Preliminary

Automotive Dual High Side Driver

This device called "Flasher Lite" is a dual high side power switch dedicated for automotive applications. In comparison with mechanical relays, this device offers higher reliability as well as protection and diagnostic features.

The device consists of two independent $25 \mathrm{~m} \Omega$ Rdson switches in a surface mount package. It can be directly interfaced with a microcontroller for control and diagnostic functions and includes a current recopy function. The device is fully protected against overcurrents, short-circuits and incorporates an overtemperature shutdown. It can be directly and continuously supplied by the battery and offers a very low quiescent current in standby mode.

- Designed for Automotive Applications
- Junction Temperature Range from $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- Operating Voltage Range from 8 V to 40 V
- Reverse Battery protected up to -14 V with no external components
- Surface Mount Package, Thermally Enhanced
- 25 mOhms max Rdson per Channel at $25^{\circ} \mathrm{C}$
- Independant Status Lines, one per channel
- Overtemperature Protection with Hysteresis
- Open Load Detection in On-State
- Short-Circuit Protection
- Loss of gnd, loss of Vbat protection
- Independant Current Recopy, one per channel
- Under Voltage Shutdown
- ESD Protection 2kV
- Current Limitation greater than 25A to Allow load Inrush Current
- Standby Current less than 1 uA at $\mathrm{V}_{\mathrm{bat}}=14 \mathrm{~V}$ and ambiant temperature

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notic More Information On This Product,

Freescale Sěệ̉̂̂̉nductor, Inc.
......IIMUM RATINGS

Ratings	Symbol	Value	Unit

ELECTRICAL RATINGS

Vbat Voltage with Respect to Gnd : Continuous/Pulse	Vbat	-14 to +40	V
Out-1 \& Out-2 Voltage with Respect of Gnd : Continuous/Pulse	Vout	-0.3 to 40	V
Out-1 to Vbat \& Out-2 to Vbat voltage : Continuous/Pulse	Vout	40	V
IN-1, IN-2, ST-1, ST-2 Voltage : Continuous/Pulse	Vin	-0.3 to 7	V
Cur R1, Cur R2 Voltage : Continuous/Pulse	Vcr	-0.3 to 7	V
ESD all Pins	loutdc	8	V
Out-1, Out-2 DC Output Current	loutp	40	Amp
Out-1, Out-2 Output Current : Pulse	lin	$+/-5$	Amp
IN-1, IN-2, ST-1, ST-2, Cur R1, Cur R2 Input Current		mA	

THERMAL RATINGS

Junction Temperature	Tj	-40 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tst	-65 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Case	Rthjc	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Ambient (note 1)	Pd	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation at Tcase $105^{\circ} \mathrm{C}$ (note 2)	3.75		

NOTES:

1. Device mounted with minimum pcb dimensions.
2. Assuming a $150^{\circ} \mathrm{C}$ maximum junction temperature.

Figure 1. Block Diagram and Application Schematic

Freescale Sémîfionnductor, Inc.

Description	Symbol	Characteristics			Unit	Conditions
		min.	typ.	max.		
Nominal Operating Voltage	$\mathrm{V}_{\text {bat }}$	9		16	V	
Functional Operating Voltage	$\mathrm{V}_{\text {bat }}$	8		35	V	
Under Voltage Threshold	$\mathrm{V}_{u \mathrm{v}}$	6	7	8	v	
Vbat Standby Supply Current	$\mathrm{I}_{\text {stdby }}$			1		$\mathrm{V}_{\text {bat }}<14 \mathrm{~V}$ \& $\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Vbat Standby Supply Current	$\mathrm{I}_{\text {stdby }}$			25	$\mu \mathrm{A}$	$\mathrm{V}_{\text {bat }}<14 \mathrm{~V}$ \& $\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$
Supply Current in On State	$\mathrm{I}_{\text {on }}$		8	20	mA	$\mathrm{IN}-1 \& \mathrm{IN}-2$ @ 3.5 V , no fault, Vbat<14V
Drain to Source on Resistance	$\mathrm{R}_{\text {dson }}$		17	22	$\mathrm{m} \Omega$	lout $=4 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Drain to Source on Resistance	$\mathrm{R}_{\text {dson }}$		22	30	$\mathrm{m} \Omega$	lout $=4 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$
High Current Limitation	$\mathrm{I}_{\text {lim }}$		30		A	Vout>1V
Short Circuit Limitation	$\mathrm{I}_{\text {lim }}$		10			Vout<1V
Hot Openload Threshold	I_{0}		0.6		A	
Output Body Diode Voltage	V_{bd}		0.7		V	lout $=-4 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C}$
Reverse Battery Drain to Source Voltage	V_{rb}			200	mV	lout $=-4 \mathrm{~A}, \mathrm{Vbat}=-14 \mathrm{~V}, \mathrm{Tj}=125^{\circ} \mathrm{C}$
Vbat to Output Breakdown Voltage	$\mathrm{V}_{\mathrm{dss}}$	40			V	In -1 and $\mathrm{In}-2$ @ 0 V , Vout = 0 , lout -0.25 mA
Vbat to Out : Leakage Current	$\mathrm{I}_{\text {out-leak }}$			10	$\mu \mathrm{A}$	Vin $=0 \mathrm{~V}$, Vbat $=40 \mathrm{~V}$, Vout $=0 \mathrm{~V}$
Vin-1, Vin-2 : Input Voltage Low Threshold	V_{il}			1.5	V	
Vin-1, Vin-2 : Input Voltage High Threshold	$V_{\text {ih }}$	3.5			V	
Vin-1, Vin-2 : Input Voltage Hysteresis	$\mathrm{V}_{\text {ih }}$	0.2	0.7	0.9	V	
Vin-1, Vin-2 : Input Current	$\mathrm{l}_{\text {in }}$		18	30	$\mu \mathrm{A}$	Vin-1, Vin-2 $=3.5 \mathrm{~V}$
Status Output Voltage	Vst			0.5	V	Ist $=1 \mathrm{~mA}$; Output in Fault
Thermal Shutdown	$\mathrm{T}_{\text {shut }}$	150			${ }^{\circ} \mathrm{C}$	
Thermal Shutdown Hysteresis	Thyst		10		${ }^{\circ} \mathrm{C}$	
Current Recopy Ratio	Cr		1/1000			Vout>Vbat-1V, lout from 2A to 4A $\mathrm{Tj}-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, Vbat 9 to 16 V
Current Recopy Ratio Accuracy	$\mathrm{Cr}-\mathrm{ac}$	-10		10	\%	Vout >Vbat-1V, lout from 2A to 4A $\mathrm{Tj}-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, Vbat 9 to 16 V
Current Recopy Clamp Voltage At 10mA	Vclst	5.5		7	V	lout=9A
Frequency Operation	Fop			150	Hz	
Maximum Output Positive Slew Rate	Tr	0.01	0.2	0.5	V/us	
Maximum Output Negative Slew Rate	Tf	0.15	0.5	1.5	V/us	
Turn On delay time	Tdon		50	150	$\mu \mathrm{s}$	load $=6 \Omega$, from Vin/2 to 10% Vout
Turn Off delay time	Tdoff		70	150	$\mu \mathrm{s}$	load $=6 \Omega$, from Vin/2 to 90% Vout

