB0 and VREFHB and CMPB_P2 — Analog input to channel 0 of ADCB and analog references high of ADCB and positive input 2 of analog comparator B. When used as an analog input, the signal goes to the ANB0 and VREFHB and CMPB_P2. The ADC control register configures this input as ANB0 or VREFHB.
GPIOB1	25	Input/ Output	Input, internal	Port B GPIO — Can be individually programmed as an input or output pin. After reset, the default state is GPIOB1.
(ANB1& VREFLB& CMPB_M0)		Input	pullup enabled	ANB1 and VREFLB and CMPB_M0 — Analog input to channel 1 of ADCB and analog references low of ADCB and negative input 0 of analog comparator B. When used as an analog input, the signal goes to the ANB1 and VREFLB and CMPB_M0. The ADC control register configures this input as ANB1 or VREFLB.
GPIOB2	27	Input/ Output	Input, internal	Port B GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOB2.

Table 1. Signal descriptions (continued)

Signal Name	Pin in 64 LQFP	Туре	State During Reset	Signal Description
(ANB2& CMPC_P2)		Input	pullup enabled	ANB2 and CMPC_P2 — Analog input to channel 2 of ADCB and positive input 2 of analog comparator C. When used as an analog input, the signal goes to both ANB2 and CMPC_P2.
GPIOB3	28	Input/ Output	Input, internal	Port B GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOB3.
(ANB3& CMPC_M0)		Input	pullup enabled	ANB3 and CMPC_M0 — Analog input to channel 3 of ADCB and negative input 0 of analog comparator C.
GPIOB4	21	Input/ Output	Input, internal	Port B GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOB4.
(ANB4& CMPC_M1)		Input	pullup enabled	ANB4 and CMPC_M1 — Analog input to channel 4 of ADCB and negative input 1 of analog comparator C.
GPIOB5	20	Input/ Output	Input, internal	Port B GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOB5.
(ANB5& CMPC_M2)		Input	pullup enabled	ANB5 and CMPC_M2 — Analog input to channel 5 of ADCB and negative input 2 of analog comparator C.
GPIOB6	19	Input/ Output	Input, internal pullup enabled	Port B GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOB6.
(ANB6& CMPB_M1)		Input		ANB6 and CMPB_M1 — Analog input to channel 6 of ADCB and negative input 1 of analog comparator B.
GPIOB7	17	Input/ Output	Input, internal	Port B GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOB7.
(ANB7& CMPB_M2)		Input	pullup enabled	ANB7 and CMPB_M2 — Analog input to channel 7 of ADCB and negative input 2 of analog comparator B.
GPIOC0	3	Input/ Output	Input, internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC0.
XTAL		i i Anaioo ii	pullup enabled	XTAL — External Crystal Oscillator Output. This output connects the internal crystal oscillator output to an external crystal or ceramic resonator.
CLKIN		Input		CLKIN — Serves as an external clock input.1
GPIOC1	4	Input/ Output	Input, internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC1.
(EXTAL)		Analog Input	pullup enabled	EXTAL — External Crystal Oscillator Input. This input connects the internal crystal oscillator input to an external crystal or ceramic resonator.
(CLKIN)		Input		CLKIN — Serves as an external clock input.
GPIOC2	5	Input/ Output	Input, internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC2.
(TXD0)		Output	pullup enabled	TXD0 — The SCI0 transmit data output or transmit/receive in single-wire operation.
(TB0)		Input/ Output		TB0 — Quad timer module B channel 0 input/output.
(XB_IN2)		Input		XB_IN2 — Crossbar module input 2.

Table 1. Signal descriptions (continued)

Signal Name	Pin in 64 LQFP	Туре	State During Reset	Signal Description
(CLKO)		Output		CLKO — This is a buffered clock output; the clock source is selected by clockout select (CLKOSEL) bits in the clock output select register (CLKOUT) of the SIM.
GPIOC3	7	Input/ Output	Input, internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC3.
(TA0)		Input/ Output	pullup enabled	TA0 — Quad timer module A channel 0 input/output.
(CMPA_O)		Output		CMPA_O— Analog comparator A output
(RXD0)		Input		RXD0 — The SCI0 receive data input.
GPIOC4	8	Input/ Output	Input, internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC4.
(TA1)		Input/ Output	pullup enabled	TA0 — Quad timer module A channel 0 input/output.
(CMPB_O)		Output		CMPB_O— Analog comparator B output
GPIOC5	18	Input/ Input, Output internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC5.	
(DACO)		Analog Output	pullup enabled	DACO — 12bit Digital-to-Analog output.
(XB_IN7)		Input		XB_IN7 — Crossbar module input 7.
GPIOC6	31 Input/ Output	Input, internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC6	
(TA2)		Input/ Output	pullup enabled	TA2 — Quad timer module A channel 2 input/output.
(XB_IN3)		Input		XB_IN3 — Crossbar module input 3
(CMP_REF)		Analog Input	-	CMP_REF— Positive input 3 of analog comparator A and B and C.
GPIOC7	32	Input/ Output	Input, internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC7.
(SS)		Input/ Output	pullup enabled	SS — In slave mode, indicates to the SPI module that the current transfer is to be received.
(TXD0)		Output		TXD0 — The SCI0 transmit data output or transmit/receive in single-wire operation.
GPIOC8	33	Input/ Output	Input, internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC8.
(MISO)		Input/ Output	pullup enabled	Master in/slave out —In master mode, this pin serves as the data input. In slave mode, this pin serves as the data output. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected.
(RXD0)		Input		RXD0 — The SCI0 receive data input.
GPIOC9	34	Input/ Output	Input, internal pullup enabled	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC9.

Table 1. Signal descriptions (continued)

Signal Name	Pin in 64 LQFP	Туре	State During Reset	Signal Description
(SCLK)		Input/ Output		SPI serial clock — In master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input.
(XB_IN4)]	Input		XB_IN4 — Crossbar module input 4.
GPIOC10	35	Input/ Output	Input, internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC10.
(MOSI)		Input/ Output	pullup enabled	Master out/slave in — In master mode, this pin serves as the data output. In slave mode, this pin serves as the data input.
(XB_IN5)		Input		XB_IN4 — Crossbar module input 4.
(MISO)		Input/ Output		Master in/slave out — In master mode, this pin serves as the data input. In slave mode, this pin serves as the data output. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected.
GPIOC11	37	Input/ Output	Input, internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC11.
(CANTX)		Open-drain Output	pullup enabled	CAN transmit data output
(SCL1)		Input/ Open-drain Output		SCL1 — The I ² C1 serial clock.
(TXD1)		Output		TXD1 — The SCI1 transmit data output or transmit/receive in single wire operation.
GPIOC12	38	Input/ Output	Input, internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC12.
(CANRX)	1	Input	pullup	CAN receive data input
(SDA1)		Input/ Open-drain Output	enabled	SDA1 — The I ² C1 serial data line.
(RXD1)	1	Input	1	RXD1 — The SCI1 receive data input.
GPIOC13	49	Input/ Output	Input, internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC13.
(TA3)		Input/ Output	pullup enabled	TA3 — Quad timer module A channel 3input/output.
(XB_IN6)]	Input]	XB_IN6 — Crossbar module input 6
GPIOC14	55	Input/ Output	Input, internal	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC14.
(SDA0)		Input/ Open-drain Output	pullup enabled	SDA0 — The I ² C0 serial data line.
(XB_OUT0)]	Input		XB_OUT0 — Crossbar module Output 0.
GPIOC15	56	Input/ Output	Input, internal pullup enabled	Port C GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOC15.

Table 1. Signal descriptions (continued)

Signal Name	Pin in 64 LQFP	Туре	State During Reset	Signal Description
(SCL0)		Input/ Open-drain Output		SCL0 — The I ² C0 serial clock.
(XB_OUT1)		Input		XB_OUT1 — Crossbar module Output 1.
GPIOE0	45	Input/ Output	Input, internal	Port E GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOE0.
PWM0B		Input	pullup enabled	PWM0B — NanoEdge PWM submodule 0 output B.
GPIOE1	46	Input/ Output	Input, internal	Port E GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOE1.
(PWM0A)		Output	pullup enabled	PWM0A — NanoEdge PWM submodule 0 output B.
GPIOE2	47	Input/ Output	Input, internal	Port E GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOE2.
(PWM1B)		Output	pullup enabled	PWM1B — NanoEdge PWM submodule 1 output A.
GPIOE3	48	Input/ Output	Input, internal	Port E GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOE3.
(PWM1A)		Output	pullup enabled	PWM1A — NanoEdge PWM submodule 1 output A
GPIOE4	51 Input/ Output		Input, internal	Port E GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOE4.
(PWM2B)		Output	pullup enabled	PWM2B — NanoEdge PWM submodule 2 output B.
(XB_IN2)		Input	Chabled	XB_IN2 — Crossbar module input 2.
GPIOE5	52	Input/ Output	Input, internal	Port E GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOE5.
(PWM2A)		Output	pullup enabled	PWM2A — NanoEdge PWM submodule 2 output A.
(XB_IN3)		Input	enabled	XB_IN3 — Crossbar module input 3.
GPIOE6	53	Input/ Output	Input, internal	Port E GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOE6.
(PWM3B)		Input/ pullup enabled		PWM3B — Enhanced PWM submodule 3 output B or input capture B.
(XB_IN4)		Input		XB_IN4 — Crossbar module input 4.
GPIOE7	54	Input/ Output	Input, internal	Port E GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOE7.
(PWM3A)		Input/ Output	pullup enabled	PWM3A — Enhanced PWM submodule 3 output A or input capture A
(XB_IN5)	1	Input	1	XB_IN5 — Crossbar module input 5.
GPIOF0	36	Input/ Output	Input, internal	Port F GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOF0.
(XB_IN6)		Input	pullup enabled	XB_IN6 — Crossbar module input 6.
GPIOF1	50	Input/ Output	Input, internal	Port F GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOF1.

Table 1. Signal descriptions (continued)

Signal Name	Pin in 64 LQFP	Туре	State During Reset	Signal Description	
(CLKO)		Output	pullup enabled	.	
(XB_IN7)		Input		XB_IN6 — Crossbar module input 6	
GPIOF2	39	Input/ Output	Input, internal	Port F GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOF2.	
(SCL1)		Input/ Open-drain Output	pullup enabled	SCL1 — The I ² C1 serial clock.	
(XB_OUT2)		Output		XB_OUT2 — Crossbar module Output 2.	
GPIOF3	40	Input/ Output	Input, internal	Port F GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOF3.	
(SDA1)		Input/ Open-drain Output	pullup enabled	SDA1 — The I ² C1 serial data line.	
(XB_OUT3)		Output		XB_OUT3 — Crossbar module Output 3.	
GPIOF4	41	Input/ Output	Input, internal	Port F GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOF4.	
(TXD1)		Output	pullup enabled	TXD1 — The SCI1 transmit data output or transmit/receive in single wire operation.	
(XB_OUT4)		Output		XB_OUT4 — Crossbar module Output 4.	
GPIOF5	42	Input/ Input, output internal		Port F GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOF5.	
(RXD1)		Output	pullup enabled	RXD1 — The SCI1 receive data input.	
(XB_OUT5)		Output	onabioa	XB_OUT5 — Crossbar module Output 5.	
GPIOF6	58	Input/ Output	Input, internal	Port F GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOF6.	
(TB2)		Input/ pullup enabled		TB2 — Quad timer module Channel 2 input/output.	
(PWM3X)		Input/ Output		PWM3X — Enhanced PWM submodule 3 output X or input capture X.	
GPIOF7	59	Input/ Output	Input, internal	Port F GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOF7.	
(TB3)		Input/ Output	pullup enabled	TB3 — Quad timer module Channel 3 input/output.	
GPIOF8	6	Input/ Output	Input, internal	Port F GPIO — Can be individually programmed as an input or output GPIO pin. After reset, the default state is GPIOF8.	
(RXD0)		Input	pullup enabled	RXD0 — The SCI0 receive data input.	
(TB1)		Input/ Output	GIIADIEU	TB1 — Quad timer module B channel 1 input/output.	

^{1.} If CLKIN is selected as the device's external clock input, both the GPS_C0 bit in GPS1 and the EXT_SEL bit in the OCCS oscillator control register (OSCTL) must be set. Also, the crystal oscillator should be powered down.

WCT1011B, Rev. 1, 06/2021

3.4 Pin Assignment

Figure 4 shows the pin assignments of the 64-pin low-profile quad flat pack (64LQFP).

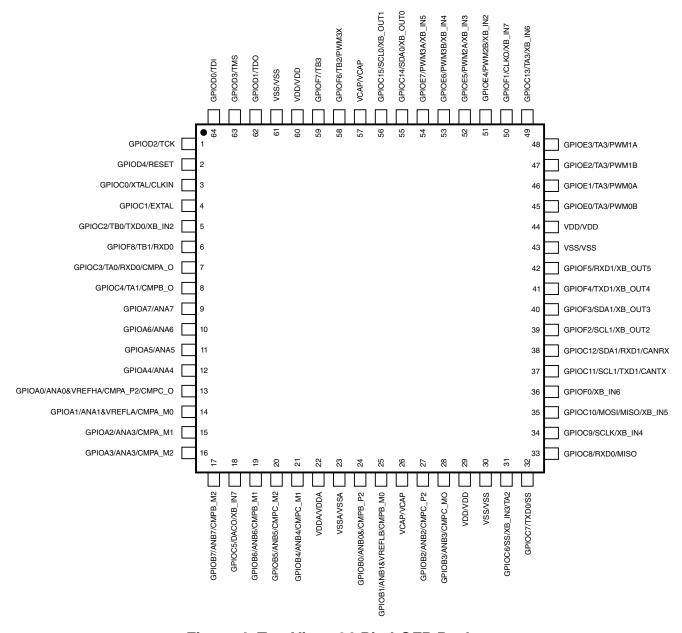


Figure 4. Top View: 64-Pin LQFP Package

4 Memory maps

The device is based on the 56800E core. It uses a dual Harvard-style architecture with two independent memory spaces for data and program. On-chip RAM is shared by both data and program spaces; flash memory is used only in program space.

