

Constructionoul articles
Iiltra-low distortion amplifier

For superb colour, use EEV vidicons

EEV vidicons - with magnetic or electrostatic focusing - are available in matched sets for colour cameras. These outstanding tubes are selected and matched for picture geometry and uniformity of sensitivity. They help to make better colour pictures by improving registration, signal-to-noise ratio and system sensitivity without sacrificing other performance parameters.

Have you heard also of the latest vidicons that EEV is making for monochrome pictures vidicons with fibre-optic faceplates, with enhanced infra-red sensitivity, or for use in ultra-low light conditions, or in dangerously high radiation environments or in missiles? Whatever your vidicon need - colour or black and white-get in touch with us. We're likely to be able to meet it.

ENGLISH ELECTRIC VALVE COMPANY LIMITED
Chelmsford, Essex, England Phone : 61777 Telex: 99103 Grams: Enelectico Chelmsford
$4 P 379$

Send for full details of the complete range of EEV amplifier klystrons.

EEV klystronsa wide and flexible range for UHF TV

EEV make amplifier klystrons for UHF TV at power levels $5,7,10,25$ and 40 kW into the aerial. Their reliability is established, their operating efficiency is good and their design provides a high degree of operational flexibility. A 40 kW tube can, for example, be operated at the same efficiency at any power level between 20 kW and 40 kW . When operated at 40 kW the tube needs only 135 kW d.c. input.

English Electric Valve Co Ltd
Chelmsford Essex England Telephone : 61777 Telex : 99103 Grams: Enelectico Chelmsford

Please send me full details of your range of UHF TV amplifier klystrons.
I am interested in a klystron with the following parameters:
Frequency Range
Bandwidth
\qquad
COMPANY
ADDRESS

None of this "see if you can squeeze it up to 100 watts". "Well it gets there at 2.875 KHz - anyway this is P.A., not HiFi - so who cares what the distortion is so long as it is not more than 6 or 7 per cent." The S.N.S. CD. 100 amplifier gives a pure, fully transistorised power output of 100 watts
at 1 KHz with distortion less than 1 per cent. You are probably saying "I've heard it all before". So have we! That
is why we have built an amplifier which will set new standards in craftsmanship and performance. To prove it we will loan you one for a seven day free trial.

The CD. 100 illustrated is a single input unit giving 100 watts RMS output for 25 mV input at 1 KHz so it can be driven by any tuner or tape machine or, of course, the output of a mixer. 50/100 volt line output (0-50-0-50) *Distortion less than 1 per cent at 1 KHz .
"Full short circuit protection with the exclusive S.N.S. Current Lok circuit. "Ample thermal capacity to ensure the transistors run within their limits at 100 watts continuous Sine Wave. All these plus points, and many more, make the CD. 100 yet another S.N.S. success.

S.N.S. COMMUNICATIONS LTD.

851 RINGWOOD ROAD - WEST HOWE - BOURNEMOUTH - HANTS - ENGLAND
Telephone Northbourne 4845/2663. Telegrams: Flexicall Bournemouth - Telex: 41224
Manufacturers of: Transistor Amplifiers, Crystal AM and FM Tuners, Radiomicrophones, Cabinet and Line Source Loudspeakers, Loudspeaking Intercom Systems, Hotel Radio and Intercom Systems.

If you need power tetrodes at the right price look at this EEV range

Forced-air Cooled		Anode dissipation max. (kW)	Output power (kW)	Anode voltage max. (kv)	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	Filament ratings	
Type	Service type					(V)	(A)
$\begin{aligned} & \text { 4CX1000A } \\ & \text { 4CX1000K } \end{aligned}$	-	1.0	3.2	3.0	110	6.0	9.0
4CX1500B	-	1.5	2.7	3.0	30	6.0	9.0
4Cx5000A	CV8295	5.0	16.0	7.5	30/110	7.5	75
4CX10,000D	CV6184	10.0	16.0	7.5	30/110	7.5	75
4CX35,000C	-	35.0	82.0	20.0	30	10	300
CR192A (6166A)	CV8244	10.0	9.0	6.9	60/220	5.0	175
Vapour Cooled	Anode dissipation max. (kW)	Output power (kW)	Anode voltage max. (kv)	Frequency (MHz)	Filament ratings		Boiler unit
					(V)	(A)	
CY1170J	60	82	15	30	10	300	Integral
CY1172 (RS 2002V)	150	220	15	30	21	350	CY4120
4CX1000K 4	.000D	4CX35,000		CY1170J		CY11	
For audio or linear single sideband amplifiers. $4 \mathrm{CX1} 1000 \mathrm{~K}$ has a solid disc screen	dio, linear. sideband n ated r.f. ers.	For audio an r.f. linear am or Class C a or oscillator	mplifiers. plifiers mplifiers s.	For audio a Class C amp have a coax A range of available.	mplifiers, r.f. lifiers or os al metal-ce lass envelop	inear illators amic e type	ers or types e. o

Please send me full data on your range of forced-air cooled and vapour cooled tetrodes. I am also looking for a power tetrode with the following parameters.

Output power (kW)	Anode voltage $\max (\mathrm{kV})$	Frequency (MHz)
NAME		POSITION
COMPANY		

Hall Electric Limited
Haltron House, Anglers Lane
London, N.W. 5.
Telephone: 01-485 8531 (10 lines) Telex: 2-2573
Cables: Hallectric, London, N.W.5.
Howtobea mnemopolymericist

All you need to shrink your cable binding and sleeving costs - is a match! Our demonstration kit contains two types of wired terminals and Helashrink ${ }^{\text {Q }}$ heatshrinkable sleeves. You simply add heat for a tight shrink-fit or shroud. In seconds - and at very low cost. Post coupon and see.

[^0]
*Mnemopolymerics - the science of heat-shrinkable polymers with a built-in memory - perfected after many years of intensive research and development by Hellermann-Electric. Helashrink products include:
Helashrink Electrovin ${ }^{\text {® }}$ - sleeves, markers and tubing in PVC - designed to cut the cost of cable harness sleeving, terminal insulation, plug shrouding, identification, insulation of condenser and transistor cans, and general mechanical protection. Also for creating multicore cables, harness work and bus-bar protection. Two grades: Thin-wall, shrinking at $70^{\circ} \mathrm{C}$; Standard-wall, shrinking at 135° to $150^{\circ} \mathrm{C}$. Both self-extinguishing. Good storage stability.
Helashrink Insultite - sleeves, markers, tubing and end caps in a range of irradiated and non-irradiated materials designed to provide the right product for the job - at the right price. Materials can be selected for flexibility, rigidity, shock and vibration protection, resistance to contaminant: over a range of operating temperatures from $-55^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$.

NAGBA
 The world's best portable professional audiotape recorder

MODEL IVA Automatic, single speed

MODEL IVD Automatic/Manual, three speeds

MODEL IVL Neopilot, three speeds. Automatic/Manual

[^1]clastity of illustration

These models plus eight variants give the professional user a choice of twelve basic Nagra IV tape recorders. Modular plug-in electronic circuit boards, available for each machine, allow unique flexibility in the choice of recording functions.

Study the Nagra IV brochure and see how you can select precisely the facilities you need, built in to one compact machine of outstanding performance and reliability.

Write or telephone for technical information. HAYDEN LABORATORIES LIMITED.
East House, Chiltern Avenue, Amersham, Bucks., England Tel: 024035511 Telex: 83251 Cables: Haylab Amersham.

TRIO's TS-510 is the definitive instrument especially engineered for complete "SSB ERA" function. It's a high power, high stability product of imaginative design that fully lives up to the renowned "TRIO" name. Extremely stable VFO, a new development that is built around 2 FET's and 13 transistors, guarantees stable QSO's during entire use, an accurate double-gear tuning mechanism and a linear tuning capacitor produce a 1 kHz direct reading on all bands. There's easy tuning in of SSB signals because the TS-510's frequency coverage has been compressed to 25 kHz for one complete rotation of the dial. Sharp cutoff for both reception and transmission is achieved by a sharp factor frequency filter built just
for this 510 series model.
Combined with the TS-510's superb features are the distinctive, top quality PS-510 (Power supply and speaker) and VFO-5D (Variable frequency oscillator). With an AC power supply that operates a built-in 16 cm speaker, the PS-510 has been created as an exclusive companion instrument for the TS-510. It can be installed at any location with the PS-510 because the power supply is regulated on or off at the TS 510 .
The VFO-5D can match the TS-510 in performance and design. Its reading accuracy is unusually high since a double-gear dial covering 25 kHz per revolution is also used, as in the TS-510.

TO: B.H. Morris \& Co., (Radio) Ltd.
Send me information on TRIO COMMUNICATION RECEIVERS \& name of nearest TRIO retailer.

NAME \qquad
ADORESS

TRIO-KENWOOD ELECTRONICS S.A. 160 Ave., Brugmann, Bruxelles 6, Belgium

Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng. - Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulation Transistors.

ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. - Installations - Dralghtsmanship lations - Draughtsmanship -ration - Elem. Elecrrical eration - Elem. Electrical Science - Electrical Science -
Electrical
Supply Electrical
Electrical Eng.

CIVIL ENG.
Advanced Civil Eng. - Ger. Civil Eng.-Municipal Eng.Structural Eng. - Sanitary Eng. - Road Eng. - Hy= draulics - Mining - Water Supply - Petrol Tech.

RADIO ENG.

Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amateurs' Exam.
MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool DesignSheet Metal Work - Welding - Eng. Pattern Making -Inspection-Draughtsmanship--Metallurgy - Production $\overline{E n g}^{\mathrm{M}}$
AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. - Automobile Maintenance - Repair -Automobile Diesel Mainterance - Automobile Electrical Equipment - Garage Management.

We have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRU* MENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning powerl $\begin{array}{ll}\text { A.M.I.E.R.E., B.Sc. (Eng.), A.M.S.E. } \\ \text { A.M.I.M.I R.T.E.B. } & \text { A.M.O.I.P.E. }\end{array}$
 GEN. CERT. OF EDUCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
446a aldermaston court, aldermaston, berkshire

THIS BOOK TELLS YOU

\star HOW to get a better paid, more interesting job. \star HOW to qualify for ropid promotion.

* HOW to put some letters after your name and become a key man . . . quickly and easily. \star HOW to benefit from our free Advisory and Appointments Depts.
\star HOW you can take advantage of the chances you are now missing.
\star HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT CAREER-GUIDANCE

PRACTICAL EQUIPMENT

Basic Practical and Theo retic Courses for beginners in Radio, T.V., Electronlcs, etc. A.M.I.E.R.E. City \& Guilds Radio Amateurs' Exam., R.T.E.B. Certificate, P.M.G. Cer Radio \& Television Ser Racing, Practical Elec ricing, Practical Elec Engineering, Automation

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation

The specialist ElecB.I.E.T. Division of NOWV of real laboratory you a real laboratory traint practical equipment. Ask for details.