FUNCTIONAL TRUTH TABLE

Conditions	IN1	IN2	OUT1	OUT2	St1	St2
Normal Operation	L	L	L	L	H	H
	H	L	H	L	H	H
	L	H	L	H	H	H
Undervoltage	H	H	H	H	H	H
Overtemperature Channel 1	X	X	L	L	H	H
Overtemperature Channel 2	H	X	L	X	L	H
Overtemperature Channel 1/Channel 2	X	H	X	L	H	L
Open Load Channel 1	H	H	L	L	L	L
Open Load Channel 2	H	X	H	X	L	H
Overcurrent Channel 1	X	H	X	H	H	L
Overcurrent Channel 2	H	X	X	X	H	H

PIN FUNCTION DESCRIPTION

Pin No.	Name/Function	Description
$1,2,5,6,15,16,19,20$ 10	$V_{\text {bat }}$ Supply Voltage $\mathrm{V}_{\text {batc }}$ Supply Voltag	These are the power supply pins of the device. These pins are directly connected with the lead frame of the package and are tied to the drain of the switching MOSFET. These pins can be directly connected to the battery voltage. In addition to their supply functions, these pins participate to the thermal behaviour of the device in conducting the heat from the switching MOSFET to the printed circuit board. $\mathrm{V}_{\text {batc }}$ provide the supply voltage to the control die.
3, 4, 18, 17	OUT1 OUTPUT Channel 1 OUT2 OUTPUT Channel 2	Pins 3 and 4 are the output 1 terminals. Pins 17 and 18 are the output 2 terminals. They are directly connected to the source of the power MOSFET. The Rdson is $25 \mathrm{~m} \Omega$ max per output at $25^{\circ} \mathrm{C}$. Its value increases up to $40 \mathrm{~m} \Omega$ at $150^{\circ} \mathrm{C}$ junction temperature.
8,13	IN 1 INPUT Channel 1 IN 2 INPUT Channel 2	These are the device input pins, which directly control their associated output. The thresholds are CMOS compatible. When the input is in low state, the associated output MOSFET is off. When input is high, the MOSFET is turned on and the load is activated. When both inputs are low, the device is in standby mode and its supply current is less than 10 uA for $\mathrm{V}_{\text {bat }}$ up to 14 V .
7, 14	Cur R1 Current Recopy for Channel 1 Cur R2 Current Recopy for Channel 2	These pins corresponds to a current recopy for each outputs. Their high accuracy permit to allow a precise monitoring of the outputs loads as well as to detect a failed lamp among several lamps. An external resistor must be connected to these pins which can be tied to a microcontroller A/D for analog measurements
9, 12	ST-1 Status for Channel 1 ST-2 Status for Channel 2	These pins are the channel 1 and 2 status. Their internal structure is an open drain with an internal clamp at 6 V . An external pull up connected to the 5 V is needed. When the device is in normal condition the status is high. If open load or overtemperature occurs on one channel, the associated output status will be pulled low.

Abstract

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or un authorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the parts. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-344-3569

ASIA / PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