This section provides memory maps for:

- Program address space, including the interrupt vector table
- Data address space, including the EOnCE memory and peripheral memory maps

Internal memory sizes for the device are summarized in the following table. Restrictions on Flash memory are identified in the "Use Restrictions" column of the table.

Internal Memory	Size	Use Restrictions
Program Flash (PFLASH)	32K × 16 or 64 KB	Erase/program via flash interface unit and word writes to CDBW
Unified RAM (RAM)	4K × 16 or 8 KB	Usable by the program and data memory spaces

4.1 Program Map

This device provides up to 64 KB internal flash memory. It primarily accesses through the program memory buses (PAB; PDB). PAB is used to select program memory addresses; instruction fetches are performed over PDB. Data can be read from and written to the program memory space through the primary data memory buses: CDBW for data write and CDBR for data read. Access time for accessing the program memory space over the data memory buses is longer than for accessing data memory space. The special MOVE instructions are provided to support these accesses. The benefit is that non-time-critical constants or tables can be stored and accessed in program memory.

The program memory map is shown in the following table.

Table 2. Program Memory Map at Reset

Begin/End Address ¹	Memory Allocation
P: 0x1F FFFF	RESERVED
P: 0x00 8800	

Table 2. Program Memory Map at Reset (continued)

Begin/End Address ¹	Memory Allocation
P: 0x00 8FFF	Internal RAM: ² 8 KB
P: 0x00 8000	
P: 0x00 7FFF	Internal program flash: 64 KB
P: 0x00 0000	 Interrupt vector table locates from 0x00 0000 to 0x00 0085 COP reset address = 0x00 0002 Boot location = 0x00 0000

^{1.} All addresses are 16-bit addresses.

4.2 Data map

This device contains dual access memory. It can be accessed from core primary data buses (XAB1, CDBW, CDBR) and secondary data buses (XAB2, XDB2). Addresses in data memory are selected on the XAB1 and XAB2 buses. Byte, word, and long data transfers occur on the 32-bit CDBR and CDBW buses. A second 16-bit read operation can be performed in parallel on the XDB2 bus.

Peripheral registers and on-chip JTAG/EOnCE controller registers are memory mapped into data memory access. A special direct address mode is supported for accessing a first 64-location in data memory by using a single word instruction.

The data memory map is shown in the following table.

Table 3. Data Memory Map

Begin/End Address ¹	Memory Allocation
X:0xFF FFFF	EOnCE
X:0xFF FF00	256 locations allocated
X:0xFF FEFF	RESERVED
X:0x01 0000	
X:0x00 FFFF	Internal peripherals
X:0x00 F000	4096 locations allocated
X:0x00 EFFF	RESERVED
X:0x00 9000	
X:0x00 8FFF	Internal data RAM alias
X:0x00 8000	
X:0x00 7FFF	RESERVED
X:0x00 1000	
X:0x00 0FFF	Internal data RAM 8 KB ²

^{2.} This RAM is shared with data space starting at address X: 0x00 0000.

Table 3. Data Memory Map

Begin/End Address ¹	Memory Allocation	
X:0x00 0000		

- 1. All addresses are 16-bit word addresses.
- 2. This RAM is shared with program space starting at P: 0x00 8000.

Internal RAM is also mapped into program space starting at P: 0x00 8000. This mapping eases online reprogramming of internal flash memory.

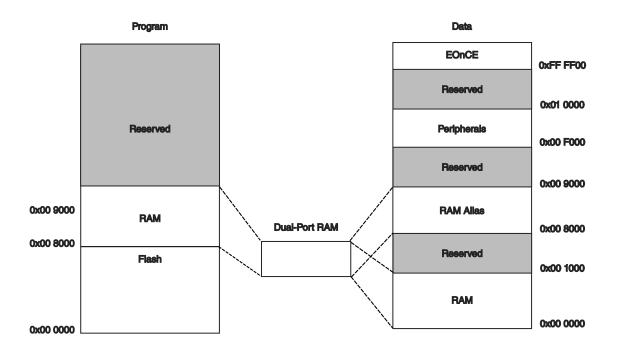


Figure 5. Dual-Port RAM Map

4.3 Interrupt Vector Table and Reset Vector

The location of the vector table is determined by the vector base address register (VBA). The value in this register is used as the upper 14 bits of the interrupt vector VAB[20:0]. The lower seven bits are determined based on the highest priority interrupt and are then appended to VBA before presenting the full VAB to the core. Refer to the device reference manual for details.

The reset startup addresses information is as below.

• The startup address is located at $0x00\ 0000$. The reset value of VBA is reset to a value of 0x0000 that corresponds to the address $0x00\ 0000$.

By default, the chip reset address and COP reset address correspond to vector 0 and 1 of the interrupt vector table. In these instances, the first two locations in the vector table must contain branch or JMP instructions. All other entries must contain JSR instructions.

The appendix "Interrupt Vector Table" provides the device's interrupt table contents and interrupt priority structure.

4.4 Peripheral Memory-Mapped Registers

The locations of on-chip peripheral registers are part of the data memory map on the 56800E series. These locations may be accessed with the same addressing modes used for ordinary data memory. However, all peripheral registers should be read or written using word accesses only.

The following table summarizes the base addresses for the set of peripherals on the device. Peripherals are listed in order of the base address.

Table 4. Data Memory Peripheral Base Address Map Summary

Peripheral	Prefix	Base Address
Quad Timer A	TMRA	X:0x00 F000
Quad Timer B	TMRB	X:0x00 F040
Analog-to-Digital Converter	ADC	X:0x00 F080
Interrupt Controller	INTC	X:0x00 F0C0
System Integration Module	SIM	X:0x00 F0E0
Cross Bar Module	XBAR	X:0x00 F100
Computer Operating Properly	COP	X:0x00 F110
On-Chip Clock Synthesis	occs	X:0x00 F120
Power Supervisor / Power Management Controller	PS, or named PMC	X:0x00 F130
GPIO Port A	GPIOA	X:0x00 F140
GPIO Port B	GPIOB	X:0x00 F150
GPIO Port C	GPIOC	X:0x00 F160
GPIO Port D	GPIOD	X:0x00 F170
GPIO Port E	GPIOE	X:0x00 F180
GPIO Port F	GPIOF	X:0x00 F190
12-bit Digital-to-Analog Converter	DAC	X:0x00 F1A0

Table 4. Data Memory Peripheral Base Address Map Summary (continued)

Peripheral	Prefix	Base Address
Analog Comparator A	СМРА	X:0x00 F1B0
Analog Comparator B	СМРВ	X:0x00 F1C0
Analog Comparator C	СМРС	X:0x00 F1D0
Queued Serial Communication Interface 0	QSCI0	X:0x00 F1E0
Queued Serial Communication Interface 1	QSCI1	X:0x00 F1F0
Queued Serial Peripheral Interface	QSPI	X:0x00 F200
Inter-Integrated Circuit 0	I ² C0	X:0x00 F210
Inter-Integrated Circuit 1	I ² C1	X:0x00 F220
Cyclic Redundancy Check Generator	CRC	X:0x00 F230
Comparator Voltage Reference A	REFA	X:0x00 F240
Comparator Voltage Reference B	REFB	X:0x00 F250
Comparator Voltage Reference C	REFC	X:0x00 F260
Enhanced Flex PWM Module	eFlexPWM	X:0x00 F300
Flash Memory Interface	FM	X:0x00 F400
Controller Area Network	MSCAN	X:0x00 F440

4.5 EOnCE Memory Map

Control registers of the EOnCE are located at the top of data memory space. These locations are fixed by the 56800E core. These registers can also be accessed through the JTAG port if flash security is not set. The following table lists all EOnCE registers necessary to access or control the EOnCE.

Table 5. EOnCE Memory Map

Address	Register Abbreviation	Register Name
X:0xFF FFFF	OTX1/ORX1	Transmit Register Upper Word
		Receive Register Upper Word
X:0xFF FFFE	OTX/ORX	Transmit Register
	(32 bits)	Receive Register
X:0xFF FFFD	OTXRXSR	Transmit and Receive Status and Control Register
X:0xFF FFFC	OCLSR	Core Lock/Unlock Status Register
X:0xFF FFFB- X:0xFF FFA1		Reserved
X:0xFF FFA0	OCR	Control Register
X:0xFF FF9F–X:0xFF FF9E	OSCNTR	Instruction Step Counter
	(24 bits)	

Table 5. EOnCE Memory Map (continued)

Address	Register Abbreviation	Register Name
X:0xFF FF9D	OSR	Status Register
X:0xFF FF9C	OBASE	Peripheral Base Address Register
X:0xFF FF9B	OTBCR	Trace Buffer Control Register
X:0xFF FF9A	OTBPR	Trace Buffer Pointer Register
X:0xFF FF99–X:0xFF FF98	ОТВ	Trace Buffer Register Stages
	(21-24 bits/stage)	
X:0xFF FF97–X:0xFF FF96	OBCR	Breakpoint Unit Control Register
	(24 bits)	
X:0xFF FF95–X:0xFF FF94	OBAR1	Breakpoint Unit Address Register 1
	(24 bits)	
X:0xFF FF93–X:0xFF FF92	OBAR2	Breakpoint Unit Address Register 2
	(32 bits)	
X:0xFF FF91–X:0xFF FF90	OBMSK	Breakpoint Unit Mask Register 2
	(32 bits)	
X:0xFF FF8F		Reserved
X:0xFF FF8E	OBCNTR	EOnCE Breakpoint Unit Counter
X:0xFF FF8D		Reserved
X:0xFF FF8C		Reserved
X:0xFF FF8B		Reserved
X:0xFF FF8A	OESCR	External Signal Control Register
X:0xFF FF89 –X:0xFF FF00		Reserved

5 General system control

General system control pertains to power pins, reset sources, interrupt sources, clock sources, the system integration module (SIM), ADC synchronization, and JTAG/EOnCE interfaces.

5.1 Power pins

 V_{DD} , V_{SS} and V_{DDA} , V_{SSA} are the primary power supply pins for the device. The voltage source supplies power to all internal peripherals, I/O buffer circuitry, and internal voltage regulators. The device has multiple internal voltages to provide regulated lower-voltage sources for the peripherals, core, memory, and internal relaxation oscillators.

Typically, at least two separate capacitors are across the power pins to bypass the glitches and provide bulk charge storage. In this case, a bulk electrolytic or tantalum capacitor, such as a 10 μ F tantalum capacitor, should provide bulk charge storage for the overall system, and a 0.1 μ F ceramic bypass capacitor should be located as near to the device power pins as is practical to suppress high-frequency noise. Each pin must have a bypass capacitor for optimal noise suppression.

 V_{DDA} and V_{SSA} are the analog power supply pins for the device. This voltage source supplies power to the ADC, PGA, and CMP modules. A 0.1 μ F ceramic bypass capacitor should be located as near to the device V_{DDA} and V_{SSA} pins as is practical to suppress high-frequency noise. V_{DDA} and V_{SSA} are also the voltage reference high and voltage reference low inputs, respectively, for the ADC module.

5.2 Reset

Resetting the device provides a way to start processing from a known set of initial conditions. During reset, most control and status registers are forced to initial values, and the program counter is loaded from the reset vector. Internal peripheral modules are disabled and I/O pins are initially configured at the reset status shown in the "Signal descriptions" table.

The device has the following sources for reset:

- Power-on reset (POR)
- Partial power-down reset (PPD)
- Low-voltage detect (LVD)
- External pin reset (EXTR)
- Computer operating properly loss of reference reset (COP_LOR)
- Computer operating properly time-out reset (COP_CPU)
- Software reset (SWR)

Each of these sources has an associated bit in the reset status register (RSTAT) in the system integration module (SIM).

The external pin reset function is shared with a GPIO port A7 on the RESET/GPIOA7 pin. The reset function is enabled after any reset of the device. Bit 7 of the GPIOA_PER register must be cleared to use this pin as a GPIO port pin. When the pin is enabled as the RESET pin, an internal pullup device is automatically enabled.

5.3 On-chip clock synthesis

The on-chip clock synthesis (OCCS) module allows designers using an internal relaxation oscillator, an external crystal, or an external clock to run devices at user-selectable frequencies up to 60 MHz.

The features of OCCS module include:

- Ability to power down the internal relaxation oscillator or crystal oscillator
- Ability to put the internal relaxation oscillator into standby mode
- Ability to power down the PLL Provides a 2x system clock that operates at two times the system clock to the timer and SCI modules Safety shutdown feature if the PLL reference clock is lost Ability to be driven from an external clock source

The clock generation module provides the programming interface for the PLL, internal relaxation oscillator, and crystal oscillator. It also provides a postscaler to divide clock frequency down by 1, 2, 4, 8, 16, 32, 64, 128, or 256 before feeding it to the SIM. The SIM is responsible for further dividing these frequencies by 2, which ensures a 50% duty cycle in the system clock output. For details, refer to the OCCS section of the device's reference manual.