B.I.E.T.

POST GOUPON NOW!

TO B.I.E.T., 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME
ADDRESS \qquad
\qquad
WRITE IF YOUU PREFER NOT TO CUT THIS PAGE

There are a couple of things you should know about the Welbrook All Silicon Stereo Amplifier

DISTORTION
 0.1\% at all output levels
 £42. 0. 0d.

A new and unique method of equalising impedances in the output stage enables only Welbrook to offer such true high fidelity reproduction at such low cost.
This technical breakthrough brings you the Welbrook W/20 Stereo Amplifier, with no distortion rise at any level, for only $£ 42$. o. od. This is a truly remarkable bargain among high quality stereo amplifiers, using Class B operation.

Performance:

Power Output:
24 watts R.M.S. (12 watts per channel) into 4 ohms load. 20 watts R.M.S. (10 watts per channel) into 8 ohms load. 14 watts R.M.S. (7 watts per channel) into 15 ohms load. Total Harmonic Distortion:
Typically 0.1% for ro watts per channel into 8 ohms load at I kHz with no increase at low levels.
Hum and Noise:
With volume control at minimum-80 dB. With volume control at maximum-55 dB.
Frequency Response:
-I dB at 30 Hz and 15 kHz .
Inputs: Pickup:
R.I.A.A. characteristic, sensitivity adjustable up to 3 mV to suit crystal, ceramic or magnetic cartridges.
Tuner:
Flat characteristic-sensitivity 100 mV -input impedance 100 k ohms.
Tape:
Flat characteristic-sensitivity 100 mV -input impedance 100 k ohms.
Outputs:
Loudspeaker outputs to suit 4,8 and 15 ohms. Tape output for recording- 200 mV for rated input sensitivities-minimum external impedance 10 k ohms.
Tone Controls: Bass:
Ganged control giving $\pm 14 \mathrm{~dB}$ at 30 Hz
Treble:
Ganged control giving $\pm 14 \mathrm{~dB}$ at 15 kHz
Balance Control:
Facility to reduce output from either channel continuously from maximum output to zero.
Dimensions:
For full details of the Welbrook Stereo Amplifier post the coupon to:
WELBROOK ENGINEERING \& ELECTRONICS LIMITED,
BROOKS STREET, STOCKPORT, CHESHIRE, SK1 3HT

QUAD 50 0 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS - 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines.
OUTPUTS - isolated providing 50 watts into almost any impedance from 4 to 200 ohms. DIMENSIONS - $12 \frac{3}{4}{ }^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{} \times 4 \frac{1}{2}{ }^{\prime \prime}$

Complete the coupon and post today.

QUAD
for the
closest approach to the original sound

Please send me full details of the QUAD 50 Amplifier

NAME

POSITION

COMPANY
ADDRESS
(BLOCK CAPITALS)
ACOUSTICAL MANUFACTURING CO. LTD.,
HUNTINGDON. Telephone: Huntingdon (0480) 2561/2

from the new Bradley, new life for ageing oscilloscopes

The way things are going in computer logic and pulse measurement. even relatively new oscilloscopes are old before their tume
Yet you may feel that investing in
faster instruments to examine the even faster computer phenomena of today
represents too large an outlay.
For you. Bradley introduces the
158 Oscilloscope Adaptor.
It'll put new life into oscilloscopes,
because it enables waveforms at
frequencies up to
1000 MHz to be displayed on any
general purpose oscilloscope
So you can expect quite a lot more from your
present equipment.
Bradleys will see to that.
G. Er E. BRADLEY LTD.

Electral House,
Neasden Lane,
London, N.W. 10.
Tel:01-4507811 Telex: 25583

EXPECT MORE FROM THE NEW BRADLEY

BRADLEY electronics

WW-022 FOR FURTHER DETAMS
 \title{

SIMPLY SUPERB!
 \title{ \section*{SIMPLY SUPERB!

 the new brenell...

 the new brenell... MODEL ST STEREO MODEL ST STEREO

 Probably, the most important new recorder of the year!

 Probably, the most important new recorder of the year!}

The new ST400/200 recorders are different from all previous Brenells. All transistorized electronics; s elf-mounting cabinet ; simplified controls.
Sound quality is even better than ever-as good as you car hear. Three-motor deck performance and reliability; quality components throughout. All usual facilities are available.
ST400/200 recorders are designed to give you exactly what you expect from a Brenell today.
Only the price is less than you may expect . . . £145 recommended. You pay no import duties . . . no high selling costs . . . only for a top-quality recorder, well made. It's a fine formula !

- Mono or stereo operation
- 3 tape speeds
- Choice of 2 or 4 -track
- 2 recording level meters
models
- Full input/output and control facilities
- 3 outer-rotor motors

A range of Brenell mono and stereo recorders is available, together with Brenell deck and tape-link.
 \title{
C\&S Antennas
 \title{
C\&S Antennas

 provide

 provide a complete a complete aerial service aerial service LF to Microwave
} LF to Microwave
}

Point to Point Broadcasting Radio Relay Ground to Air Navigational Aids Business Radio

Design

Site layouts
Aerial System Design

Aerials

LF 'T' and 'L' Aerials, Mast Radiators, HF Dipoles, Quadrants, Rhombics, Log Periodics, Vertical Incidence Arrays, Conicals, Biconicals VHF \& UHF Yagis, Helices, Ground Planes, Colinears, Whips, Marine Aerials, Television Arrays to 100 kW e.r.p MICROWAVE Passive Reflectors, Dishes $3^{\prime \prime}$ to 60 ft . dia.

Supporting Structures

Self-supporting Tawers, Tubular and Lattice Masts, Telescopic Masts

Accessories

Coaxial and open wire Feeders, Filters, Aerial Switches,
Lead-in panels, Earth Systems. Air-cooled Transmitter Loads. Termination Networks

Installation

World Wide Service

TELCON METALS LTD., Manor Royal, Crawley, Suseex.
Tolephone: Crawley 28800 Member of the BICC Gwup of Companice

T0-5Thyisiolors are made in
 Semiconductors

Which means delivery and quality of this low cost thyristor are guaranteed.

Features

- All voltage grade available, from 50 to 600 V
- Three grades of maximum gate sensitivity $200 \mu \mathrm{~A} \quad 1 \mathrm{~mA} \quad 10 \mathrm{~mA}$, allow selection to give the best performance for every application
- Meets BS9300 Quality Assurance Requirements
- Fully diffused

Write for full details to:
AEI Semiconductors Ltd, Carholme Road.
Lincoin. Telephone: Lincoin 26435

Member of GEC Semiconductors Ltd.
W W- 026 FOR FURTHER DETAILS

The international radio set

These days, in the radiocommunications business, it's all too easy to become out-dated and out-of-touch. So remember, if it's your business to maintain HF radio services, it's tough going trying to operate efficiently without equipment tailored for the task. Built-and installed if needs be-by people who really know their way round the international scene.

Redifon know how to keep your traffic rolling. By offering you more than a mere collection of radio sets; in fact an integrated communications system built up from a carefully planned comprehensive range of MF/HF transmitters, receivers and

GK.203. Frequency synthesis drive unit. $1.5 \cdot 30 \mathrm{MHz}$ in 100 Hz increments. 17 modes of transmission, including ISB if specified.

GA.481. 100-watt linear amplifier, broad-band $1.5-30 \mathrm{MHz}$. No tuning or loading. Automatic protection against any mismatch (from open-to shortcircult aerial) or excessive drive. Easily portable, will operate direct from vehicle supply.

R.550. General-purpose NF/HF communications receiver. VFO tuning for search with a resolution of 10 Hz , and frequency synthesis with 100 Hz increments for accurate setting to known frequencies. Dynamic range exceeds 120 dB , with superb blocking and cross modulation characteristics. Stringent defence specification at realistic price for commercial users.

MCU.6. An aerial distribution amplifier that enables your receivers to go on doing their lob long after other aerial amplifiers would have been blocked. $95 . \mathrm{kHz}-30 \mathrm{MHz}$. Several versions to meet your requirements.
ancillary equipment. All designed to bring you a standard of flexibility, economy, quality, after-sales service and general value for money that you'd find hard to equal anywhere else on earth.

Redifon equipment has already proved itself in a wide variety of applications all round the globe. Such as diplomatic networks, police work, civil aviation services, maritime coast stations and, of course, for naval and military purposes too. The Redifon HF range could justly be called the International Set, Look at just a few of our products-all with unbeatable performance for price:

R.499. Ideal for point-to-point, air-to-ground and coast station services. All the plus parameters of the R.550, but with 10 switched channels and automatic optimisation of reception for unattended operation.

GK.202. 10-channel drive unit for frequency and service generation, 1.530 MHz .17 modes of transmission, including ISB if required.

GK.200. Two-tone keyer/converter. A complate iwo-way radio/teleprinter interface. Tolerates 40 dB fades or complete loss of one tone without failing to operate correctly.

G. 450 Series. General-purpose 1 kW HF transmitters for 10 -channel or frequency syntransmitters for 10-channel orfrequency syn-
thesis operation, each completely selfthesis operation, each completely self-
contained with its own frequency and service generation, including ISB clrcults if required. Simple to operate and maintain, with all unnecessary frills removed. Surprisingly low cost.

Redifon Limited,
Communications Division,
Broomhill Road, Wandsworth, London, S.W. 18.
Telephone: 01-874 7281
REDIFON *
A Member Company of the Rediffusion Organdeation

Transoromers, Chokes

Saturable Reaciors

Voltimbilies-volitage regulatiors

Recifier Sels

Transformers
Air cooled power transformers from 0.5 to 300 kVA at voltages up to 2 kV . 1 or 3 phase, double or auto wound. step-up or step-down. We have manufactured transformers to over 5,000 different designs for many applications and the experience which has been accumulated from these designs is built into every Harmsworth. Townley transformer

High Current Transformers
Years of experience have gone into the design and production techniques used in the manufacture of our low voltage, high current transformers for use in furnaces. high temperature research. heating and other applications. These techniques enable us to produce transformers with output currents up to tens of thousands of a mps at economical prices

Voltmobiles

The most robust and useful control device for loads such as furnaces, ovens, bar heating and high temperature research. Our Voltmobiles are in use in their thousands to control transformers and rectifier set or they can be used directly between supply and load. 64 step on load switching. Voltmobiles are auto-transformers which give control from 1.6% io 100% of input volts. Over-Volts up to 125% of input is also available. Standard models are made for single and 3 phase supply and for outputs from 20 Amps to 200 Amps with on-load switching.

Rectifiers

Sturdily built air cooled equip ment from 50 W to 500 kW for plating. plasma arcwelding, electrolytic machining and many other applications. Equipment incorporates either silicon or selenium rectifiers and can be built with fixed or variable output. Variable outputs are obtained by the use of ćontinuously variable auto transformers, saturable reactors or Voltmobile regulator.