5.3.1 Internal clock source

When an external frequency source or crystal is not used, an internal relaxation oscillator can supply the reference frequency. It is optimized for accuracy and programmability while providing several power-saving configurations that accommodate different operating conditions. The internal relaxation oscillator has little temperature and voltage variability. To optimize power, the internal relaxation oscillator supports a run state (8 MHz), standby state (400 kHz), and a power-down state.

During a boot or reset sequence, the relaxation oscillator is enabled by default (the PRECS bit in the PLLCR word is set to 0). Application code can then also switch to the external clock source and power down the internal oscillator, if desired. If a changeover between internal and external clock sources is required at power-on, ensure that the clock source is not switched until the desired external clock source is enabled and stable.

To compensate for variances in the device manufacturing process, the accuracy of the relaxation oscillator can be incrementally adjusted to within + 0.078% of 8 MHz by trimming an internal capacitor. Bits 0–9 of the oscillator control (OSCTL) register allow you to set an additional offset (trim) to this preset value to increase or decrease

capacitance. Each unit added or subtracted changes the output frequency by about 0.078% of 8 MHz, allowing incremental adjustment until the desired frequency accuracy is achieved.

The center frequency of the internal oscillator is calibrated at the factory to 8 MHz, and the TRIM value is stored in the flash information block and loaded to the FMOPT1 register at reset. When using the relaxation oscillator, the boot code should read the FMOPT1 register and set this value as OSCTL TRIM. For further information, refer to the device reference manual.

5.3.2 Crystal oscillator/ceramic resonator

The internal crystal oscillator circuit is designed to interface with a parallel-resonant crystal resonator in the frequency range, specified for the external crystal, of 4 MHz to 16 MHz. A ceramic resonator can be substituted for the 4 MHz to 16 MHz range. When used to supply a source to the internal PLL, the recommended crystal/resonator is in the 8 MHz to 16 MHz range to optimize PLL performance. Oscillator circuits appear in the following two figures. Follow the crystal supplier's recommendations when selecting a crystal, because crystal parameters determine the component values required to provide maximum stability and reliable startup. The load capacitance values used in the oscillator circuit design should include all stray layout capacitances. The crystal and associated components should be mounted as near as possible to the EXTAL and XTAL pins to minimize output distortion and startup stabilization time. When using low-frequency, low-power mode, the only external component is the crystal itself. In the other oscillator modes, load capacitors (C_x, C_y) and feedback resistor (R_F) are required. In addition, a series resistor (R_S) may be used in high-gain modes.

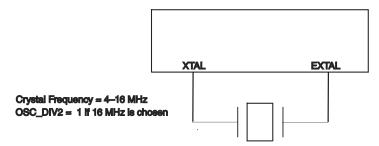


Figure 6. Typical Crystal Oscillator Circuit without Frequency Compensation Capacitor

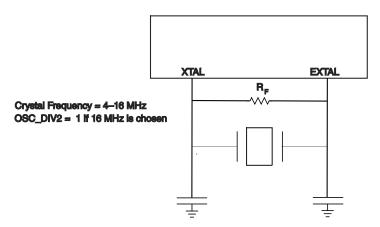


Figure 7. Typical Crystal or Ceramic Resonator Circuit

5.3.3 Alternate external clock input

The recommended method of connecting an external clock appears in the following figure. The external clock source is connected to the CLKIN pin while both of the following conditions are in effect:

- Both the EXT_SEL bit and the CLK_MODE bit in the OSCTL register are set
- Corresponding bits in the GPIOB_PER register in the GPIO module and the GPS_C0 bit in the GPS0 register in the system integration module (SIM) are set to the correct values.

The external clock input must be generated using a relatively low-impedance driver with a maximum frequency not greater than 120 MHz.

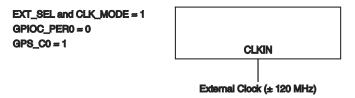


Figure 8. Connecting an External Clock Signal Using GPIO

5.4 Interrupt controller

The interrupt controller (INTC) module arbitrates the various interrupt requests (IRQs). The INTC signals to the 56800E core when an interrupt of sufficient priority exists and to what address to jump to service this interrupt.

WCT1011B, Rev. 1, 06/2021

The interrupt controller contains registers that allow each of the 66 interrupt sources to be set to one of three priority levels (excluding certain interrupt sources that have fixed priority) or to be disabled. Next, all of the interrupt requests of a given level are priority encoded to determine the lowest numeric value of the active interrupt requests for that level. Within a given priority level, the lowest vector number is the highest priority, and the highest vector number is the lowest priority.

Any two interrupt sources can be assigned to faster interrupts. Fast interrupts are described in the *DSP56800E Reference Manual*. The interrupt controller recognizes fast interrupts before the core does.

A fast interrupt is defined by:

- Setting the priority of the interrupt as level 2 with the appropriate field in the Interrupt Priority Register (IPR) registers
- Setting the Fast Interrupt Match (FIMn) register to the appropriate vector number
- Setting the Fast Interrupt Vector Address Low (FIVALn) and Fast Interrupt Vector Address High (FIVAHn) registers with the address of the code for the fast interrupt

When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values. If a match occurs, and it is a level 2 interrupt, the INTC handles it as a Fast Interrupt. The INTC takes the vector address from the appropriate FIVALn and FIVAHn registers, instead of generating an address that is an offset from the VBA.

The core then fetches the instruction from the indicated vector address instead of jumping to the vector table. If the instruction is not a JSR, the core starts its fast interrupt handling. Refer to *DSP56800E Reference Manual* for details.

The appendix "Interrupt Vector Table" provides the device's interrupt table contents and interrupt priority structure.

5.5 System Integration Module (SIM)

The SIM module consists of the glue logic that ties together the system-on-a-chip. It controls distribution of resets and clocks and provides a number of control features, including pin muxing control, inter-module connection control (such as connecting comparator output to eFlexPWM fault input), individual peripheral enabling/ disabling, clock rate control for quad timers and SCIs, enabling peripheral operation in stop mode, and port configuration overwrite protection. For more information, refer to the device's reference manual.

WCT1011B, Rev. 1, 06/2021

The SIM is responsible for the following functions:

- Chip reset sequencing
- Core and peripheral clock control and distribution
- Stop/wait mode control
- System status control
- Registers containing the JTAG ID of the chip
- Controls for programmable peripheral and GPIO connections
- Peripheral clocks for Quad Timers and SCIs with a high-speed (2x) option
- Power-saving clock gating for peripherals
- Controls for enabling/disabling functions of large regulator standby mode with write protection capability
- Allowing selected peripherals to run in stop mode to generate stop recovery interrupts
- Controls for programmable peripheral and GPIO connections
- Software chip reset
- I/O short address base location control
- Peripheral protection control to provide runaway code protection for safety-critical applications
- Controls for output of internal clock sources to CLKO pin
- Four general-purpose software control registers that are reset only at power-on
- Peripheral stop mode clocking control

5.6 Inter-module connections

The operations between on-chip peripherals can be synchronized or cascaded through internal module connections to support particular applications. Examples include synchronization between ADC sampling and PWM waveform generation for a power conversion application, and synchronization between timer pulse outputs and DAC waveform generation for a printer application. The user can program the internal Crossbar Switch or Comparator input multiplexes to connect one on-chip peripheral's outputs to other peripherals' inputs.

5.6.1 Comparator connections

The device includes three high-speed comparators. Each comparator input has a 4-to-1 input mux, allowing it to sample a variety of analog sources. Some of these inputs share package pins with the on-chip ADCs; see the "Signal descriptions" table.

Each comparator is paired with a dedicated, programmable, 5-bit on-chip voltage reference DAC (VREF_DAC). Optionally, an on-chip 12-bit DAC can be internally fed to each comparator's positive input 1 (CMPn_P1) or negative input 3 (CMPn_M3). In addition, all three comparators' positive input 3 (CMPn_P3) can be connected together to package pin CMP_REF. Other inputs can be routed to package pins when the corresponding pin is configured for peripheral mode in the GPIO module.

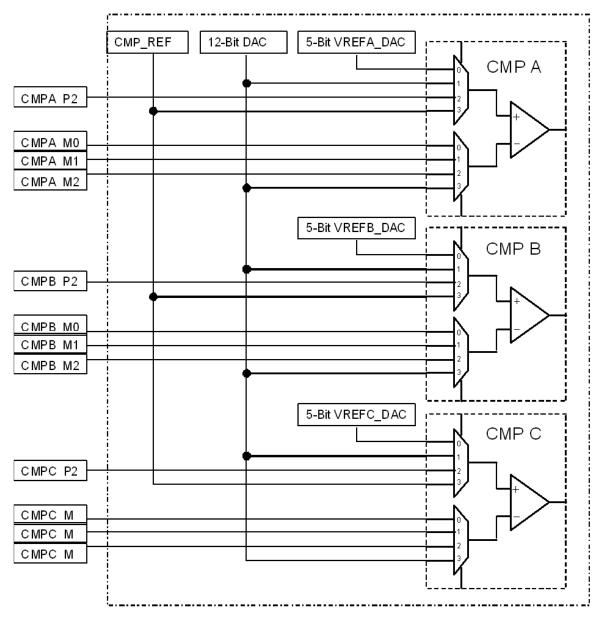


Figure 9. On-Chip Comparator Connections

Table 6. Connections by Comparator Inputs

Comparator Input	Comparator A	Comparator B	Comparator B
P0 (from internal)	5-bit VREFA_DAC	5-bit VREFB_DAC	5-bit VREFC_DAC
P1 (from internal)	12-bit DAC	12-bit DAC	12-bit DAC
P2 (from package pin)	CMPA_P2	CMPB_P2	CMPC_P2
P3 (from package pin)	CMP_REF	CMP_REF	CMP_REF
M0 (from package pin)	CMPA_M0	CMPB_M0	CMPC_M0
M1 (from package pin)	CMPA_M1	CMPB_M1	CMPC_M1
M2 (from package pin)	CMPA_M2	CMPB_M2	CMPC_M2
M3 (from internal)	12-bit DAC	12-bit DAC	12-bit DAC

5.6.2 Crossbar switch connections

The Crossbar Switch module provides a generic mechanism for making connections between on-chip peripherals and between peripheral and pins. It provides a purely combinational path from input to output. The module groups 30 identical multiplexes with 22 shared inputs. All Crossbar control registers that are used to select one of the 22 input signals to output are write protected. Control of the write protection setting is in the SIM_PROT register.

In general, the crossbar module connects the Enhanced Flex PWM, ADC, Quad Timers, and comparators together, which allows synchronization between PWM pulse generation and ADC sampling. In addition, several crossbar inputs and outputs are routed to package pins. For example, the user can define an XB_INn pin as a PWM fault protection input that is routed to the PWM module through the crossbar, increasing the flexibility of pin use and reducing the complexity of PCB layout.

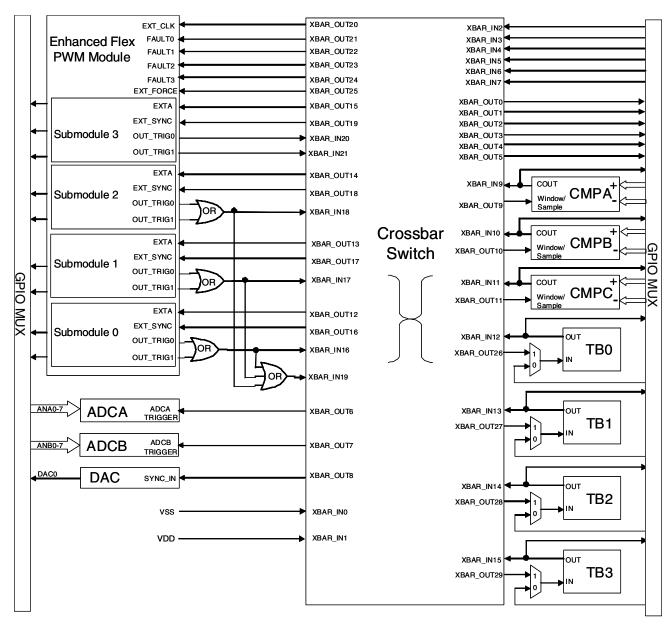


Figure 10. Crossbar Switch Connections

5.6.2.1 Crossbar switch input signal assignments

XBAR_INn	Input from	Function
XBAR_IN0	Logic Zero	V_{SS}
XBAR_IN1	Logic One	V_{DD}
XBAR_IN2	XB_IN2	Package pin
XBAR_IN3	XB_IN3	Package pin
XBAR_IN4	XB_IN4	Package pin

General system control

XBAR_INn	Input from	Function
XBAR_IN5	XB_IN5	Package pin
XBAR_IN6	XB_IN6	Package pin
XBAR_IN7	XB_IN7	Package pin
XBAR_IN8	Unused	_
XBAR_IN9	CMPA_OUT	Comparator A Output
XBAR_IN10	CMPB_OUT	Comparator B Output
XBAR_IN11	CMPC_OUT	Comparator C Output
XBAR_IN12	ТВ0	Quad Timer B0 Output
XBAR_IN13	TB1	Quad Timer B1 Output
XBAR_IN14	TB2	Quad Timer B2 Output
XBAR_IN15	TB3	Quad Timer B3 Output
XBAR_IN16	PWM0_TRIG_COMB	eFlexPWM submodule 0: PWM0_OUT_TRIG0 or PWM0_OUT_TRIG1
XBAR_IN17	PWM1_TRIG_COMB	eFlexPWM submodule 1: PWM1_OUT_TRIG0 or PWM1_OUT_TRIG1
XBAR_IN18	PWM2_TRIG_COMB	eFlexPWM submodule 2: PWM2_OUT_TRIG0 or PWM2_OUT_TRIG1
XBAR_IN19	PWM[012]_TRIG_COMB	eFlexPWM submodule 0, 1, or 2; PWM0_TRIG_COMB or PWM1_TRIG_COMB or PWM2_TRIG_COMB
XBAR_IN20	PWM3_TRIG0	eFlexPWM submodule 3: PWM3_OUT_TRIG0
XBAR_IN21	PWM3_TRIG1	eFlexPWM submodule 3: PWM3_OUT_TRIG1

5.6.2.2 Crossbar switch output signal assignments

XBAR_OUTn	Output to	Function
XBAR_OUT0	XB_OUT0	Package pin
XBAR_OUT1	XB_OUT1	Package pin
XBAR_OUT2	XB_OUT2	Package pin
XBAR_OUT3	XB_OUT3	Package pin
XBAR_OUT4	XB_OUT4	Package pin
XBAR_OUT5	XB_OUT5	Package pin
XBAR_OUT6	ADCA	ADCA Trigger
XBAR_OUT7	ADCB	ADCB Trigger
XBAR_OUT8	DAC	12-bit DAC SYNC_IN
XBAR_OUT9	CMPA	Comparator A Window/Sample
XBAR_OUT10	СМРВ	Comparator B Window/Sample
XBAR_OUT11	CMPC	Comparator C Window/Sample
XBAR_OUT12	PWM0 EXTA	eFlexPWM submodule 0 Alternate Control signal
XBAR_OUT13	PWM1 EXTA	eFlexPWM submodule 1 Alternate Control signal
XBAR_OUT14	PWM2 EXTA	eFlexPWM submodule 2 Alternate Control signal
XBAR_OUT15	PWM3 EXTA	eFlexPWM submodule 3 Alternate Control signal

XBAR_OUTn	Output to	Function
XBAR_OUT16	PWM0 EXT_SYNC	eFlexPWM submodule 0 External Synchronization signal
XBAR_OUT17	PWM1 EXT_SYNC	eFlexPWM submodule 1 External Synchronization signal
XBAR_OUT18	PWM2 EXT_SYNC	eFlexPWM submodule 2 External Synchronization signal
XBAR_OUT19	PWM3 EXT_SYNC	eFlexPWM submodule 3 External Synchronization signal
XBAR_OUT20	PWM EXT_CLK	eFlexPWM External Clock signal
XBAR_OUT21	PWM FAULT0	eFlexPWM Module FAULT0
XBAR_OUT22	PWM FAULT1	eFlexPWM Module FAULT1
XBAR_OUT23	PWM FAULT2	eFlexPWM Module FAULT2
XBAR_OUT24	PWM FAULT3	eFlexPWM Module FAULT3
XBAR_OUT25	PWM FORCE	eFlexPWM External Output Force signal
XBAR_OUT26	TB0	Quad Timer B0 Input when SIM_GPS3[12] is set
XBAR_OUT27	TB1	Quad Timer B1 Input when SIM_GPS3[13] is set
XBAR_OUT28	TB2	Quad Timer B2 Input when SIM_GPS3[14] is set
XBAR_OUT29	ТВ3	Quad Timer B3 Input when SIM_GPS3[15] is set

5.6.2.3 Interconnection of PWM Module and ADC Module

In addition to how PWM0_EXTA, PWM1_EXTA, PWM2_EXTA, and PWM3_EXTA connect to crossbar outputs, the ADC conversion high/low limit compare results of sample0, sample1, and sample2 are used to drive PWM0_EXTB, PWM1_EXTB, and PWM2_EXTB, respectively. PWM3_EXTB is permanently tied to GND.

State of PWM0_EXTB:

- If the ADC conversion result in SAMPLE0 is greater than the value programmed into the high limit register 0, PWM0_EXTB is driven low.
- If the ADC conversion result in SAMPLE0 is less than the value programmed into the low limit register 0, PWM0_EXTB is driven high.

State of PWM1_EXTB:

- If the ADC conversion result in SAMPLE1 is greater than the value programmed into the high limit register 1, PWM1_EXTB is driven low.
- If the ADC conversion result in SAMPLE1 is less than the value programmed into the low limit register 1, PWM1_EXTB is driven high.

State of PWM2_EXTB:

- If the ADC conversion result in SAMPLE2 is greater than the value programmed into the high limit register 2, PWM2_EXTB is driven low.
- If the ADC conversion result in SAMPLE2 is less than the value programmed into the low limit register 2, PWM2_EXTB is driven high.

WCT1011B, Rev. 1, 06/2021

5.7 Joint Test Action Group (JTAG)/Enhanced On-Chip Emulator (EOnCE)

The 56800E Family includes extensive integrated support for application software development and real-time debugging. Two modules, the Enhanced On-Chip Emulation (EOnCE) module and the core test access port (TAP, commonly called the JTAG port), work together to provide these capabilities. Both are accessed through a common 4-pin JTAG/EOnCE interface. These modules allow users to insert the device into a target system while retaining debug control. This capability is especially important for devices without an external bus, because it eliminates the need for a costly cable to bring out the footprint of the chip, as is required by a traditional emulator system.

The 56800E's EOnCE module is a Freescale-designed module for developing and debugging application software used with the chip. This module allows non-intrusive interaction with the CPU and is accessible through the pins of the JTAG interface or by software program control of the 56800E core. Among the many features of the EOnCE module is support, in real-time program execution, for data communication between the controller and the host software development and debug systems. Other features allow for hardware breakpoints, the monitoring and tracking of program execution, and the ability to examine and modify the contents of registers, memory, and on-chip peripherals, all in a special debug environment. No user-accessible resources must be sacrificed to perform debugging operations.

The 56800E's JTAG port provides an interface for the EOnCE module to the JTAG pins. The Joint Test Action Group (JTAG) boundary scan is an IEEE 1149.1 standard methodology enabling access to test features using a test access port (TAP). A JTAG boundary scan consists of a TAP controller and boundary scan registers. Contact your Freescale sales representative or authorized distributor for device-specific BSDL information.

NOTE

In normal operation, an external pullup on the TMS pin is highly recommend to place the JTAG state machine in reset state (if this pin is not configured as GPIO).

6 Security features

The device offers security features intended to prevent unauthorized users from gaining access to and reading the contents of the flash memory (FM) array. The device's flash security consists of several hardware interlocks.

After flash security is set, the application software can allow an authorized user to access on-chip memory by including a user-defined software subroutine that reads and transfers the contents of internal memory via peripherals. This application software could communicate over a serial port, for example, to validate the authenticity of the requested access and then to grant it until the next device reset. The system designer must use discretion when deciding whether to support this type of "back door" access technique.

6.1 Operation with security enabled

After users have programmed flash memory with the application code, or as part of programming the flash with the application code, user can secure the device by programming the security word, 0x0002, into program memory location 0x00 7FF7. The nonvolatile security word ensures the device remains secure after a reset that is caused, for example, by the device powering down. Refer to the flash memory section of the device reference manual for details.

When flash security mode is enabled, the device disables the core EOnCE debug capabilities. Normal program execution is otherwise unaffected.

6.2 Flash lock and unlock mechanisms

Several methods effectively lock or unlock the on-chip flash.

6.2.1 Disabling EOnCE Access

You can read on-chip flash by issuing commands across the EOnCE port, which is the debug interface for the 56800E core. The TCK, TMS, TDO, and TDI pins compose a JTAG interface onto which the EOnCE port functionality is mapped. When the device boots, the chip-level JTAG port is active and provides the chip's boundary scan capability and access to the ID register. However, proper implementation of flash

WCT1011B, Rev. 1, 06/2021

security blocks any attempt to access the internal flash memory via the EOnCE port when security is enabled. This protection is effective when the device comes out of reset, even prior to the execution of any code at startup.

6.2.2 Flash lockout recovery using JTAG

If the device is secured, one lockout recovery mechanism is the complete erasure of the internal flash contents, including the configuration field. The erasure disables security by clearing the protection register. This approach does not compromise security. The entire contents of your secured code stored in flash are erased before the next reset or power-up sequence, when security becomes disabled.

To start the lockout recovery sequence via JTAG, first shift the JTAG public instruction (LOCKOUT_RECOVERY) into the chip-level TAP controller's instruction register. Then shift the clock divider value into the corresponding 7-bit data register. Finally, the TAP controller must enter the RUN-TEST/IDLE state for the lockout sequence to commence. The controller must remain in this state until the erase sequence is complete. Refer to the device's reference manual for details, or contact Freescale.

NOTE

After completion of the lockout recovery sequence, you must reset the JTAG TAP controller and the device to return to normal unsecured operation. A power-on reset resets both.

6.2.3 Flash lockout recovery without mass erase

A flash lockout recovery can be performed either without presenting the back door access keys to the flash memory unit or by presenting the back door access key to the flash memory unit.

6.2.3.1 Without Presenting Back Door Access Keys to the Flash Unit

A user can unsecure a secured device by programming the word 0x0000 into program flash location 0x00 7FF7. After completing the programming, the JTAG TAP controller and the device must be reset to return to normal unsecured operation.

The user is responsible for directing the device to invoke the flash programming subroutine to reprogram the word 0x0000 into program flash location 0x00 7FF7. You can do so, for example, by toggling a specific pin or downloading a user-defined key through serial interfaces.

NOTE

Flash contents can be programmed only from ones to zeroes.

6.2.3.2 Presenting Back Door Access Key to the Flash Unit

The user can temporarily bypass security through a "back door" access scheme, using a four-word key to temporarily unlock the flash. "Back door" access requires support from the embedded software. This software would typically permit an external user to enter a four-word code through one of the communications interfaces and then use it to attempt the unlock sequence. If your input matches the four-word code stored at location 0x00 7FFC–0x00 7FFF in the flash memory, the device immediately becomes unsecured (at runtime) and you can access internal memory via the JTAG/EOnCE port. Refer to the device's reference manual for details. The key must be entered in four consecutive accesses to the flash, so this routine should be designed to run in RAM.

6.3 Product analysis

To analyze a product's failures in the field, the recommended method of unsecuring a secured device appears in the section "Presenting Back Door Access Key to the Flash Unit". The customer must supply technical-support details about the protocol to access the subroutines in flash memory. An alternative method for performing analysis on a secured device is to mass-erase and reprogram the flash with the original code, but also to modify or not program the security word.

7 Specifications

7.1 General characteristics

The device is fabricated in high-density, low-power, low-leakage CMOS process with 5 V-tolerant, TTL-compatible digital inputs. The term 5 V-tolerant refers to the capability of an I/O pin, built on a 3.3 V-compatible process technology, to withstand a voltage up to 5.5 V without damaging the device. Many systems have a mixture of devices designed for 3.3 V and 5 V power supplies. In such systems, a bus may carry both 3.3 V-compatible and 5 V-compatible I/O voltage levels (a standard 3.3 V I/O is

designed to receive a maximum voltage of $3.3 \text{ V} \pm 10\%$ during normal operation without causing damage). This 5 V-tolerant capability therefore combines the power savings of 3.3 V I/O levels with the ability to receive 5 V levels without damage.

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

7.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed.

NOTE

Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device.

Unless otherwise stated, all specifications in this section apply over the ambient temperature range of -40 °C to +105 °C over the following supply ranges: $V_{SS} = V_{SSA} = 0 \text{ V}$, $V_{DD} = V_{DDA} = 3.0 \text{ V}$ to 3.6 V, $CL \le 50 \text{ pF}$, $f_{OP} = 60 \text{ MHz}$.

Characteristic	Symbol	Notes	Min	Max	Unit
Supply voltage range	V_{DD}		-0.3	4.0	V
Analog supply voltage range	V_{DDA}		-0.3	4.0	V
ADC high voltage reference	V _{REFHx}		-0.3	4.0	V
Voltage difference V _{DD} to V _{DDA}	ΔV_{DD}		-0.3	0.3	V
Voltage difference V _{SS} to V _{SSA}	ΔV_{SS}		-0.3	0.3	V
Digital input voltage range	V _{IN}	Pin groups 1, 2	-0.3	6.0	V
Oscillator voltage range	Vosc	Pin group 4	-0.4	4.0	V
Analog input voltage range	V _{INA}	Pin group 3	-0.3	4.0	V
Input clamp current, per pin $(V_{IN} < 0)^{-1}$	V _{IC}		_	-20.0	mA
Output clamp current, per pin $(V_O < 0)^1$	V _{OC}		_	-20.0	mA
Output voltage range (normal push-pull mode)	V _{OUT}	Pin group 1	-0.3	4.0	V
Output voltage range (open-drain mode)	V _{OUTOD}	Pin group 2	-0.3	6.0	V

Characteristic	Symbol	Notes	Min	Max	Unit
DAC output voltage range	V _{OUT_DAC}	Pin group 5	-0.3	4.0	V
Ambient temperature	T _A		-4.0	105	°C
Junction temperature	T _J		_	135	°C
Storage temperature range (extended industrial)	T _{STG}		- 55	150	°C

1. Continuous clamp current per pin is -2.0 mA

The default mode for the different pin groups is:

- Pin group 1: GPIO, TDI, TDO, TMS, TCK
- Pin group 2: RESET, GPIOA7
- Pin group 3: ADC and Comparator Analog Inputs
- Pin group 4: XTAL, EXTAL
- Pin group 5: DAC analog output

7.3 ESD Protection and Latch-up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, use normal handling precautions to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing conforms with AEC-Q100 Stress Test Qualification. During device qualification, ESD stresses are performed for the human body model (HBM), the machine model (MM), and the charge device model (CDM).