Saturable Reactors

From 5 kVA up to 300 kVA for controlling the outputs from transformers or rectifier units.
Saturable reactors are infinitely variable reactors which can control outputs from transformers etc. from 10% to 100% of full output

Chokes

Specific enquiries are invited

Farmswarth.
Tounley
Trunsformers
Rectifiers

HARMSWORTH, TOWNLEY \& CO. 2 Hare Hill, Todmorden, Lancs. Telephone Todmorden 2601 Extension 22

SOLE U.K. DISTRIBUTORS OF

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC.

- Low cost quick delivery over 200 ranges in stock other RANGES TO ORDER

NEMV			
CLEAR PLASTIC METERS		BAKELITE PANEL METERS	
	TYPE SW. 100	TYPE S-80	
	$100 \times 80 \mathrm{~mm}$.	80 mm .	
		square fronts	
	50v. D.C.... 59/6	$50 \mu \mathrm{~A}$. $62 / 6$	50w. D.C...... 40/6
${ }^{100 \mu \mathrm{~A}}$. $\cdot . . .687 / 6$	1 amp. D.C. . $58 / 6$		1 amp. D.C. ... 48/8
	5 amp . D.C.. $58 / 6$		$\$_{\text {amp. D.C. } \ldots \text {. }}$ 48/6
20v. D.C..... 58/6	300V. A.C. .. 59/6	20v. D.C....... 49/6	300v. A.C. 58/6

"SEW' CLEAR PLASTIC METERS

EDGWISE METERS
Type PE.70. 3 17/32in. $\times 1$ 15/32in. $\times 2 \frac{1 \mathrm{in} .}{}$

SEND FOR ILLUSTRATED BROCHURE ON SEW PANEL METERS-DISCOUNTS FOR QUANTITIES

U.K. DISTRIBUTORS OF M MV MULTMETERS

This range of Multimeters, manufactured by Tachikawa Radio Instrument Co. of Japan, offers excellent value for money combined with quality and accuracy of measurement.

- immediate delivery - discounts for quantities - trade enquiries invited

PL. 436

500

5025
\star All models fitted overload protection and supplied with batteries, prods and instructions.

MODEL MD-120 Feature Mirsor Bcale, Low Loan 8witch and Robust Morempat. Senaitivity: $20 \mathrm{k} 0 /$ Volt D.C. $10 \mathrm{k} \Omega /$ Volt A.C. D.C. Volts: $30,60,300,600,3,000 \mathrm{~V}$. 	4.12 .6 $p / p 2 / 8$
MODEL PL 438 Features Mirror Beale and Wood Graln Finish Front Panel. Senaitivity: $20 \mathrm{~K} \Omega /$ Volt D.C. 8 K 』/Volt A.C. D.C. Volts: .5, 3, 12, 30. 120.600 V. A.C. Volts: 3, 30 , 120, 600. D.C. Curremt: $50,600 \mu \mathrm{~A}, 60,600 \mathrm{~mA}$. Reaistance: $10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{MEG}$, 10MEOQ. Decibela: -20 to +46 db . Rugged Figh Impact Plastic Case with Bandle, size $5 \mathrm{jin} . \times 41 \mathrm{in}, \times 21 \mathrm{in}$.	$\begin{gathered} \text { C6. } 19.6 \\ \text { p/p } 2 / 8 \end{gathered}$
MODEL TW-50K Features 46 ranges, mifror sale, Bennitivity 50 k ofVolt D.C. $5 \mathrm{k} \Omega /$ Volt A.C. D.C. Volts: $.125, .25,1.25,2.5,5,10.25,50,125,250,500,1000 \mathrm{~V}$. A.C. Voltn: $1.5,3.5 .10,25.50,125,250,500,1000 \mathrm{~V}$. D.C. Curreat: $25,50 \mu \mathrm{~A} .2 .5,5$. $25,50,250,500 \mathrm{~mA}$. $5,10 \mathrm{mmp}$. Besimance $10 \mathrm{~K}, 100 \mathrm{~K}, 1$ MEOG, 10 MEGO . lhecibels: -20 to +81.5 dB . Plastic case with carrying handle. Size $+\frac{1}{\mathrm{i}} \mathrm{m} . \times 2 \mathrm{il} \mathrm{l}, \times 6 \mathrm{jn}$.	18.10.0
MODEL 500 Features Mirror Bcale and Buzzer Short Circuit Check. Sensitivity: $30 \mathrm{k} 0 /$ Volt D.C. $13 \mathrm{k} \mathrm{D} / \mathrm{Voth}$ A.C. D.C. Voltn: .25, 1, 2.5. 10. 25, 100, 250, 500, $1,000 \mathrm{~V}$. A.C. Volts : $2.5,10.25,100,250,800,1,000 \mathrm{~V}$. D.C. Current: $50 \mu \mathrm{~A}, 5,50,500 \mathrm{~mA}$. 12 mmp . Resintance: $60 \mathrm{~K}, 6 \mathrm{MEG}, 60 \mathrm{MEG}$. Declbels: -20 to +56 db . Handsome Dust proof Black Piastic Case, size 3 5/16in. $\times 61 / 16 \mathrm{fa}, \times 2 \$ \mathrm{in}$.	¢8.17.6
MODEL 5025 Peaturea 57 Rangen, Glant 8 In M. Meter, Polarity Reverge Bwitch. Gensltivity: 50 k 口/Volt D.C. 5 k ด/Volt A.C. D.C. Volta: $.125, .25,1.25,5,10,25,50,125$, 250, $500,1.000$ V. A.C. Volta: $1.5,3,5,10,25,50,125,250,500,1,000$ V. D.C. Current: 10MEOD. Decibels: -20 to +85 db . Plastic Case with Carrying Handle, size 6hin. 2!in. \times ztin.	2. 10.0
MODEL 100,000 0.P.V. LAB TESTER Feabures Undque Range Selector, 6yin. Acale Buzzer Bhort Clrcuit Check. Sensitivity: 100,000 OPV D.C. Sk/Volh A.C. D.C. Volts: .B. 2.5, 10, 50, $250,1.000$ V. A.C. Volts: 3, 10, 50, 250, $500,1,000 \mathrm{~V}$. D.C. Current: 10. $100 \mu \mathrm{~A}, 10,100,300 \mathrm{~mA}, 2.5,10 \mathrm{amp}$. Reaintance: $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 10 \mathrm{MEO}$, 100MEGa. Decibels: - 10 to + t9dh. Plastic Case with Carrying Handie, size 7in. x 6 in. $\times 3$ in.	8.18.0

SOLE U.K. AGENTS FOR JAPAN'S PREMIER MANUFACTURER "YAMABISHI"
VARIABLE VOLTAGE TRANSFORMERS

- Excellent quality - Low price - Immediate delivery

ALL MODELS

INPUT 230 VOLTS, 50/60 CYCLES. OUTPUT VARIABLE 0-260 VOLTS
MODEL S-260 General Purpose
Bench Mounting

I Amp
45.10.0 MODEL S-260 B
2.5 Amp 66.15.0 Panel Mounting

5 Amp
8 Amp $\quad £ 14.10 .0 \quad 2.5 \mathrm{Amp} \quad £ 6.12 .6$
10 Amp
12 Amp
$20 \mathrm{Amp} \quad$ £37.0.0 Special discounts for quality

* SEND FOR LEAFLETS 175/2049 and 175/2047
H. TINSLEY \& CO LTO - WERNOEE HALL

SOUTH NORWOOO • LONDON SE25 • 01-654 6046

Save yourself time by talking about your applications (PCM, TV, pulse, HF, etc) to our specialist engineers. If we can't meet your requirements from our own extensive range, then we'll tell you who can.
Call Chertsey 2636 -
and ask for Barrie Newman.

The scepe spectalits

Dynamco

Hanworth Lane
Chertsey Surrey England
World Wide Sales \& Service

We can't, and don't, disregard current advancements in sophisticated electronics We can, and do, ceter to an undiminishing requirement for, replacement valves from all quarters of

Industry, Education and Research. This requirement has been built up over many years past. So has Pinnacle

Pinnacle Electronics Limited

THE Glatarise DE-SOLDERING TOOL

. Self-contained-does NOT require the use of air-lines or pumps

- Simple, light and inexpensive
- PERMABIT nozzle will not wear or become eroded by the solder

Standard nozzle $\frac{5}{64} \mathrm{in}$. bore. Alternative, $\frac{3}{64} \mathrm{in}$. bore

- Mains or low volrages

Please ask for colour catalogue A/5
LIGHT SOLDERING DEVELOPMENTS LTD 28 sydenham Road, Croydon, Cn9 2 2L
Telephone: 01-688 8589 \& 4559

WW-033 FOR FURTHER DETALLS

M. R. SUPPLIES (London) LTD.,
 (Established 1935)

Unlrersally recogniaed an suppliess of UP.TO-DATE MATERIAL. which doea the job properiy Instant delivery. Satisinction ansured. Prices nett.
ROOM TEERMOSTATS. Danfoss whill-mounted Thermontats 10 dis. F. 80 deg. F., 380 v. A.C.

MINIATURE RUNAING TIME METERS (giangamo). We have great demands for thls remarkable unit and now can supply immediately from stock, $200 / 250$ v. 30 c. synchronoua, Counting up
 easy to install, 63/- (des. 1/6).
SYNCHRONOUS TME SWITCEES, (Another one of our popular apectalities) $200 / 240 \mathrm{\nabla} .50 \mathrm{c}$., tor accurate pre-set switching operations. Bangamo 8.254, providing up to 3 on-ofi operthions per

ELECTRIC FANS (Papat), for extracting or blowing. The most exceptlonal ofter we heve yet made. 200/250 r. A.C. Induction motor-silent running. 2.800 R.p.m. inting. £3/5/= (dea, 3/6).