All latch-up testing conforms with AEC-Q100 Stress Test Qualification.

A device is defined as a failure if, after exposure to ESD pulses, the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature and then at hot temperature, unless stated otherwise in the device specification.

Characteristic ¹	Min	Тур	Max	Unit
ESD for Human Body Model (HBM)	2000	_	_	V
ESD for Machine Model (MM)	200	_	_	V
ESD for Charge Device Model (CDM)	750	_	_	V
Latch-up current at TA = 85 °C (ILAT)	±100	_	_	mA

 Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions, unless otherwise noted.

7.4 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to power dissipation in internal logic and voltage regulator circuits, and it is user-determined rather than controlled by the device design. To account for $P_{I/O}$ in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is very small.

Value (LQFP) Unit Characteristic Comments **Symbol** 67 °C/W Junction to ambient Natural Single-layer board (1s) $R_{\theta JA}$ convection Junction to ambient Natural Four-layer board (2s2p) °C/W $R_{\theta,IMA}$ 48 convection 55 °C/W Junction to ambient (@200 ft/min) Single-layer board (1s) $R_{\theta JMA}$ Junction to ambient (@200 ft/min) Four-layer board (2s2p) 42 °C/W $R_{\theta JMA}$ °C/W Junction to board $R_{\theta JB}$ 31 14 °C/W Junction to case $R_{\theta,JC}$

 Ψ_{JT}

3

Table 7. 64LQFP Package Thermal Characteristics

The following table summarizes how the various characteristics are determined.

Natural convection

Table 8.	Characteristics
	Have Datases

Characteristic	How Determined
Junction-to-ambient thermal resistance	Determined per JEDEC JESD51–3 and JESD51–6. Thermal test board meets the JEDEC specification for this package.
Junction-to-board thermal resistance	Determined per JEDEC JESD51–8. Thermal test board meets JEDEC specification for the specified package.
Junction-to-case at the top of the package	Determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. The reported value includes the thermal resistance of the interface layer.
Difference between the package top and the junction temperature per JEDEC JESD51–2	Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51–2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
Junction temperature	Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

°C/W

Junction to package top

See the section "Thermal Design Considerations," for more detail on thermal design considerations.

7.5 Recommended Operating Conditions

Table 9. Recommended Operating Conditions ($V_{REFLx} = 0 \text{ V}, V_{SSA} = 0 \text{ V}, V_{SS} = 0 \text{ V}$)

Characteristic	Symbol	Notes	Min	Тур	Max	Unit
Supply voltage	V _{DD} , V _{DDA}	_	3	3.3	3.6	V
ADC Reference Voltage High	V _{REFHx}	_	3.0		V_{DDA}	V
Voltage difference VDD to VDDA	ΔV_{DD}	_	-0.1	0	0.1	V
Voltage difference VSS to VSSA	ΔV _{SS}	_	-0.1	0	0.1	V
Device Clock Frequency	F _{SYSCLK}	_	0.001		60	MHz
Using relaxation oscillator			0		60	
Using external clock source						
Input Voltage High (digital inputs)	V _{IH}	Pin Groups 1, 2	2.0	_	5.5	V
Input Voltage Low (digital inputs)	V _{IL}	Pin Groups 1, 2	-0.3	<u> </u>	0.8	V
Oscillator Input Voltage High XTAL driven by an external clock source	V _{IHOSC}	Pin Group 4	2.0	_	V _{DD} + 0.3	V
Oscillator Input Voltage Low	V _{ILOSC}	Pin Group 4	-0.3	<u> </u>	0.8	V
Oscillator Input Voltage Low	R _{LD}	Pin Group 5	3К	_	_	Ω
DAC Output Load Capacitance	C _{LD}	Pin Group 5	_	_	400	pf
Output Source Current High (at V _{OH}	I _{OH}	Pin Group 1	_	_	-4	mA
min.) ^{, 1} When programmed for low drive		Pin Group 1	_		-8	
strength When programmed for high drive						
strength						
Output Source Current Low (at V _{OL} max.) ¹	I _{OL}	Pin Groups 1, 2	_	_	4	mA
When programmed for low drive strength		Pin Groups 1, 2			8	
When programmed for high drive strength						
Ambient Operating Temperature (Extended Industrial)	T _A	_	-40	_	105	°C
Flash Endurance (Program Erase Cycles)	N _F	T _A = -40°C to 125°C	10,000	_	_	cycles
Flash Data Retention	T _R	T _J ≤ 85°C avg	15	<u> </u>	_	years
Flash Data Retention with <100 Program/Erase Cycles	t _{FLRET}	T _J ≤ 85°C avg	20		_	years

^{1.} Total chip source or sink current cannot exceed 75 mA $\,$

The default mode for the different pin groups is:

- Pin group 1: GPIO, TDI, TDO, TMS, TCK
- Pin group 2: RESET, GPIOA7
- Pin group 3: ADC and Comparator Analog Inputs
- Pin group 4: XTAL, EXTAL
- Pin group 5: DAC analog output

7.6 DC Electrical Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 10. DC Electrical Characteristics at Recommended Operating Conditions

Characteristic	Symb ol	Notes	Min	Тур	Max	Unit	Test Conditions
Output Voltage High	V _{OH}	Pin group 1	2.4	_	_	V	$I_{OH} = I_{OHmax}$
Output Voltage Low	V _{OL}	Pin groups 1, 2	_	_	0.4	V	$I_{OL} = I_{OLmax}$
Digital Input Current High (a) pull-up enabled or disabled	I _{IH}	Pin groups 1, 2	_	0	±2.5	μΑ	V _{IN} = 2.4 V to 5.5 V
Comparator Input Current High	I _{IHC}	Pin group 3	_	0	±2	μΑ	$V_{IN} = V_{DDA}$
Oscillator Input Current High	I _{IHOSC}	Pin group 3	_	0	±2	μΑ	$V_{IN} = V_{DDA}$
Digital Input Current Low pull-up enabled pull-up disabled	I _{IL}	Pin groups 1, 2	–15 —	-30 0	-60 ±2.5	μΑ	V _{IN} = 0 V
Internal Pull-Up Resistance	R _{Pull-Up}	_	60	110	220	ΚΩ	_
Comparator Input Current Low	I _{ILC}	Pin group 3	_	0	±2	μΑ	V _{IN} = 0 V
Oscillator Input Current Low	I _{ILOSC}	Pin group 3	_	0	±2	μА	V _{IN} = 0 V
DAC Output Voltage Range	V _{DAC}	Pin group 5	Typically V _{SSA} + 40 mV	_	Typically V _{DDA} – 40 mV	V	_
Output Current ¹ (High Impedance State)	l _{OZ}	Pin groups 1, 2	_	0	±2.5	μА	_
Schmitt Trigger Input Hysteresis	V _{HYS}	Pin groups 1, 2	_	0.35		V	
Input Capacitance	C _{IN}	_	_	10	_	pF	_
Output Capacitance	C _{OUT}	_		10	_	pF	

^{1.} See the figure below.

The default mode for the different pin groups is:

- Pin group 1: GPIO, TDI, TDO, TMS, TCK
- Pin group 2: RESET, GPIOA7
- Pin group 3: ADC and Comparator Analog Inputs
- Pin group 4: XTAL, EXTAL
- Pin group 5: DAC analog output

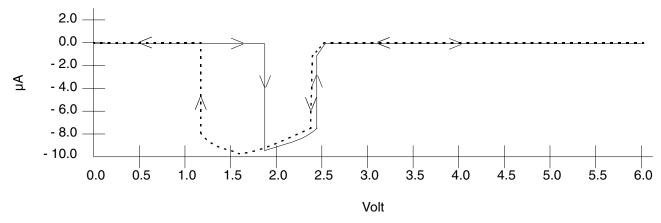


Figure 11. I_{IN}/I_{OZ} versus V_{IN} (Typical; Pull-Up Disabled)

7.7 Supply Current Characteristics

Table 11. Current Consumption

Mode	Conditions		@ 3.3 V, 25 (mA)	Maximum @ 3.6 V, 105 °C (mA)	
		I _{DD} , 1	I _{DDA}	I _{DD} ¹	I _{DDA}
RUN	60 MHz device clock	92	38	97	44
	Relaxation oscillator on				
	PLL powered on				
	Continuous MAC instructions with fetches from program flash memory				
	All peripheral modules enabled; TMRs and SCIs using 1x clock				
	ADC/DAC powered on and clocked				
	Comparator powered on				
WAIT	60 MHz device clock	49	4.5	53	5.5
	Relaxation oscillator on				
	PLL powered on				
	Core in WAIT state				

Table 11. Current Consumption (continued)

Mode	Conditions		@ 3.3 V, 25 (mA)	Maximum @ 3.6 V, 105 °C (mA)	
		I _{DD} , 1	I _{DDA}	I _{DD} ¹	I _{DDA}
	All peripheral modules enabled; TMRs and SCIs using 1x clock				
	ADC/DAC/Comparator powered off				
STOP	4 MHz device clock	8.0	3.6	9.2	4.9
	Relaxation oscillator on				
	PLL powered off				
	Core in STOP state				
	All peripheral modules and core clocks are off				
	ADC/DAC/Comparator powered off				
STANDBY >	100 kHz device clock	0.76	0	3.0	0
STOP	Relaxation Oscillator in Standby mode				
	PLL powered off				
	Core in STOP state				
	All peripheral modules and core clocks are off				
	ADC/DAC/Comparator powered off				
	Voltage regulator in Standby mode				
POWERDOWN	Device clock is off	0.66	0	2.0	0
	Relaxation oscillator powered off				
	PLL powered off				
	Core in STOP state				
	All peripheral modules and core clocks are off				
	ADC/DAC/Comparator powered off				
	Voltage regulator in Standby mode				

1. No Output Switching.

All ports configured as inputs.

All inputs low.

No DC loads.

7.8 Power-On Reset, Low Voltage Detection Parameters

Characteristic	Symbol	Min	Тур	Max	Unit
Low-Voltage Interrupt for 3.3V supply ¹	V _{LVI27}	2.6	2.7	2.8	V

Characteristic	Symbol	Min	Тур	Max	Unit
Low-Voltage Interrupt for 2.5V supply ²	V _{LVI21}	_	2.15	_	V
Low-Voltage Interrupt Recovery Hysteresis	V _{EIH}	_	50	_	mV
Power-On Reset Threshold ³	POR	2.6	2.7	2.8	V
Brown-Out Reset Threshold ⁴	BOR	_	1.8	1.9	V

- 1. When V_{DD} drops below LVI27, an interrupt is generated.
- 2. When V_{DD} drops below LVI21, an interrupt is generated.
- 3. While power is ramping up, this signal remains active for as long as the internal 2.5V is below 2.15V or the 3.3V V_{DD} voltage is below 2.7V, no matter how long the ramp-up rate is. The internally regulated voltage is typically 100mV less than VDD during ramp-up until 2.5V is reached, at which time it self-regulates.
- 4. Brown-Out Reset occurs whenever the internally regulated 2.5V digital supply drops below 1.8V

7.9 Voltage Regulator Specifications

The device has two on-chip regulators. One supplies the PLL, crystal oscillator, NanoEdge placement PWM, and relaxation oscillator. It has no external pins and therefore has no external characteristics that must be guaranteed (other than proper operation of the device). The second regulator supplies approximately 2.5 V to the device's core logic. For proper operation, this regulator requires an external capacitor of $2.2~\mu F$ or greater. Ceramic and tantalum capacitors tend to provide better performance tolerances. The output voltage can be measured directly on the VCAP pin. The specifications for this regulator appear in the following table.

Characteristic	Symbol	Min	Typical	Max	Unit
Short Circuit Current	I _{SS}	_	900	1300	mA
Short Circuit Tolerance (V _{CAP} shorted to ground)	T _{RSC}	_	_	30	minutes

7.10 AC Electrical Characteristics

Tests are conducted using the input levels specified in Table 23. Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured between the 10% and 90% points, as shown in the following figure.

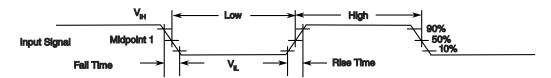


Figure 12. Input Signal Measurement References

The following figure shows the definitions of these signal states:

- Active state, when a bus or signal is driven, and enters a low impedance state
- Tri-stated, when a bus or signal is placed in a high impedance state
- Data Valid state, when a signal level has reached VOL or VOH
- Data Invalid state, when a signal level is in transition between VOL and VOH

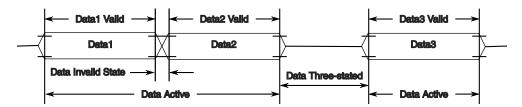


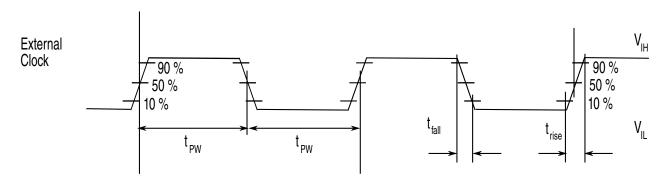
Figure 13. Signal states

7.11 Enhanced Flex PWM Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
NanoEdge Placement (NEP) Step Size ^{1, 2, 3}	_	_	521	_	ps
Delay for fault input activating to PWM output deactivated	_	1	_	_	ns

- 1. Required: IP bus clock is between 50 MHz and ~60 Mhz in NanoEdge Placement mode.
- 2. NanoEdge Placement step size is a function of clock frequency only. Temperature and voltage variations do not affect NanoEdge Placement step size.
- 3. In NanoEdge Placement mode, the minimum pulse edge-to-edge cannot be less than 4 PWM clock cycles.