 open type s.p. Unite and enclosed gearbox. Buitable for display work and many industrial use Only $75 /-$ (des. $5 / \mathrm{s}$).
miniature coolina fans. $200 / 250$ v. A.C. With open type induction motor (no interference), Overall $4 \mathrm{in} . \times 3$ in. \times gin. Fitted 6 -bladed metal hapeller. Ideal for projection lamp cooling light duty extractors, etc., htill only $31 / 6$ (des. $B /-$).
AIR BLOWERS. Highly effleient unlts fitted Induction totally enclomed motor $230 / 2607.50 \mathrm{c}$
 $\times 9 \ln$. outlet $2 / \mathrm{in}$. sq., $£ 11 / 5 / 6$ (des. $5 /$). Model $8 \mathrm{D} 28,260 \mathrm{Ct} M$ (free air) to 127 CFM a $1.8 \mathrm{WO}, 11 \times 8 \times 9 \mathrm{in}$., ou山et $3 \mathrm{in} .4 \mathrm{q}_{\mathrm{n}} \mathrm{E}$ £13/17/6 (dea. U.K. $7 / 6$).
SYNCERRONOUS ELECTRIC CLOCK MOVEMENTS (a mentloned and Fecommended In many national Journais). $200 / 250$ r. 60 c . Sell-starting. Fitted spindlea for hours, minutes and centrith
 For $8 / 10$ dian. $3 / 6 \mathrm{set}$.
 deep. Choice of following speedde: 1 r.p.m., 12 r.p.h., 1 r.p.h., 1 rev. 12 houra, 1 rev. per day,
 sMITHS TMER MOTORS. Bynchronous, seli-starting 200/250 volts, 1 ph., 50 c. Clockwise 4 r.p.un. ouly. Only $25 /$ - (des. $2 /$).
minlature D.C. MOTORS. $6 / 12$ votts D.C. Ideal moilel makers. $4,000 / 9,000$ r.p.ma no hod. Only $5 /$ - (des. 1/8).
EXTRACTOR FANS. Ring mounted all metal conatruction. T/E Induction molor. Bilent operatuon, 8 ing biscle. mmediate delivery of Stuart Centrifugal Pumpl. including stainless ateel (most models) Official stoceist: "PARVALUX" Electric Motori (Liet G.M. 180)
M. R. SUPPLIES (LONDON) LTD., 68 New Oxford Street, London, W.C. 1
(Telephone: 01-636 2958)

LOW LEVEL INPUT TRANSFORMERS

This transformer has been designed specifically for use in low level input stages of D.C. "Chopper" amplifiers. It is currently used in applications requiring amplification of D.C. voltages of less than $1 \mu \mathrm{~V}$., in conjunction with à mechanical chopper
Rejection of extraneous magnetic fields is obtained by winding both primary and secondary windings in a "hum bucking" configuration and by screening these in a nest of four magnetic screens of high purity nickel. Laminations are also nickel. Both windings are provided with electro static screens to obtain a high common mode rejection 100 d . B. at 70 Hz . Primary and secondary are centre tapped and, when used in a "push-pull" input configuration, step-up ratios of $2: 1$ or $5: 1$ can be obtained according to type. Primary inductance exceeds 10 Henries at 70 Hz . When the common mode rejection exceeds 100 d . 8 .
TRIO INSTRUMENTS LTD., BURNHAM ROAD.
DARTFORD, KENT.
Telephone: Farningham 2082

A Technical Knockout

Titles are hard to win at Morganite. But we have a Champion in the Type 81E Cermet Trimming Potentiometer.
After several rounds with our Quality Control personnel, the Champion emerged unscathed. Unfortunately.
the other contender could not of electrical tests. stay the distance. He survived an examination of tiny component parts at 500 times life size (that's like spotting blemishes on a 60 ft . matchstick) but he suffered a technical
K.O. during the final rounds

The Champion took them in his stride and now challenges all comers.
If you have an application for a 0.5 w single turn trimming potentiometer, (Bantam Weight) back a proven title holder - it pays!

MORGANITE RESISTORS LIMITED

MERCURY RELAY UNITS
These Units fulfil many requirements in connoction with power，alarm，signal and telephone circuits，and have been adopted by many im

FOR portant administrations．

1）ハN゙ほだて
MANNS VOI．TAGF：

They incorporate a P．O．Type 3000 Relay ensuring maximum reliability in operations with the minimum current consumption．The Mercury contacts are in a separate compartment to the Relay．
Units can be supplied with Relays for A．C．or D．C．operation up to 250 volts． These Mercury Relay Units are available with one or two Make or Break Mercury Tubes which will carry 15 amperes non－inductive loads．or up to 10 amperes inductive load．at 250 volts A．C．or D．C．
Manufacturers of P．O．Type 3000 Relays，Standard，Remanence，Micro－ Switch．Twin Coil Double Armature，Latching，Contactor also P．O．Type 600.

The

VACUUM

 GAUGESThe Genevas Gauge Range thee types $\rho^{2} p \cdot$ essure measurement Cevice suitakle for sophisticated applications in science anc industry．All teature nstent readout．reco cer output and inserchangeable gajge heads．Electrerically stabilised co wer supoly mares the gauges inse sitive to mains voltage f uztuation． thus eliminating an exte nel＇se：volts＇control．

Thermocouple Gauges and Bauge Heads： for pressure meesurement in the medium high vacuum range 1 torr t5 00^{3} tor：Fwo ypes，mans or battery powered．
Pirani Gauge and Gaugə Head：for plessure measurement in the medii η higt vacuum range 1 for to $10-^{3}$ torr．Two scale readou：．

Penning Gauge and Gauge tead：for cressure measurement in the high vaculm range of $£ \times 110-{ }^{3}$ ton to $10-{ }^{6}$ torr．Panel mount gg accessories available．

C
General Engin

JACK DAVIS
9／10 Mallow Street，London，E．C．1．
Telephone：01－253 3661／2

This is a high fidelity amplifier (.3\% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. Since the unit is completely free from the input rectification distortion of ordinary transistors, this unit gives that clean high quality that has tended to be lost with most solid state amplifiers.

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4 WAY MIXER USING F.E.T.s.

Size $14^{\prime \prime} \times 11 \frac{1}{2}{ }^{\prime \prime} \times 4 \underline{1}^{\prime \prime}$
Weight 20 lb .
$100 \mu \mathrm{~V}$ on $30 / 60$ ohm mic. input.
100 mV to 100 volts on gram/auxiliary input $100 \mathrm{~K} \Omega$.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 db Peak Programme Meter. 4-6-8-10 and 12-way mixers. Twin 2,3,4 and 5 channel stereo. Tropicalised controls. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 v at 20 K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of 30 $\mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{v}$ or 200-240v. Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of 30 $\mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm \mathrm{ldb} .0 .15 \%$ distortion. Outputs $4,7.5,15 \mathrm{ohms}$ and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.
100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 db and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced input and Hi Z gram.

CHASSIS and CASES

Type N

CASES

ALUMINIUM, SILVER HAMMERED FINISH

Type N has a removable bottom. Type U removable bottom or back, Type W removable front, Type Y all-screwed construction, Type Z removable back and front.

BLANK CHASSIS

FOUR-SIDED 16 SWG ALUMINIUM

Size	Price	Base	Size	Price	Base
$6 \times 4 \times 2{ }^{\prime \prime}$	6/3	2/11	$10 \times 8 \times 2 \frac{17}{}{ }^{\prime \prime}$	12/-	5/6
$7 \times 4 \times 11^{\prime \prime}$	6/-	3/2	$12 \times 7 \times 2{ }^{\prime \prime}$	12/-	5/11
$7 \times 5 \times 2$ '11	7/6	3/5	$12 \times 9 \times 2 \frac{1}{\prime \prime}$	$13 / 9$	7/-
$8 \times 4 \times 2$ 11	7/-	3/4	$13 \times 8 \times 22^{\prime \prime}$	13/9	6/11
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 2^{\prime \prime}$	8/-	3/9	$14 \times 7 \times 3^{\prime \prime}$	14/6	6/6
$9 \times 7 \times 2^{\prime \prime}$	9/3	4/10	$14 \times 10 \times 2 \frac{1}{2 \prime}$	16/-	8/7
$10 \times 4 \times 2 \frac{1}{2 \prime \prime}^{\prime \prime}$	9/-	3/9	$15 \times 10 \times 2 \frac{1}{2}^{\prime \prime}$	16/6	9/1
$12 \times 4 \times 2 \frac{1}{2 \prime \prime}^{\prime \prime}$	10/-	4/3	$17 \times 10 \times 3^{\text {m }}$	19/6	10/1
$12 \times 5 \times 3^{\prime \prime}$	12/-	4/9			

TO FIT OUR CASES

Size	Price	Base	Size	Price	Base
$7 \times 54 \times 1 \frac{1}{17}^{\prime \prime}$	7/-	3/9	$12 \times 69 \times 2^{\prime \prime}$	10/9	5/11
$7 \times 5{ }^{3} \times 2^{\prime \prime}$	7/9	3/9	$14 \times 83 \times 2$ "	13/6	7/11
$11 \times 63 \times 1 \frac{1}{2 \prime \prime}^{\prime \prime}$	10\%	5/6	$15 \frac{3}{4} \times 93 \times 2 \frac{1}{2 \prime \prime}^{\prime \prime}$	17/-	9/6
$11 \times 63 \times 2^{\prime \prime}$	10\%	5/6	$17 \frac{3}{3} \times 9 \frac{3}{4} \times 2 \frac{1}{2}$	18/6	10/6

WITH BASES

Size	Price	Size	Pric
$5 \times 4 \times 21^{\prime \prime}$	9/3	$31 \times 34 \times 2{ }^{\prime \prime}$	6/6
$4 \times 24 \times 11^{\prime \prime}$	6/-	$3 \times 2 \times 1$ "	5/6
$3 \frac{1}{2} \times 3 \frac{1}{2} \times 21^{\prime \prime}$	7/3	$6 \frac{3}{8} \times 2 \frac{11}{16} \times 1 \frac{15}{16}$	G) $8 / 3$

Plus post \& packing.
PANELS: Any size up to 3 ft . at 6/-sq. ft. 16 s.w.g. (18 s.w.g. 5/3). Plus post and packing.

H. L. SMITH \& CO. LTD.

Electronic Components • Audio Equipment
$287 / 289$ EDGWARE ROAD, LONDON, W. 2 Tel: 01-723 5891
We shall be pleased to quote for all your component requirements.

N.C. BROWNLTD.
pacesetters in storage equipment
Send your FREE BRO- Name CHURE \square or Send \square (how many) bays of steel shelving (i) $£ 4.5 \mathrm{~s}$. in green $\square \square$ grey (tick which)

Address

Dept. ww Eagle Steelworks. Heywood, fancs Tel: 69018. London: 25-27 Newion St., W.C.2. Tel: 01-405 7931

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

Codes: Int. No. 2 Mercury/Pegasus, Elliot 803, Binery and special purpose Codes.

2-5-6-7-8- TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSURIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Line Transformers and Equipment; Line Transformers and Noise Suppressors; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessorics, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herts.
Tel.: Tring 3476 (3 lines) Cables: RaHNo tRING STD: 044282 TELEX 82362

2Watt and 3Watt Professional IC Audio Amplifiers now available

These Plessey general purpose integrated circuit audio amplifiers are being used by a number of major equipment manufacturers throughour the country

Through large scale production Plessey can now make these devices available to home constructors at reasonable prices.

Each circuit incorporates a preamplifier and a class A-B power amplifier stage and needs only a minimum of external components.