7.12 Flash Memory Characteristics


Characteristic	Symbol	Min	Тур	Max	Unit
Program time ¹	tprog	20	_	40	μs
Erase time ²	terase	20	_	_	μs
Mass erase time	tme	100	_	_	μs

- 1. Additional overhead is part of the programming sequence. Refer to the device's reference manual for details.
- 2. Specifies page erase time. There are 512 bytes per page in the program flash memory.

7.13 External Clock Operation Timing Requirements

Characteristic ¹	Symbol	Min	Тур	Max	Unit
Frequency of operation (external clock driver) ²	f _{osc}	_	_	120	MHz
Clock pulse width ³	t _{PW}	6.25	_	_	ns
External clock input rise time ⁴	t _{rise}	_	_	3	ns
External clock input fall time ⁵	t _{fall}	_	_	3	ns
Input high voltage overdrive by an external clock	V _{ih}	0.85V _{DD}	_	_	V
Input high voltage overdrive by an external clock	V _{il}	_	_	0.3V _{DD}	V

- 1. Parameters listed are guaranteed by design.
- 2. See the following figure, for details on using the recommended connection of an external clock driver.
- 3. The chip may not function if the high or low pulse width is smaller than 6.25 ns.
- 4. External clock input rise time is measured from 10% to 90%
- 5. External clock input fall time is measured from 90% to 10%

Note: The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 14. External Clock Timing

7.14 Phase Locked Loop Timing

Characteristic	Symbol	Min	Тур	Max	Unit
PLL input reference frequency ¹	f _{ref}	4	8	8	MHz
PLL output frequency ²	f _{op}	120	_	240	MHz
PLL lock time ^{3, 4}	t _{plls}	_	40	100	μs
Accumulated jitter using an 8 MHz external crystal as the PLL source ⁵	J_A	_	_	0.37	%
Cycle-to-cycle jitter	t _{jitterpll}	_	350	_	ps

Specifications

- An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly.
 The PLL is optimized for 8 MHz input.
- 2. The core system clock operates at 1/6 of the PLL output frequency.
- 3. This is the time required after the PLL is enabled to ensure reliable operation.
- 4. From powerdown to powerup state at 60 MHz system clock state.
- 5. This is measured on the CLKO signal (programmed as system clock) over 264 system clocks at 60MHz system clock frequency and using an 8 MHz oscillator frequency.

7.15 External Crystal or Resonator Requirement

Characteristic	Symbol	Min	Тур	Max	Unit
Frequency of operation	f _{xosc}	4	8	16	MHz

7.16 Relaxation Oscillator Timing

Characteristic	Symbol	Min	Тур	Max	Unit
Relaxation oscillator output	f _{op}	_	8.05	_	MHz
frequency			400		kHz
Normal Mode					
Standby Mode ¹					
Relaxation oscillator stabilization time ²	t _{roscs}	_	1	3	ms
Cycle-to-cycle jitter. This is measured on the CLKO signal (programmed prescaler_clock) over 264 clocks ³	t _{jitterrosc}	_	400	_	ps
Variation over temperature –40°C to 150°C ⁴	_	_	+1.5 to -1.5	+3.0 to -3.0	%
Variation over temperature 0°C to 105°C ⁴	_	_	0 to +1	+2.0 to -2.0	%

- 1. Output frequency after factory trim.
- 2. This is the time required from standby to normal mode transition.
- 3. JA is required to meet QSCI requirements.
- 4. See the following figure.

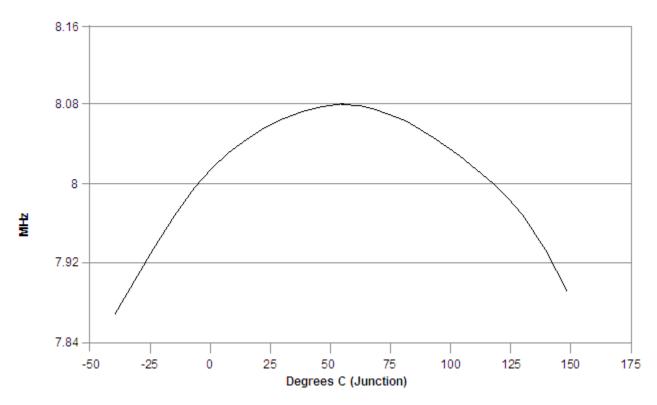


Figure 15. Relaxation Oscillator Temperature Variation (Typical) After Trim

7.17 Reset, Stop, Wait, Mode Select, and Interrupt Timing NOTE

All address and data buses described here are internal.

In the formulas in the following table, T = system clock cycle and $T_{OSC} = \text{oscillator clock cycle}$. For an operating frequency of 32 MHz, T = 31.25 ns. At 4 MHz (used coming out of reset and stop modes), T = 250 ns. Parameters listed are guaranteed by design.

Characteristic	Symbol	Typical Min	Typical Max	Unit
Minimum RESET Assertion Duration ¹	t _{RA}	4T		ns
Minimum GPIO pin Assertion for Interrupt	t _{IW}	2T	_	ns
RESET deassertion to First Address Fetch	t _{RDA}	96T _{OSC} + 64T	97T _{OSC} + 65T	ns
Delay from Interrupt Assertion to Fetch of first instruction (exiting Stop)	t _{IF}		6T	ns

1. This minimum number guarantees that a reliable reset occurs.

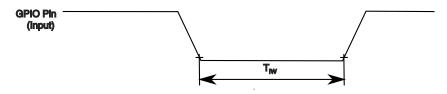


Figure 16. GPIO Interrupt Timing (Negative Edge-Sensitive)

7.18 Queued Serial Peripheral Interface (SPI) Timing

In the following table, all the figures in this section apply to all items except those for which only Figure 20 is indicated. All parameters listed are guaranteed by design.

Characteristic	Symbol	Min	Max	Unit
Cycle time	t _C			
Master		125	_	ns
Slave		62.5	_	ns
Enable lead time ¹	t _{ELD}		•	
Master		_	_	ns
Slave		31	_	ns
Enable lag time ¹	t _{ELG}			
Master		_	_	ns
Slave		125	_	ns
Clock (SCK) high time ¹	t _{CH}			
Master		50	_	ns
Slave		31	_	ns
Clock (SCK) low time	t _{CL}			
Master		50	_	ns
Slave		31	_	ns
Data set-up time required for inputs	t _{DS}			
Master		20	_	ns
Slave		0	_	ns
Data hold time required for inputs	t _{DH}			
Master		0	_	ns
Slave		2	_	ns
Access time (time to data active from high-impedance state) ¹	t _A			
Slave		4.8	15	ns

Characteristic	Symbol	Min	Max	Unit
Disable time (hold time to high-impedance state) ¹	t _D		·	·
Slave		3.7	15.2	ns
Data valid for outputs	t _{DV}		·	
Master		_	4.5	ns
Slave (after enable edge)		_	20.4	ns
Data invalid	t _{DI}		·	
Master		0	_	ns
Slave		0	_	ns
Rise time	t _R		·	
Master		_	11.5	ns
Slave		_	10.0	ns
Fall time	t _F		•	
Master]	_	9.7	ns
Slave	1	_	9.0	ns

1. Only the figure "SPI Slave Timing (CPHA = 1)" applies.

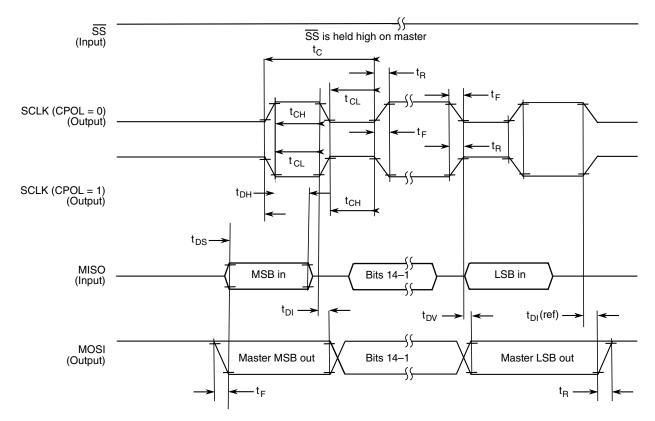


Figure 17. SPI Master Timing (CPHA = 0)

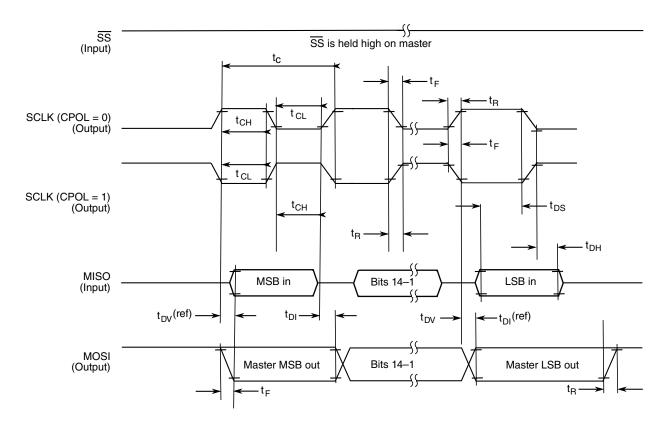


Figure 18. SPI Master Timing (CPHA = 1)

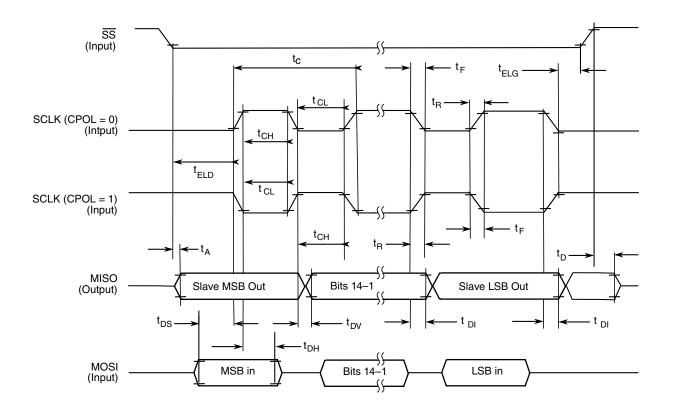


Figure 19. SPI Slave Timing (CPHA = 0)

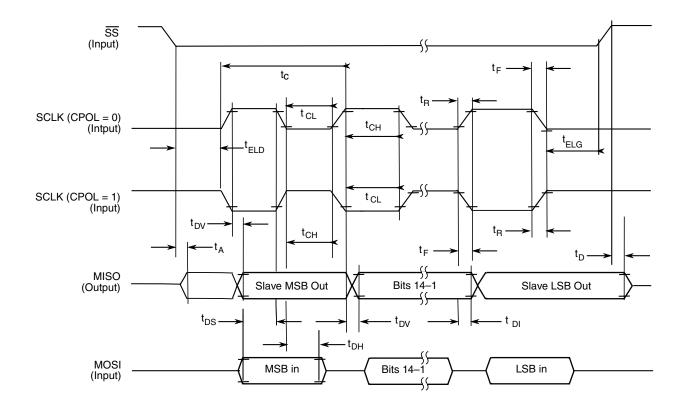


Figure 20. SPI Slave Timing (CPHA = 1)

7.19 Queued Serial Communication Interface (SCI) Timing

The parameters listed in the following table are guaranteed by design.

Characteristic	Symbol	Min	Max	Unit
Baud rate ¹	BR	_	(f _{MAX} /16)	Mbps
RXD pulse width	RXD _{PW}	0.965/BR	1.04/BR	ns
TXD pulse width	TXDPW	0.965/BR	1.04/BR	ns
	LIN	Slave Mode		
Deviation of slave node clock from nominal clock rate before synchronization	F _{TOL_UNSYNCH}	-14	14	%
Deviation of slave node clock relative to the master node clock after synchronization	F _{TOL_SYNCH}	-2	2	%
Minimum break character length	T _{BREAK}	13	_	Master node bit periods
		11	_	Slave node bit periods

1. f_{MAX} is the frequency of operation of the SCI in MHz, which can be selected system clock (max. 60 MHz) or 2x system clock (max. 120 MHz) for the device.