Take a look at these specifications opposite!
These really outstanding Plessey IC audio amplifiers are immediately available off-the-shelf from our distributors listed below. Data application brochures (Price 1 s .9 d. each) which include PC board layouts for mono and stereo amplifiers are obtainable from:

Farnell Electronic Components Ltd Canal Rd, Leeds LS 12 2TU
Tel : Leeds 636311 Telex: 55147

Characteristic
Output power r.m.s.
Input impedance
Preamplifier
Main amplifier
Distortion
Preamplifier
Main amplifier
Frequency response
Lower-3dB point
Upper-3dB point
Operating voltage
Min. operating load

$|$| SL402A | SL403A |
| :---: | :---: |
| $2 W$ | $3 W$ |
| $20 \mathrm{M} \Omega$ | $20 \mathrm{M} \Omega$ |
| $100 \mathrm{M} \Omega$ | $100 \mathrm{M} \Omega$ |
| 0.1% | 0.1% |
| 0.3% | 0.3% |
| 20 Hz | 20 Hz |
| 30 kHz | 30 kHz |
| +14 V | +18 V |
| 7.5Ω | 7.5Ω |

SDS (Portsmouth) Ltd
Hillsea Industrial Estate, Hillsea, Portsmouth, Hants
Tel : Portsmouth (0705) 62332 or 62180 Telex : 86114

Cheney Manor Swindon Wiltshire England Telephone: Swindon (0793) 6251. Telex: 44375

Push Button Switches

Switches with a diverse range of contact configurations. Any combination of complex latching and interlocking function in single, and between twin bank assemblies. Available with illuminated buttons and choice of five colours, individual legends can be engraved. These, with rotary, slide and lever switches are available from IMPECTRON LIMITED, write or phone for illustrated literature to 23-31. King Street, London, W.3., Telephone: 01-9925388.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8

[^2]
VARIABLE VOLTAGE CONTROLS

 VARIABLE TRANSFORMERS* Ousput 0-260V
* Input 230V 50/60CPS
* Shtouded for Bench or Panel mounting

Inset shows latest pattern Brush gear ensuring smooth continuous adjustment.

 5 amp £9.15.0 10 amp £18.10.0 20 amp £37.0.0

CONSTANT VOLTAGE TRANSFORMER.

20 ANP LT SUPPLY UNIT
SOLID STATE VARIABLE Maintain spot-on lest gear readings with Automatic Mains stabilize P .

Specification:

- Outpur 240V
- Accuracy $\pm 1 \%$
- Input 190-260V
- Capaetry 250 watts
- Corrected wave
$\mathbf{f 1 2 . 1 0 . 0}_{\text {cs } 820 /}$

* Inpur 2av

Output 20 amps at 24 V and 12 V fully adjustable *Size $16^{\prime \prime} \times 12^{\prime \prime} \times 20^{\prime \prime}$ high * Weight 50 los .
£35.0.0
40/- PACKING \&
CARRIAGE PER B.A.S.

VOLTAGE CONTROL

OMRON PROCESS TIMERS

SYS TIMER

f11

STP TIMER

SYMCHRONOUS MOTOR \& CLUTCH Matchbor size frontal area Automatic ro-set

* plug-in octal base
- instantaneous AND TIMED OUT
2 AMP CONTACTS
- RANGES: D-10 SECSTOD-36 MINS
f5 dependent
on quantity

TEMPERATURE CONTROLLER TYPE THP

* thermistor operated
* octal base plug in
- compact

Temperature ranges up to $2 \mathrm{BO}^{\circ} \mathrm{c}$
Output contacts 4 amp
Repeat Accuracy 3\% full scale
Complete with Thermistor
Approximately
f 21 dependen

the only thing that's standard about a Claude Lyons CVR is the amazing value

Claude Lyons CVR Constant Voltage Regulators offer the design engineer the widest choice of variations for building into original equipment. They are compact and embody an all-silicon solid-state control circuit for high efficiency and reliability. Control accuracy is 0.3%, unaffected by load or frequency variations. Distortion is negligibie.
CVRs are available with power ratings of 360,600 or 1200VA: multiple input and output voltages; isolated outputs; d.c. outputs; local or remote a.c. or d.c. sensing. Prices are surprisingly low for quantity-and as such offer designers an ideal solution to stabilised supply problems.

For full details write to Publicity Department. Hoddesdon.

Claude Lyons Limited

Hoddesdon, Herts. Hoddesdon 67161 Telex 22724
76 Old Hall Street. Liverpool L3 9PX. 051-2271761 Telex 62181

the dawn of a new era

Sonnenschein

dryfit PC batteries

Combining the high electrical capacity of the lead-acid cell with the undoubted advantages of the dry cell, Sonnenschein DRYFIT PC batteries provide virtually indestructible sources of d.c. power. Featuring extended shelf-life of 16 months at $20^{\circ} \mathrm{C}$ ambient without recharging. Models available in various sizes and ratings: : cells can be fitted and charged how and where required - sideways, longways and upside-down : : no spillage, no gassing
:: high overload capacity

- steady discharge rate.

Specify Sonnenschein and forget your problems.
Write now for your catalogue
Sonnenschein DRYFIT PC BATTERIES
Sole U.K. Agents F.W.O. Bauch Ltd. 49 Theobald St, Boreham Wood, Hertfordshire. Tel: 01-953 0091

Before you buy test and SeRvice INSTRUMENTS．

send for the FREE Heathkit Catalogue． This is your first step towards saving on your instrumentation costs．
Oscilloscopes
Signal Generators VVMs
Power Supplies etc．，etc．

Whether you need factory－built models or easy－to－build kits， Heathkit can supply．

HEATHKIT FOR INSTRUMENTS，Hi－Fi，
AMATEUR AND LEISURE ELECTRONIC PRODUCTS

DAYSTROM LTD．，
HEATHKIT DIVISION，
GLOUCESTER，GL2－6EE．Tel． 29451

Our valves don't go to the launderette . . but

We have a passion for cleanliness. A clean valve is a good valve, so in the factory meticulous chemical cleanliness is observed; every operator wears special protective clothing to prevent valve contamination; all components are covered prior to assembly; electrodes are cleaned by oxidising the metal surface, then reducing back to metal in an atmosphere of hydrogen.

It's finickiness like this that ensures reliability in all Mullard industrial receiving valves.
The time we spend on eliminating impurities cuts your equipment down-time...another reason it pays to ask your supplier for Mullard.
Mullard
Mullard Limited Industrial Electronics Division Mullard House Torrington Place London W C i oi-580 6633

New Buyers Guide

Mullard

 distroibutore

Birmingham: Central 5060 Gothic Electrical Supplies Ltd., Gothic House, Henrietta Street, Birmingham 19.

Birmingham: Aston Cross 4301 Hawnt \& Company Ltd., I12/114 Pritchett Street, Birmingham 6.

Bristol 294313
Wireless Electric Ltd., 'Wirelect House', 122/123 St. Thomas Street, Bristol I.

Crawley 28700
SASCO, Gatwick Road, Crawley, Sussex.
Glasgow: Govan 3347/3991
Harper Robertson Electronics Ltd.,
82 Loanbank Quadrant, Glasgow SWi.

Leeds 35111

Farnell Electronic Components Ltd., 8I Kirkstall Road, Leeds 3.

London: Elgar 7722
Cables \& Components Ltd., Park Avenue, London N.W.Io.

London: New Cross 9731
Edmundsons Electronics Ltd., 60-74 Market
Parade, Rye Lane, London S.E.I5.
Leicester: Leicester 76856I
Townsend-Coates Ltd., Coleman Road, Leicester.

Rochdale 474II

Swift-Hardmans, P.O. Box 23, Hardale House, Baillie Street, Rochdale.

Sheffield 2716!

Needham Engineering Co. Ltd., P.O. Box 23, Townhead Street, Sheffield I.

W. GREENWOOD ELECTRONIC LTD.

21, GERMAIN STREET, CHESHAM, BUCKS TELEPHONE: CHESHAM 4808/9.

WW-- 052 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Illustrated the Si452 Distortion Measuring Unit -low cost distortion measurement down to . 01% £25.0.0

Si451
$£ 30.0 .0$
Comprehensive Millivoltmeter
350μ Volts
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS

 SOLENOIDS COIL WINDING TRANSFORMERS to 8 K.V.A.Relay module 12-way "MS" range

Knapps Lane, Bristol 5. 0272657228
WW-054 FOR FURTHER DETAILS

A.F. GENERATOR MODEL 30 £19-10-0

NOMBREX INSTRUMENTS

TRANSISTORISED-MODERN STYLING-COMPACT
-4 Ranges $10 \mathrm{H}_{2}-100 \mathrm{KHz}$

- Sine or square wave output
- Dual calibrated attens.
- Stabilised output level.
- 4 ranges. $1 \mu \mathrm{H}-100 \mathrm{H}$. - a factor 0.1-1000.
- Oscillator freq. 1592 Hz .
- Hay/Maxwell switch.
- Sizes: Height $5 \frac{z^{\prime \prime}}{}$. Depth $3 \frac{z^{\prime \prime}}{}$. Width $7 \frac{t^{\prime \prime}}{2}$

ALSO

R.F.GENERATOR 29-S £20 0 R.F. GENERATOR 29-X £27 100 R.F. GENERATOR 31 £12 10 0 C.R.BRIDGE $32 \quad$ £10 10 Post and Packing $6 / 6$ extra

SEND FOR FULL TECHNICAL LEAFLETS

NOMBREX (1969) LTD., EXMOUTH, DEVON

TRADE \& EXPORT
ENQUIRIES WELCOME

Sooner or loter you'l need both these devices!

At some time, every user of closed circuit t.v. needs a replacement vidicon tube. That's when you need a service organisation that can really perform. Just pick up the phone and contact your nearest EMI distributor. EM1 research has produced a range of tubes with reliability, good resolution and high sensitivity. Our distribution organisation has been expanded and streamlined. This ensures that everyone using closed circuit $t . v$. has access to the best professional advice and a fast replacement service.
For further details of the EMI vidicon range contact your distributor or:-

EMI ELECTRON TUBE DIVISION

EMI Electronics, Ltd., Hayes, Middlesex. Tel. 01-573 3888. Ext. 2078 Telex. 22417 Cables EMIDATA London.

from the new Bradley, six not-so-new Bradleys

These days you can be fairly sure that Bradleys are working on something new. But it's reassuring to know that they aren't abandoning their old friends.
Like the 1278 Voltage Calibratoi.
Like the 132 Current Calibrator.
The 144 Current Multiplier, the
125B a.c. Voltage Calibrator, and
the 156 Oscilloscope Calibrator. Or the
Battery Line Oscilloscope.
And when you
see the story behind them, you'll soon see why we're hanging on to them.
Take the 127B. And the 125B. And the 132.
They're all designed to make your calibration
simpler. So you can read off directly
the percentage error. They're guéranteed
for a year. And you can carry them anywhere.
The 127 B gives you an accuracy of
0.05% over the range of 0 to 509 volts d.c.
The 1258 has an accuracy of
0.2% from 0 to 511 volts a.c. (It also
has extremely low harmonic distortion.)
Spot frequencies 50, 60, 400 and
1000 Hz , with alternative frequencies up
to 2400 Hz available
The Model 132 provides current $\lrcorner \mathrm{p}$ to
100 mA in $1 \mu \mathrm{~A}$ steps, at an accu acy of
0.05%. And there is the recently miro-
duced new 144 multiplier. This will
extend the range to 10 amps with the same high accuracy.
For the oscilloscope user,
there is the 156 Oscilloscope Cal brator.
It calibrates vertical amplitude and sweep speeds. It checks risetime. And it features direct reading of percentage deviation.
Finally there's the Battery/Line
Oscilloscope. It has a bandwidth of
20 MHz and an input sensitivity of 5 mV per
division. It can be operated from its own
self contained batteries or from a.c. mains.
They're all part of the new Bradley. Even
if they're firm friends of yours.

G. \& E. BRADLEY LTD.

Electral House,

Neasden Lane,
London, N.W. 10.
Tel: 01-450 7811 Telex: 25583

EXPECT MORE FROM THE NEW BRADLEY

BRADLEY

electronics

ELEKTROMODUL

Hungarian Trading Company for Electrotechnical Components

The Type 601 Storage Display Unit permits stored, non-facing displays of combined alphanumeric and graphic information from digital computers aiy other data transmission systems. The built-in vertical and horizontal amplifiers parmit Y versus T ptots up to 100 kHz for remote storage moniter applications. All solid-state modular circuit design insurss long-term stable performance.

£560 plus £63.18.0 duty

Tektronix Display Devices

The Type 4501 Scar Converter Unit prevides cenventional or stored displays converted to composite v deo and modulated IF for viewing of bright, largescreen. TV moniturs or receivers. Storage capabi ity permits converient viewing of single-event or low-repeition rate informatior. Output from a single scan converser mazy be loosed through a multiple number of noritors for viewing at memote locations.

Type 4501 (not inclucing monitor)

The Type 6-1, 11 -inch Storage Display Unit permits high resolution alphanumeric and graphic display free from flicker. Resolution is equivalent to 400 stored line pairs alang the vertical axis; 300 stored line pairs along the horizontal axis. Functions may bẹ remctely programmed.
£1286-plus $£ 1 \$ 7.20$ duty

Type 611

Type 61

The Type 602 Display Unit is a compact, solid-state instrument with excellent resolution providing accurate displays of information from X, Y and Z signal inputs. Application areas are: phase shifts and frequency ra:ioss using Lissajcus figures, graphic asel aphanumeric displays from computers \mid iç 7 resolution raster displays with inteneity noculation and Y-T plots of amplitude versas t me displays.

Ee8 plus $=40.16 .0$ duty

TyFe 6C2

For detailec irle maticn on uny of our produzis phe ase fil in nader eply ada or writs, telophone or teleax

Teftronix U.I. Ltd. Beaverton. Holise. P. O. Box 69. Harpenden. Herts.

 Fof overse as Enquines: Australia: Tekrmix Atstralie Piy. Lic.. 80, Walerloo Rd, North Ryde N.S.W. 2113 Canada Taktronox Canada, Lidi, Mbntreal, Torcnto \& Vancouven. France: Re alions Techniques fatercontinentales, S.A. 51, Oísag en. Courtabréut, houze de Villejust fBoise Pestave 13) Swizzer and: Tékronis Intemafional A.G., P.O Port, Guertsey, CI. All other tetriterles: tektrorix lac., P.O. Bax 500 ; spavertan, OFIgor, U.S.A.

NHWS OR THiG DEGADF...

Capacitance

50 pf to $1.1115 \mathrm{\mu f}$ with infinite resolution.
Accuracy $\pm 1 \%$ or $\pm 0.5 \%$ on all decades
Inductance
Air Spaced ImH to IH + 5\%.
Resistance
O.l Ω to $1.1111 \mathrm{M} \Omega$ Average accuracy $\pm 0.1 \%$ Resistance elements suitable for use up to 1 MHz .

All ranges available from stock Write for descriptive leaflet or demonstration.

Instramenis Rimited
Brook Avenue. Warsash. Southampton SO3 6HP Tel: Locks Heath 1221
WW- 060 FOR FURTHER DETAILS
ancom limited
DEVONSHIRE STREET CHELTENHAM Telephoine 53861

High Input Impedance

$$
\begin{aligned}
& \text { rate of output } \quad \pm 10 \mathrm{v} 5 \mathrm{~mA} \\
& \text { open loop gain } \quad 200, \quad \text {.........200 } \\
& \text { bias current......................... } \mathrm{PA} /{ }^{\circ} \mathrm{C} \\
& \text { small signal unity gain } \ldots \ldots \ldots . .8 \mathrm{MHz} \\
& \text { maximum for full output } \quad \angle 00 \mathrm{kHz} \\
& \text { offset voltage vs temp } \quad 20 \mu \mathrm{~V} 1^{\circ} \mathrm{C} \\
& \text { c.m.r.r... } 10^{4} \\
& \text { input impedance } \quad 100,000 \mathrm{M} \Omega \\
& \text { Our engineers will be pleased to } \\
& \text { learn of your special requirements } \\
& \text { and applications. }
\end{aligned}
$$

SPECIALIST SWITCHES are again giving the fastest switch service in the world

FROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types H, DH, HC, and LO, to specification. There is one limitation (standard 2 in long spindles), but this is not important when you are gelting the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.
Please note our address:
SPECIALIST SWITCHES P.O. Box 3,

CHARD, SOMERSET
Write for design charts and prices or TELEPHONE-CHARD 3439

peak sound

NEW DESIGN FROM PEAK SOUND

Proved-performance high fidelity with specification guarantee

The Peak Sound Englefield is a new system which assembles from laboratory designed modules to provide a cost-performance ratio which has never been bettered in high fidelity. Here is top-flight circuitry housed in a cabinet of elegantly original design which is both beautiful and completely practical back and front. By assembling these Peak Sound units, you can own one of the best high fidelity instruments you have ever heard or seen and all for a cost of about $£ 38$. The assembly is supplied complete down to the necessary connecting wires supplied colour coded, cut to length and stripped at the ends for soldering. You can use the Englefield Cabinet design to house either the $12+12$ system as published in Practical Wireless, or the $25+25$ watt system as approved for the Hi-Fi News Twin Twenty by Reg Williamson. Go to your stockist and ask to see and hear Peak Sound equipment now.

Matching F.M. Tuners will be available very shortly.

and this is the Peak Sound Specification Guarantee

Peak Sound guarantee that their equipment meets all specifications as published by them and that these are written in the same terms as are used in equipment reviews appearing in this and other leading high fidelity journals. Audio output powers are quoted at continuous sine wave power in terms of Root Mean Square values (R.M.S.) into stated loads at stated frequencies.

THE SPECIFICATION

Using two Peak Sound PA.12-15's. driven simultaneously at 1 KHz from 240 V . mains supply.
Output per channel: 11 watts into 15Ω : 14 watts into 8Ω. (see spec. guarantee).
Frequency bandwidth: 10 Hz to 45 KHz for 1 dB at 1 watt.
Total Harmonic Distortion at 1 KHz at 10 wat into $15 \Omega-0.1 \%$.
Input sensitivities: Mag. PU. 3.5 mV imp. R.I.A.A. equalized into $68 \mathrm{k} \Omega$: Tape. 100 mV linear into $100 \mathrm{k} \Omega$ Radio. 100 mV linear into $100 \mathrm{~K} \Omega$.
Overload factor: 29 dB on all input channels.
Signal/noise ratio: -65 dB on all inputs. Vol. control
Controls: volume, Treble. Bass. Low-pass filter Mono/Stereo: On/off: Balance
Using two PA.25-15 amplifiers, output is then 25 watts into 15 !. 8Ω per channel at 1 KHz .
Power bandwidth for -1 dB at 20 watts R.M.S. Into 15Ω at less than 0.25% distortion is 20 Hz to 20 KHz .

THE MODULES

Using iwo PA.25-15 modules at
£ $11 / 15 /$ - each and PS/68S Stabilized
Power Supply Unit at £13/10/-. total
price for complete system comes to $\mathbf{£ 5 8} 15$ O

Go to your Stockist. Peak Sound products are already avallable trom deaters in many parts. If your own local stockist is not yet ready with the Peak own loctl stockist is not yet ready with the peak with your suppller's name and address and your requirements will be deall with without delay.

TRADEENQUIRIES INVITED. PEAK SOUND (HARROW) LTD. 32 St. Jude's Road, Englefield Green, Egham, Surrey
Telephone: EGHAM 5316

[^3]Write your stockists name and address in margin below and cut out with coupon il necessary

RHUUA

PRESENTS 1970 RANGE OF PROFESSIONAL QUALITY PUBLIC ADDRESS

50-PTR Transistorised Amplifier
Solid State Amplifiers : 8 models, AC mains and battery operated, delivering 15 to 50 watts of power, with trouble-free service in extreme working conditions.

A-100 Professional Amplifier
Professional Tube Amplifiers: 4 models AC mains operated tube amplifiers, with power outputs from 20 to 100 watts. High Fidelity performance with guaranteed reliabilty.

Wide Range of unidirectional Microphones

Breakdown Proof Driver Units, Reflex Horns and Sound Column Speakers

AHUJA P. A. SYSTEMS are manufactured in India's largest and most well equipped Plant. These are highly pQpular in over 25 countries on account of high quality and rugged construction and most competitive international prices.

AEIUJA REDIOS, 13, DARYA GANJ DELHI-6. (1 NDIA)
Issued by Engineering Export Promotion Council Calcutta (India)
The March issue of Practical Electronics presents a wonderful new series showing you how to construct your own high power solid state audio amplifier. It's a twin channel 50 plus 50 watt design with a hi-fi specification and all purpose capability ranging from paging and public address to instrumental and other forms of music reproduction systems
Portable and ruggedly constructed, the amplifier features low noise f.e.t pre-amp stages and output protection circuits-giving utmost dependability. Compare the following specification with commercial counterparts.
Single Channel Specification
Frequency response
25 Hz to $25 \mathrm{kHz}+38 \mathrm{~B}$
Output
50 W into 50 ohms

Sensitivity	
Low' input	1.8 mV
high' input Input Impedance	150 mV
$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	1 megohm 500 kilohm
Signal to noise ratio	55dB at maximum sensitivity
Total harmonic distortion	0.3\% at 50W
Tane control-base	+14 dB maximum at 100 Hz
Tone control-treble	+ 18 dB maximum at 10 kHz

ALSO Dual Purpose Electronic Gate

. . . an ideal tutorial aid and experimental tool for logic systems

HURRY FOR THIS IMPORTANT MARCH ISSUEI ON SALE NOW 3/-

100,000 Engineers

 are expected at the
SALON

INTERNATIONAL DES COMPOSANTS ELECTRONIQUES

INTERNATIONAL CONFERENCE

 ON ADVANCED MICROELECTRONICSScientific, technical and economic problems discussed, 6-10 April 1970-PARIS—Salle des Conferences de I'UNESCO. Programme and application forms on request. Under the patronage of the Federation Nationales des Industries Electroniques, 16, rue de Presles-Paris $\left(15^{\circ}\right)$-Tel. 273.24.70

Not only beautiful, but...