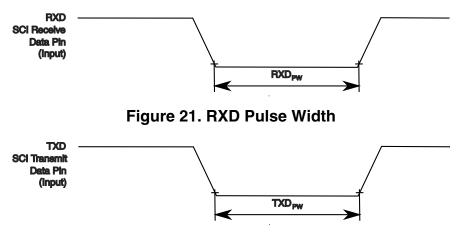


Figure 22. TXD Pulse Width

7.20 Modular/Scalable Controller Area Network (MSCAN)

Characteristic	Symbol	Min	Max	Unit
Baud Rate	BR _{CAN}	_	1	Mbps
Bus Wake-up detection	T _{WAKEUP}	T _{IPBUS}	_	μs

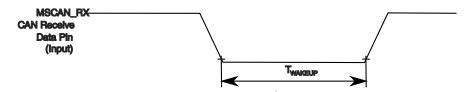


Figure 23. Bus Wake-Up Detection

7.21 Inter-Integrated Circuit Interface (I²C) Timing

Table 12. I²C Timing

Characteristic	Symbol	Standa	Unit	
		Min	Max	
SCL Clock Frequency	f _{SCL}	0	100	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4.0	_	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	μs

Table 12.	I ² C Timing	(continued)
-----------	-------------------------	-------------

Characteristic	Symbol	Standard Mode		Unit
		Min	Max	
HIGH period of the SCL clock	t _{HIGH}	4.0	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	μs
Data hold time for I2C bus devices	t _{HD} ; _{DAT}	01	3.45 ²	μs
Data set-up time	t _{SU} ; DAT	250 ³	_	ns
Rise time of SDA and SCL signals	t _r	_	1000	ns
Fall time of SDA and SCL signals	t _f	_	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4.0	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	ns

- 1. The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, a negative hold time can result, depending on the edge rates of the SDA and SCL lines.
- 2. The maximum t_{HD} ; DAT must be met only if the device does not stretch the LOW period (t_{LOW}) of the SCL signal.
- 3. Set-up time in slave-transmitter mode is 1 IP bus clock period, if the TX FIFO is empty.

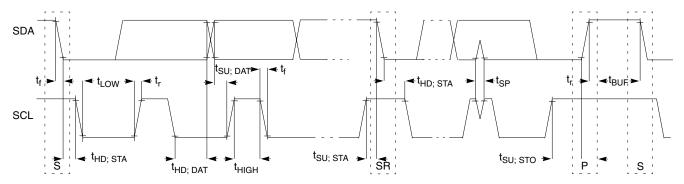


Figure 24. Timing Definition for Fast and Standard Mode Devices on the I²C Bus

7.22 JTAG Timing

Characteristic	Symbol	Min	Max	Unit	See Figure
TCK frequency of operation ¹	f _{OP}	DC	SYS_CLK/8	MHz	Figure 25
TCK clock pulse width	t _{PW}	50	_	ns	Figure 25
TMS, TDI data set-up time	t _{DS}	5	_	ns	Figure 26
TMS, TDI data hold time	t _{DH}	5	_	ns	Figure 26
TCK low to TDO data valid	t _{DV}	_	30	ns	Figure 26
TCK low to TDO tri-state	t _{TS}	_	30	ns	Figure 26

1. TCK frequency of operation must be less than 1/8 the processor rate.

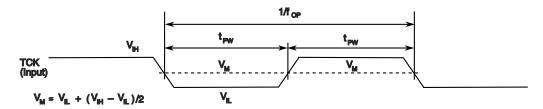


Figure 25. Test Clock Input Timing Diagram

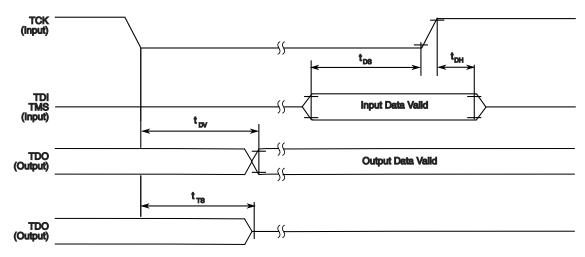


Figure 26. Test Access Port Timing Diagram

7.23 Quad Timer Timing

In the formulas listed in the following table, T = the clock cycle. For 32 MHz operation, T = 31.25 ns. Parameters listed are guaranteed by design.

Characteristic	Symbol	Min	Max	Unit
Timer input period	P _{IN}	2T + 6	_	ns
Timer input high/low period	P _{INHL}	1T + 3	_	ns
Timer output period	P _{OUT}	125	_	ns
Timer output high/low period	P _{OUTHL}	50	_	ns

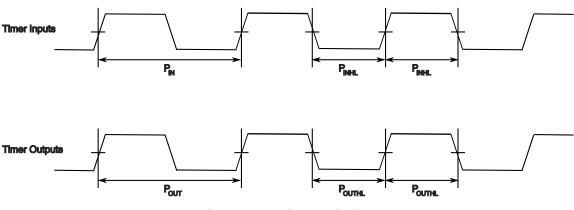


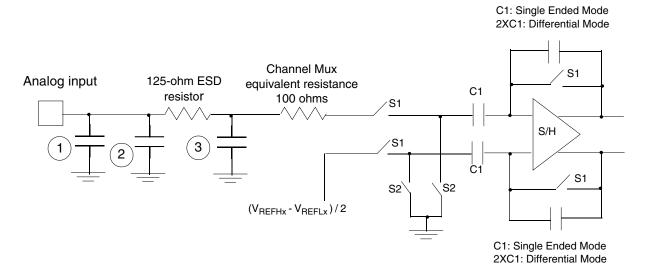
Figure 27. Timer Timing

7.24 Analog-to-Digital Converter (ADC) Parameters

In the following table, all measurements were made at V_{DD} = 3.3V, V_{REFH} = 3.3V, and V_{REFL} = ground

Parameter	Symbol	Min	Тур	Max	Unit
DC Specifications	•	•		•	•
Resolution	R _{ES}	12	_	12	Bits
ADC Internal Clock	f _{ADIC}	0.6	_	10	MHz
Conversion Range	R _{AD}	VREFL	_	V_{REFH}	V
ADC and VREF power-Up Time ¹ (from power down mode)	t _{ADPU}	_	13	_	t _{AIC} cycles ^{, 2}
VREF Power-up time (from low power mode)	t _{REFPU}	_	6	_	t _{AIC} cycles ²
Conversion Time	t _{ADC}	_	6	_	t _{AIC} cycles ²
Sample Time	t _{ADS}	_	1	_	t _{AIC} cycles ²
Accuracy	•	•			
Integral non-linearity ³ (Full input signal range)	INL		±3	±5	LSB ⁴
Differential non-linearity	DNL	_	±0.6	±1	LSB ⁴
Monotonicity			GUARANTEED		
Offset Voltage Internal Ref	V _{OFFSET}	_	±4	±9	mV
Offset Voltage External Ref	V _{OFFSET}	_	±6	±12	mV
Gain Error (transfer gain)	E _{GAIN}	_	0.998 to 1.002	1.01 to 0.99	_
ADC Inputs (Pin Group 3)	•	•			
Input Voltage (external reference)	V _{ADIN}	VREFL	_	V _{REFH}	V
Input Voltage (internal reference)	V _{ADIN}	VSSA		V_{DDA}	V
Input leakage	I _{IA}	_	0	±2	μΑ
V _{REFH} current	I _{VREFH}	_	0	_	μΑ

Parameter	Symbol	Min	Тур	Max	Unit
Input injection ⁵ current, per pin	I _{ADI}	_	_	3	mA
Input Capacitance	C _{ADI}	_	see Equivalent Circuit for ADC Inputs	_	pF
Input impedance	X _{IN}	_	see Equivalent Circuit for ADC Inputs	_	Ohms
AC Specifications					
Signal-to-noise ratio	SNR	_	59	_	dB
Total Harmonic Distortion	THD	_	64	_	dB
Spurious Free Dynamic Range	SFDR	_	65	_	dB
Signal-to-noise plus distortion	SINAD	_	59	_	dB
Effective Number Of Bits	ENOB	_	9.5	_	dB


- 1. Includes power-up of ADC and VREF.
- 2. ADC clock cycles
- 3. INL measured from $V_{IN} = V_{REFL}$ to $VIN = V_{REFH}$.
- 4. LSB = Least Significant Bit = 0.806 mV at x1 gain.
- 5. The current that can be injected or sourced from an unselected ADC signal input without affecting the performance of the ADC.

7.24.1 Equivalent Circuit for ADC Inputs

The following figure illustrates the ADC input circuit during sample and hold. S1 and S2 are always opened/closed at non-overlapping phases and operate at the ADC clock frequency. Equivalent input impedance, when the input is selected, is as: $(2 \times k) / (ADC_ClockRate \times Cgain) + 100$ ohms + 125 ohms, where k =

- 1 for first sample
- 6 for subsequent samples

and Cgain is as described in the note 4 below.

NOTE

- 1. Parasitic capacitance due to package, pin-to-pin, and pin-to-package base coupling: 1.8 pF
- 2. Parasitic capacitance due to the chip bond pad, ESD protection devices, and signal routing: 2.04 pF
- 3. 8 pF noise damping capacitor
- 4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only connected to it at sampling time: Cgain = 1.4 pF for x1 gain, 2.8 pF for x2 gain, and 5.6 pF for x4 gain.
- 5. S1 and S2 switch phases are non-overlapping and operate at the ADC clock frequency.

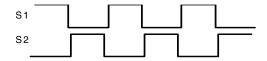


Figure 28. Equivalent Circuit for A/D Loading

7.25 Digital-to-Analog Converter (DAC) Parameters

Parameter	Conditions/Comments	Symbol	Min	Тур	Max	Unit
DC Specifications		-		-	-	
Resolution	_	_	12	_	12	bits
Settling time	At output load	_	_	_	2	μS
	RLD = 3 KΩ					

Parameter	Conditions/Comments	Symbol	Min	Тур	Max	Unit
	CLD = 400 pf					
Power-up time	Time from release of PWRDWN signal until DACOUT signal is valid	t _{DAPU}	_	_	11	μS
Accuracy						
Integral non-linearity ¹	linearity ¹ Range of input digital words: 410 to 3891 (0x19A - 0xF33) 5% to 95% of full range		±3	±8.0	LSB ²	
Differential non-linearity ¹	Differential non-linearity ¹ Range of input digital words: 410 to 3891 (0x19A - 0xF33) 5% to 95% of full range		_	±0.8	±1.0	LSB ²
Monotonicity	> 6 sigma monotonicity, < 3.4 ppm non-monotonicity	GUARANTEED —				_
Offset error ¹	Range of input digital words: 410 to 3891 (0x19A - 0xF33) 5% to 95% of full range	V _{OFFSET}	_	±25	±40	mV
Gain error ¹ Range of input digital words: 410 to 3891 (0x19A - 0xF33) 5% to 95% of full range		E _{GAIN}	_	±5	±1.5	%
DAC Output						•
Output voltage range Within 40 mV of either V _{REFLX} or V _{REFHX}		VOUT	V _{REFLX} +0.04V	_	V _{REFHX} - 0.04V	V
AC Specifications						
Effective number of bits	_	ENOB	9	_	_	bits

^{1.} No guaranteed specification within 5% of $\rm V_{DDA}$ or $\rm V_{SSA}.$ 2. $\rm LSB = 0.806~mV.$

7.26 5-Bit Digital-to-Analog Converter (DAC) Parameters

Parameter	Symbol	Min	Тур	Max	Unit
Reference Inputs	V _{IN}	_	VDDA	_	mV
Setup Delay	t _{PRGST}	_	_	125	ns
Step size	V _{STEP}	3V _{IN} /128	V _{IN} /32	5V _{IN} /128	V
Output Range	V _{DACOUT}	V _{IN} /32	_	V _{IN}	ns

7.27 HSCMP Specifications

Parameter	Symbol	Min	Тур	Max	Unit
Analog input voltage	V _{AIN}	VSSA - 0.01	_	VDDA + 0.01	V
Analog input offset voltage ¹	V _{AIO}	_	_	40	mV
Analog comparator hysteresis ²	V _H	_	1 to 16	_	mV
Propagation Delay, high speed mode (EN=1, PMODE=1)	t _{DHSN} ³	_	70	140	ns
Propagation Delay, Low Speed Mode (EN=1, PMODE=0)	t _{AINIT} ³	_	400	600	ns

- 1. Offset when the degree of hysteresis is set to its minimum value.
- 2. The range of hysteresis is based on simulation only. This range varies from part to part.
- Measured with an input waveform that switches 30 mV above and below the reference, to the CMPO output pin. V_{DDA} > V_{LVI WARNING} => LVI_WARNING NOT ASSERTED.

7.28 Optimize Power Consumption

This section provides details for optimizing power consumption for a given application.

Power consumption is given by the following equation:

Total power = A: internal [static] component

+B: internal [state-dependent] component

+C: internal [dynamic] component

+D: external [dynamic] component

+E: external [static] component

A, the internal [static] component, consists of the DC bias currents for the oscillator, leakage currents, PLL, and voltage references. These sources operate independently of processor state or operating frequency.

B, the internal [state-dependent] component, reflects the supply current required by certain on-chip resources only when those resources are in use. These resources include RAM, flash memory, and the ADCs.

C, the internal [dynamic] component, is classic C*V²*F CMOS power dissipation corresponding to the 56800E core and standard cell logic.

D, the external [dynamic] component, reflects power dissipated on-chip as a result of capacitive loading on the external pins of the chip. This component is also commonly described as $C*V^2*F$, although simulations on two of the I/O cell types used on the 56800E reveal that the power-versus-load curve does have a non-zero Y-intercept.

Table 13. I/O Loading Coefficients at 10 MHz

Drive	Intercept	Slope
8 mA drive	1.3	0.11 mW/pF
4 mA drive	1.15 mW	0.11 mW/pF

Power due to capacitive loading on output pins is (first order) a function of the capacitive load and frequency at which the outputs change. The above table provides coefficients for calculating power dissipated in the I/O cells as a function of capacitive load. In these cases, the following equation applies.

$$TotalPower = S((Intercept + Slope*Cload)*frequency/10 MHz)$$

where:

- Summation is performed over all output pins with capacitive loads.
- Total power is expressed in mW.
- C_{load} is expressed in pF.

Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was found to be fairly low when averaged over a period of time.

E, the external [static] component, reflects the effects of placing resistive loads on the outputs of the device. Total all V^2/R or IV to arrive at the resistive load contribution to power. Assume V=0.5 for the purposes of these rough calculations. For instance, if there is a total of nine PWM outputs driving 10 mA into LEDs, then P=8*0.5*0.01=40 mW.

In previous discussions, power consumption due to parasites associated with pure input pins is ignored and assumed to be negligible.

8 Design Considerations

8.1 Thermal Design Considerations

An estimation of the chip junction temperature, T_J , can be obtained from the following equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

- T_A = Ambient temperature for the package (°C)
- $R_{\theta JA}$ = Junction-to-ambient thermal resistance (°CW)
- P_D = Power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single-layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low-power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance.

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

- $R_{\theta JA}$ = Package junction-to-ambient thermal resistance (°C/W)
- $R_{\theta JC}$ = Package junction-to-case thermal resistance (°C/W)
- $R_{\theta CA}$ = Package case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be adjusted. You control the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, you can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or the thermal dissipation on the printed circuit board surrounding the device.

To determine the junction temperature of the device in the application when heat sinks are not used, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

- T_T = Thermocouple temperature on top of package (°C)
- Ψ_{IT} = Thermal characterization parameter (°CW)
- P_D = Power dissipation in package (W)

The thermal characterization parameter is measured per JESD51–2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

8.2 Electrical Design Considerations

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, take normal precautions to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

Use the following list of considerations to assure correct operation of the device:

- Provide a low-impedance path from the board power supply to each V_{DD} pin on the device and from the board ground to each V_{SS} (GND) pin.
- The minimum bypass requirement is to place 0.01–0.1 μF capacitors positioned as near as possible to the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the V_{DD}/V_{SS} pairs, including V_{DDA}/V_{SSA}. Ceramic and tantalum capacitors tend to provide better tolerances.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{DD} and V_{SS} (GND) pins are as short as possible.
- Bypass the V_{DD} and V_{SS} with approximately 100 μF , plus the number of 0.1 μF ceramic capacitors.
- PCB trace lengths should be minimal for high-frequency signals.
- Consider all device loads as well as parasitic capacitance due to PCB traces when
 calculating capacitance. This is especially critical in systems with higher capacitive
 loads that could create higher transient currents in the V_{DD} and V_{SS} circuits.
- Take special care to minimize noise levels on the V_{REF} , V_{DDA} , and V_{SSA} pins.
- Using separate power planes for V_{DD} and V_{DDA} and separate ground planes for V_{SS} and V_{SSA} is recommended. Connect the separate analog and digital power and ground planes as near as possible to power supply outputs. If an analog circuit and digital circuit are powered by the same power supply, you should connect a small inductor or ferrite bead in serial with V_{DDA} and V_{SSA} traces.
- Physically separate analog components from noisy digital components by ground planes. Do not place an analog trace in parallel with digital traces. Place an analog ground trace around an analog signal trace to isolate it from digital traces.
- Because the flash memory is programmed through the JTAG/EOnCE port, SPI, SCI, or I²C, the designer should provide an interface to this port if in-circuit flash programming is desired.

- If desired, connect an external RC circuit to the \overline{RESET} pin. The resistor value should be in the range of 4.7 k Ω to 10 k Ω ; the capacitor value should be in the range of 0.22 μF to 4.7 μF .
- Configuring the RESET pin to GPIO output in normal operation in a high-noise environment may help to improve the performance of noise transient immunity.
- Add a 2.2 k Ω external pullup on the TMS pin of the JTAG port to keep EOnCE in a restate during normal operation if a JTAG converter is not present.
- During reset and after reset but before I/O initialization, all I/O pins are at input state with internal pullup enabled. The typical value of internal pullup is around $110 \text{ k}\Omega$. These internal pullups can be disabled by software.
- To eliminate PCB trace impedance effect, each ADC input should have an RC filter of no less than 33 pF 10 W.
- External clamp diodes on analog input pins are recommended.

9 Ordering Information

The following table lists the pertinent information needed to place an order. All packages are RoHS compliant.

Device	Supply Voltage	Package Type	Pin Count	Frequency (MHz)	Ambient Temperature Range	Order Number
MWCT1011B	3.0–3.6 V	Low-Profile Quad Flat Pack (LQFP)	64	60	–40°C to +105°C	MWCT1011BVLH

10 Package Mechanical Outline Drawings

10.1 64-pin LQFP Package

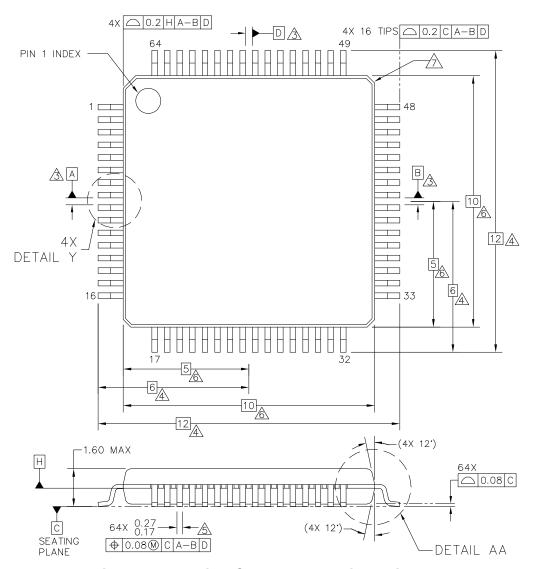
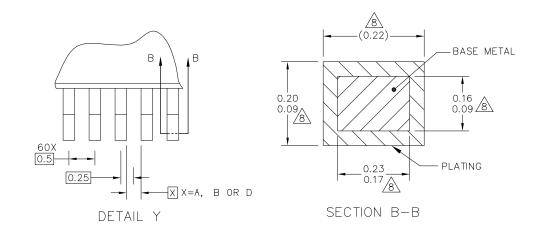
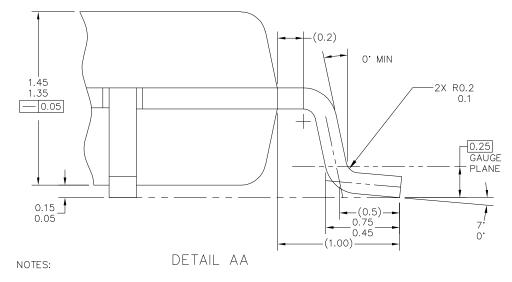




Figure 29. 64-pin LQFP package dimensions 1

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3 DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.
- 4 dimensions to be determined at seating plane c.
- THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 MM AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 MM.
- THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.
- A EXACT SHAPE OF EACH CORNER IS OPTIONAL.
- 1 THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 MM AND 0.25 MM FROM THE LEAD TIP.

Figure 30. 64-pin LQFP package dimensions 2

11 Revision history

The following table provides a revision history for this document.

Table 14. Revision history

Rev.	Date	Substantial Changes
1	06/2021	Initial customer version

A.1 Interrupt Vector Table

The table in this appendix provides the device's reset and interrupt priority structure, including on-chip peripherals. The table is organized with higher-priority vectors at the top and lower-priority interrupts lower in the table. As indicated, the priority of an interrupt can be assigned to different levels, allowing some control over interrupt priorities. All level 3 interrupts are serviced before level 2 and so on. For a selected priority level, the lowest vector number has the highest priority.

The location of the vector table is determined by the vector base address (VBA). See the device reference manual for details.

By default, the chip reset address and COP reset address correspond to vector 0 and 1 of the interrupt vector table. In these cases, the first two locations in the vector table must contain branch or JMP instructions. All other entries must contain JSR instructions.

Two words are allocated for each entry in the vector table. This does not allow the full address range to be referenced from the vector table, providing only 19 bits of address.

Table A-1. Interrupt Vector Table Contents

Peripheral	Vector Number	Priority Level	Vector Base Address +	Interrupt Function
Core			P:0x00	Reserved for Reset Overlay ¹
Core			P:0x02	Reserved for COP Reset Overlay
Core	2	3	P:0x04	Illegal Instruction
Core	3	3	P:0x06	Software Interrupt 3
Core	4	3	P:0x08	Hardware Stack Overflow
Core	5	3	P:0x0A	Misaligned Long Word Access
Core	6	1–3	P:0x0C	EOnCE Step Counter

Table A-1. Interrupt Vector Table Contents (continued)

Peripheral	Vector Number	Priority Level	Vector Base Address +	Interrupt Function
Core	7	1–3	P:0x0E	EOnCE Breakpoint Unit
Core	8	1–3	P:0x10	EOnCE Trace Buffer
Core	9	1–3	P:0x12	EOnCE Transmit Register Empty
Core	10	1–3	P:0x14	EOnCE Receive Register Full
Core	11	2	P:0x16	Software Interrupt 2
Core	12	1	P:0x18	Software Interrupt 1
Core	13	0	P:0x1A	Software Interrupt 0
PMC	14	1–3	P:0x1C	Low-Voltage Interrupt
occs	15	1–3	P:0x1E	Phase-Locked Loop Loss of Locks and Loss of Clock
TMRB3	16	0–2	P:0x20	Quad Timer B, Channel 3 Interrupt
TMRB2	17	0–2	P:0x22	Quad Timer B, Channel 2Interrupt
TMRB1	18	0–2	P:0x24	Quad Timer B, Channel 1Interrupt
TMRB0	19	0–2	P:0x26	Quad Timer B, Channel 0 Interrupt
ADCB_CC	20	0–2	P:0x28	ADCB Conversion Complete Interrupt
ADCA_CC	21	0–2	P:0x2A	ADCA Conversion Complete Interrupt
ADC_Err	22	0–2	P:0x2C	ADC Zero crossing, Low limit, and high limit interrupt
CAN	23	0–2	P:0x2E	CAN Transmit Interrupt
CAN	24	0–2	P:0x30	CAN Receive Interrupt
CAN	25	0–2	P:0x32	CAN Error Interrupt
CAN	26	0–2	P:0x34	CAN Wake-Up Interrupt
QSCI1	27	0–2	P:0x36	QSCI1 Receiver Overrun/Errors
QSCI1	28	0–2	P:0x38	QSCI1 Receiver Full
QSCI1	29	0–2	P:0x3A	QSCI1 Transmitter Idle
QSCI1	30	0–2	P:0x3C	QSCI1 Transmitter Empty
QSCI0	31	0–2	P:0x3E	QSCI0 Receiver Overrun/Errors
QSCI0	32	0–2	P:0x40	QSCI0 Receiver Full
QSCI0	33	0–2	P:0x42	QSCI0 Transmitter Idle
QSCI0	34	0–2	P:0x44	QSCI0 Transmitter Empty
QSPI	35	0–2	P:0x46	SPI Transmitter Empty
QSPI	36	0–2	P:0x48	SPI Receiver Full
I ² C1	37	0–2	P:0x4A	I ² C1 Interrupt
I ² C0	38	0–2	P:0x4C	I ² C0 Interrupt
TMRA3	39	0–2	P:0x4E	Quad Timer A, Channel 3 Interrupt
TMRA2	40	0–2	P:0x50	Quad Timer A, Channel 2 Interrupt
TMRA1	41	0–2	P:0x52	Quad Timer A, Channel 1 Interrupt
TMRA0	42	0–2	P:0x54	Quad Timer A, Channel 0 Interrupt

Table A-1. Interrupt Vector Table Contents (continued)

Peripheral	Vector Number	Priority Level	Vector Base Address +	Interrupt Function
eFlexPWM	43	0–2	P:0x56	PWM Fault
eFlexPWM	44	0–2	P:0x58	PWM Reload Error
eFlexPWM	45	0–2	P:0x5A	PWM Sub-Module 3 Reload
eFlexPWM	46	0–2	P:0x5C	PWM Sub-Module 3 input capture
eFlexPWM	47	0–2	P:0x5E	PWM Sub-Module 3 Compare
eFlexPWM	48	0–2	P:0x60	PWM Sub-Module 2 Reload
eFlexPWM	49	0–2	P:0x62	PWM Sub-Module 2 Compare
eFlexPWM	50	0–2	P:0x64	PWM Sub-Module 1 Reload
eFlexPWM	51	0–2	P:0x66	PWM Sub-Module 1 Compare
eFlexPWM	52	0–2	P:0x68	PWM Sub-Module 0 Reload
eFlexPWM	53	0–2	P:0x6A	PWM Sub-Module 0Compare
FM	54	0–2	P:0x6C	Flash Memory Access Error
FM	55	0–2	P:0x6E	Flash Memory Programming Command Complete
FM	56	0–2	P:0x70	Flash Memory Buffer Empty Request
СМРС	57	0–2	P:0x72	Comparator 0 Rising/Falling Flag
СМРВ	58	0–2	P:0x74	Comparator 1 Rising/Falling Flag
СМРА	59	0–2	P:0x76	Comparator 2 Rising/Falling Flag
GPIOF	60	0–2	P:0x78	GPIOF Interrupt
GPIOE	61	0–2	P:0x7A	GPIOE Interrupt
GPIOD	62	0–2	P:0x7C	GPIOD Interrupt
GPIOC	63	0–2	P:0x7E	GPIOC Interrupt
GPIOB	64	0–2	P:0x80	GPIOB Interrupt
GPIOA	65	0–2	P:0x82	GPIOA Interrupt
SWILP	66	-1	P:0x84	SW Interrupt Low Priority

^{1.} If the VBA is set to the reset value, the first two locations of the vector table overlay the chip reset addresses because the reset address would match the base of this vector table.

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale,the Freescale logo,CodeWarrior, are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2021 NXP B.V.