* Lightweight
* Tropicalised
* Practically mnbreakable
* High level phones
* Carbon or Magnetic level
* Extremely comfortable
* Simple to service

The Astrolite headset s a unique design which brings together elegant appearance, high perform ance and reliability. Communications or hich fidelity versions available.
For all the other dasirakle features
write or telephone:-

> AMPLIVOX COMMUNICATIONS

> LIMITED

BERESFORD AVERUU VJEMBLEV.MIDDLESEX TELEPHONEC1-902 8991
CRAMS AND CAELES: A MPLIVOX, WEM3LEY
1 Top performance2 Widest range3 Instant service
4 Total versatility

You gain these and many more bonuses using Plessey equipment. Arrange a demonstration now.

The range includes:
700 Series
Solid State
Studio Consoles
CT80 Series
Solid State
Cartridge Recorders
Rola 77 Mark III
Recorder
Rola Hi-Speed Copier
Rola Auto Station
Rola Auto Q
P12 Studio Turntable

Sales and Service - Rola Recording Products Department -
Garrard Engineering Limited Newcastle Street Swindon Wiltshire Telephone Swindon 5381 Telex 44271 or the manufacturer Plessey Electronics Pty Limited Equipment Unit 91 Murphy Street Richmond Australia 3121 Telex 30383 Cables ROLA Melbourne

No other

1 TRUE

DUAL BEAW

oscilloscope

call

compete in price

...except the D51, by Telequipment of course

The 552 by Telequipment

The D52 is a tough little portable oscilloscope at the remarkably low price of $£ 120$.
Here are a few of its outstanding characteristics:

$$
\begin{aligned}
& \star \text { True Dual Beam } \\
& \star \text { Large } 5^{\prime \prime} \text { flat faced PDA Tube } \\
& \star \text { Matched Y Amplifiers- } \\
& 100 \mathrm{mV} / \mathrm{cm}, \mathrm{DC}-6 \mathrm{MHz} \\
& 10 \mathrm{mV} / \mathrm{cm} \text {. DC- } 1 \mathrm{MHz} \\
& \star \quad \text { Calibrated Sweep Speeds- } \\
& 1 \mathrm{~B}+(+ \text { variable) } \\
& \star \quad \text { Triggering Modes - full range } \\
& \text { including TV sync. } \\
& \star \text { Weight } 24 \mathrm{lb} \text {. }
\end{aligned}
$$

This is one of a range of fifteen oscilloscopes at prices from the Serviscope Minor at $£ 25$ to the sophisticated D53 Storage Oscilloscope for laboratory use at $£ 513$: Send for full details and short-form catalogue NOW!!!

TelequipmenT <<>

Telequipment Limited.,

313 Chase Road, Southgate, London N. 14
Telephone:01-882 1166. Telex: 262004.
For overseas enquiries write to: Tek tronix Limited,
P.O. Box 48, Guernsey. C.I.

A member of the Tektronix Group.
WW-069 FOR FURTHER DETAIE

Wireless World

Electronics, Television, Radio, Audio

Fifty-ninth year of publication

This month's cover illustrates a fish-eye view of the master control room at the new London headquarters of Thames Television; one of three new colour television centres in the capital (see p.104).

IN OUR NEXT ISSUE

Stabilized power supply. An unconventional design that will provide a constant-voltage, current-limited output or a constant-current, voltage-limited output.

Digital dice. Electronic novelty using the minimum of components.

Contents

97 Government and Industrial Research
98 Ultra-low Distortion Class-A Amplifier by L. Nelson-fones
104 London's New Colour TV Centres
106 80-metre S.S.B. Receiver by W. B. de Ruyter
108 H.F. Predictions
109 Letters to the Editor
114 Swings and Roundabouts by Thomas Roddam
116 Conferences \& Exhibitions
117 Simple Active Filters by M. Bronzite
120 News of the Month
Mediator cleared for take-off in 1971
New weather satellites
Plotting the stars
123 Circuit Ideas
124 Tone-balance Control by R. Ambler
126 Announcements
127 Digital-controlled Tape-recorder Pre-amplifier by P. C. Grossi \mathcal{E} C. Marcus
130 Pulse Generator using Integrated Circuits by C. Djokic
132 World of Amateur Radio
133 Personalities
134 Active Filters-8 by F. E. f. Girling EJ E. F. Good
139 Meetings
140 Literature Received
141 Test Your Knowledge questions \& answers devised by L. Ibbotson
142 New Products
148 Real \& Imaginary by "Vector"
alo6 SITUATIONS vacant
A130 INDEX TO ADVERTISERS

ibpa

I.P.C. Electrical-Electronic Press Lid Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE1 © I.P.C. Business Press L.td, 1970
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

[^4]

rare eclipse

The apertures in a cathode ray tube gun must be aligned precisely in spite of production tolerances in the six or more electrodes involved. Errors of the order of a tenth of a thou make all the difference if a round, crisp spot is to be maintained. The requirement is a dead fit for each component, no less. To this end, BRIMAR have developed their own methods for the production of assembly jigs to meet these exacting requirements.

Even after assembly in such accurate jigs as these, the guns are still subjected to rigorous 100% inspection; including a final optical testof alignment, where even fractional differences mean rejection.

And in addition to this, BRIMAR have an unparalleled capability in chemistry, electron optics and vacuum physics enabling them to

BRIMAR
offer the widest design diversity backed by a personalised customer service. This service, provided by engineers with extensive experience of the electronics industry, covers advice on tube characteristics, operating conditions and associated components.

Tailored packaging and reliable delivery to meet production schedules are also part of the BRIMAR Service.

Want to know more about BRIMAR Industrial Cathode Ray Tubes ?-ask to see our latest catalogue.

Wireless World

Government and industrial research

Editor-in-chief:

w. T. COCRING, FI.E.E.

Editor:

h. W. Barnard

Technical Editor:
T. E. IVALL

Assistant Editors:

B. S. CRANK
J. H. WEADEN

Editorial Assistant:

J. greenbank, b.A.

Drawing Office:
H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
R. PARSONS (Classified Advertisement Marager)

Telephone: 01-928 3333 Ext. 538
"The use a nation makes of its skilled manpower . . . profoundly affects the kind of society in which we live.... Despite heavy national spending on research and development in Britain we have not profited fully from this investment, for our rate of economic growth has been running at a lower level than that of many of our competitors." This is how the Minister of Technology opens his foreword to a recently published Green Paper ("Industrial Research and Development in Government Laboratories") which outlines a Government proposal to set up a new Corporation, outside the Civil Service, to run civil research and development laboratories of the Atomic Energy Authority and of the Ministry of Technology under a single management. The Minister concluded his foreword by saying that the 20 -page Green Paper is published to provide a basis "for wide public debate before decisions are taken by the Government".

The proposed new body would be a statutory corporation possibly called the British Research and Development Corporation the aims and functions of which would be:
(i) to encourage and support the development and application of innovation and technological improvement in industry for the benefit of the U.K. economy; and to carry out research and development for this purpose, both itself and in collaboration with industry and on repayment;
(ii) to carry out research programmes necessary in the public interest, including basic research, and other specific programmes of work required by Government departments and other public authorities; and
(iii) to exploit where appropriate innovations resulting from Government-financed programmes carried out by other agencies.
It will be recalled that the Department of Scientific \& Industrial Research formed in 1916, fulfilled a similar function to that envisaged for the new Corporation. It was, to some extent, due to the initiative of the D.S.I.R. that a scheme was launched for co-operative industrial research associations (of which there are now 43).

The fragmentation and "lack of the driving force of a common management orientated to the requirement of its customers" is put forward as the weakness of the present Governmentfinanced research laboratories and the raison d'être for setting up the B.R.D.C.

The organizations which would come under the direct management of the B.R.D.C. include five Mintech industrial research establishments (among them the National Physical Laboratory, and the National Engineering Laboratory), the A.E.A's research and reactor groups, and the National Research Development Corporation. In all they employ nearly 5,000 .

It is proposed that, while the cost of "basic research, advisory services and statutory work" might be met by a Government grant-in-aid, specific projects for Government departments would be charged at full cost. This contractural relationship could and should have a marked effect on the attitude of both the supplier and the customer. In addition the corporation would be free to undertake on its own initiative work on which it expected to recover its costs. Having said that, however, one sees the dead hand of bureaucracy falling upon the proposed organization in the phrase "It would however be required to operate within the general framework of the Government's industrial policies".

No mention is made in the list of establishments coming under the jurisdiction of the B.R.D.C. of such places as R.R.E. Malvern, where so much valuable research in our particular field has been done. The Royal Aircraft Establishment, Farnborough, is mentioned but only to record that the "aerospace establishments of which R.A.E. is the largest", are being reduced in size, are inextricably part of the Ministry's defence procurement organization and that no change in this relationship is proposed.

When we consider the number of Government-sponsored projects which have been still-born because of bureaucratic bungling we are not enamoured of the idea of still greater Government control. There is a certain type of person who finds his spiritual home in the Civil Service type organizations (e.g. the Post Office and the B:B.C.) and another type who thrives on the cut-and-thrust of industry and commerce. Both have their qualities, but to provide the "driving force" for the B.R.D.C. mentioned above surely the second type of person is needed more than the first. The question is whether a new corporation set up by a government will be able to stand sufficiently far away from the Civil Service to prevent a wholesale transmigration of souls.

Ultra-low Distortion Class-A Amplifier

A design using feedback to control the gain and the levels of voltage and current in the output stage

by L. Nelson-Jones, m.I.E.R.E.

There is in the design to be described nothing very revolutionary, but rather an attempt to get a little nearer to perfection, in the power amplifier section of an audio system. Like Mr. Linsley Hood, ${ }^{1}$ the author has long felt that the slight extra cost and power consumption that class A implies, is well worth while, and that its advantages are not as marginal as has often been supposed.
The most often quoted advantage of class-A operation is the elimination of crossover distortion, but there are other factors other than this which give rise to distortion in a class-B stage, especially at the upper frequency limit of the audio range, among them hole storage and inequality of high frequency performance of the two halves of the output stage

Circuit design

The perfect power amplifier will convert its input signal to a higher power level, which is an exact replica of the input. It will have zero output impedance, but will not be damaged by a short circuit of its output terminals. It will have a flat gain-frequency response over the whole of the audio band, but will not respond to frequencies greatly outside this band. It will give its full rated power over the whole audio band. It should preferably drive capacitive loads, so that it may be used with an electrostatic speaker. It should be driven from a signal source whose bandwidth does not exceed that of the power amplifier, so that on transients in particular the power amplifier is not required to produce an output in excess of its capabilities.
No mention has been made of the input impedance of such an amplifier, this is because whilst some prefer a voltage input (high impedance), others prefer a current input (low impedance), and there is in any case no magic in this aspect. The degree of input impedance only decides the design of the output stage of the pre-amplifier, and to some extent alters the problems of stray couplings in the leads between these two sections. With low impedance, hum pick-up is most likely to be due to magnetic induction in the wiring, whilst with high impedance, it will more likely be due to electrostatic causes. The author's preference is for a high input impedance, mainly because he has more experience with such circuits, and

in addition most signal sources and test equipment are rated for voltage output rather than current
Now to the actual design, and firstly to underline what J. L. Linsley Hood said in a recent article ${ }^{1}$ - ". . . the basic linearity of the amplifier should be good, even in the absence of feedback' so that the feedback is used to obtain the desirable attributes of a good amplifier and not to overcome the shortcomings of a poor design.

Output stage

The use of the simplest circuit is very desirable, if only because it reduces the number of components which can cause phase shift at the higher frequencies, with consequent difficulty in stabilization of the overall loop. In this respect Linsley Hood's circuit ' is excellent, but the author has found that despite its good performance, the need to
select the resistors in certain parts of this amplifier and its reliance on the stability of current gain of the output transistors to set the operating current, went very much "against the grain" after years of designing equipment for production runs

In order to get a more acceptable overall loop gain, it was decided to use transistor pairs for both halves of the output stage, with the result that higher values of resistor may be used in the driver stage. Fig. 1 illustrates three possible output stages considered. Fig. 1 (a) uses complementary transistors and is truly symmetrical, but is not as efficient as that of (b) which has a lower saturation voltage for each half as well as local feedback through the common emitter resistor of the first pair of transistors. Fig. 1(c), is the commonly used quasi-complementary type of output stage, which is in effect one half of Fig. 1 (a), logether with half of Fig. 1(b). Using this arrangement it is necessary for

Fig. 1. Possible output stages considered for class A operation. (a) Fully complementary symmetry. (b) More efficient arrangement with local feedback also. (c) Quasicomplementary output with equalizing diode.

(a)

(b)
the best results to include a diode in the emitter of the lower $p-n-p$ transistor so that looking into the base of each half of the output stage the driving source sees two forward biased junctions having fairly equal transfer characteristics for each half. The use of such a diode is particularly necessary in class-B stages as discussed in a recent article ${ }^{2}$ and a letter ${ }^{3}$. The design described here uses the circuit of Fig. 1(c) mainly because of the better availability of $n-p-n$ power devices.

In the three output stages of Fig. 1 box X is the source of bias for the output stage. To ensure true class-A operation, with repeatability of operation from one amplifier to another, it was decided to use feedback to control the operating current. To achieve this the circuit of Fig. 2 was evolved. It will be seen that two additional transistors Tr_{7}, and Tr_{8} have been added, together with a current sensing resistor R_{11}. The action of the circuit is to hold the current through the output pair such that the drop across R_{11} is equal to the forward bias requirements of Tr_{8} (approximately 500 mV). Any increase in the output stage current will cause Tr_{8} to pass a greater current, which in turn will increase the conduction of $T r_{7}$, thus reducing the potential difference between the bases of $T r_{3}$ and $T r_{5}$, i.e. the bias of the output stage, and hence reducing the current in this stage. The input to Tr_{8} is filtered to remove audio components, so that the control circuit establishes the correct mean current irrespective of the signal present. The RC filter used for this purpose ($R_{10} C_{6}$) must have values such that adequate filtering is achieved, yet the drop in R_{10} must not be large or the current level of the output stage will vary with the current gain of Tr $_{8}$. This effect can be minimized by the use of a high gain transistor for Tr_{8}. The capacitor C_{6} will be operated with only 500 mV polarization, which is insufficient to maintain the characteristics of a normal aluminium electrolytic. To overcome this problem a "solid" tantalum capacitor is specified, whose dielectric film of tantalum pentoxide is permanent. "Solid" aluminium capacitors also exist such as Mullard C415 and C121. These are not to be confused with "dry" electrolytics, which are wet types with the electrolyte in the form of a paste, (as are almost all
aluminium electrolytics currently in use).
The operation of the output stage, with the bias network included, is at first hard to understand, since it at first appears that the drive to the base of Tr_{3} is reduced by the presence of $T r_{7}$, whose collector-emitter impedance is fairly high. This reasoning ignores the effect of C_{3} and C_{5}, which results in the drives to the bases of $T r_{3}$ and $T r_{5}$ being almost equal. At low frequencies the circuit works well without C_{5}, but with increasing frequency, phase shift in the power stage results in slight side effects which can be removed by the use of C_{5}. By connecting the capacitor between the base and collector of Tr_{7} its effective value as seen between the emitter and collector of Tr_{7} is multiplied by the gain of this transistor, and thus a value of $0.22 \mu \mathrm{~F}$ proved quite adequate. Alternatively to revert to a more conventional circuit Tr_{7} could by bypassed by a normal $250 \mu \mathrm{~F} 6 \mathrm{~V}$ capacitor as shown doted in Fig. 2, to ensure equal drive to both halves of the output stage, at all audio frequencies.

Input and driver stages

These follow the well known arrangement of $\mathrm{p}-\mathbf{n}-\mathrm{p}$ input stage, with $\mathbf{n - p}-\mathrm{n}$ driver stage. The feedback is arranged to be 100% at d.c. by connecting the $3.3 \mathrm{k} \Omega$ feedback resistor (Fig. 3) direct to the emitter of Tr_{1}. This feedback is reduced at audio frequencies by the attenuator formed by the $3.3 \mathrm{k} \Omega$ and 220Ω resistors, but not at d.c. because of the $250 \mu \mathrm{~F}$ blocking capacitor.

The action of the d.c. feedback is to keep the midpoint of the output stage at a potential equal to the voltage at the base of $T r_{1}$ plus the base-emitter potential of Tr_{1} and the voltage drop in the feedback resistor (approximately 300 mV). Slight adjustment of the voltage of the bias chain feeding the base of $T r_{1}$ allows the mid-point of the output stage to be set for symmetrical clipping at the onset of overload. The mid-point level will vary slightly with temperature due to the $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ change in $V_{b e}$ of Tr_{1}, but this will be added to the effect of increase of current gain in the twg input transistors, resulting in a drop in the collector current of Tr_{1}, and hence a drop in the potential across the $3.3 \mathrm{k} \Omega$ feedback resistor. However the total

(c)

Fig. 2. Circuit chosen to allow jeedback control of the operating current.
change over the range $0-40^{\circ} \mathrm{C}$ is only some 200 mV , and is thus of little consequence, in relation to the level of 14 V .

Power supply

In order to ensure the greatest possible freedom from hum and similar problems it was decided that the extra cost of a fully regulated power supply was justified, in relation to the high performance being aimed at.

The series stabilizer is quite conventional except for the generation of the pre-regulator supply (+60 V). This supply is generated by a Cockroft voltage-doubler circuit which is connected to the main rectified supply, so that the outputs of both circuits add. The input (peak) voltage to the voltage doubler is only half that across the main bridge rectifier, since on negative half cycles, the arm of the bridge between the input to the voltage doubler and the 0 V line, is conducting, clamping the point near 0 V , whilst on positive half cycles it is non-conducting allowing this point to rise. The connection of the anode of D_{2} to the main rectified supply has the effect of increasing the voltage across the two capacitors by the voltage of the main supply, but does not affect the a.c. conditions in the circuit.

The main supply is a normal bridge rectifier with capacitance smoothing. The value of this capacitor is decided by the maximum permissible ripple, which in turn depends on the minimum mains voltage allowable and the minimum voltage across the regulator series transistors at which the regulator still retains full control.

The actual pre-regulator supply generated by the voltage-doubler circuit is used to supply a zener diode (6.8 V) connected to the regulated supply, thus making a d.c.coupled bootstrap connection for the collector load of the amplifying stage of the regulator (Tr_{9}), and giving a considerable increase in gain, within the regulator loop. The loop is stabilized by the 1200 pF capacitor across the base and collector of Tr_{g}, and the output impedance rise that this causes at the higher frequencies, is removed by the connection of the $1250 \mu \mathrm{~F}$ capacitor across the regulated line, in accordance with normal practice in such regulators.

The performance of this regulator is excellent and the only additional smoothing needed is the $10 \mu \mathrm{~F}$ capacitor in the base bias network of Tr_{1}. An output for the pre-amplifier and tuner etc. is a vailable (via a low value decoupling resistor and a $1250 \mu \mathrm{~F}$ capacitor) at the input plug.

Overload protection

This is inherent in the action of the current control circuit, which prevents the out-
put stage mean-current from varying. A full short-circuit can be sustained without damage. The current in the output stage remains correct as regards mean level but due to the high value of loop gain the current waveform becomes a square wave on heavy overload and as a consequence the dissipation in the current-sensing resistor doubles to approximately 1 W .

Frequency response

At low frequencies three capacitors determine the basic response. The input capacitor to the base of Tr_{1}, the d.c. blocking capacitor of the feedback loop, in the emitter circuit of $T r_{1}$, and the capacitor feeding the load. The cut-off frequencies due to each alone, are 14,3 and 8 Hz respectively. The combined effect was measured, and gave a "cut-off" at $15 \mathrm{~Hz}(-3 \mathrm{~dB})$. In the author's opinion it is important that the main limitation of the bandwidth at low frequencies should be due to the input capacitor, so that the amplifier will not be overloaded by frequencies outside the useful audio-range. It is also important that the output capacitor is sufficiently large to allow the very low output impedance, obtained by high degrees of negative feedback, to damp the fundamental resonance of the loudspeaker cone. The values given are a good compromise, and provide an adequate bass response. For a lower cut-off, all three capacitors should be changed by the same factor.

No specific steps have been taken to limit the high-frequency response, which is found to be level to $15 \mathrm{kHz},-1 \mathrm{~dB}$ at 54 kHz , and -3 dB at 92 kHz , above which it falls rapidly.

Noise and distortion

Clipping at the overload point is clean and symmetrical, as shown in Fig. 5(a) for a 1 kHz sinewave. The normal method of adjusting the bias of the amplifier is to adjust the "Set O/P Levels" control for symmetry of clipping, having previously set the supply regulator for a reading of +28 V .
Distortion was measured-with some difficulty -at 1 kHz , when it was found that it was almost entirely 3rd harmonic in nature, and of very low level, only reaching 0.015% at the onset of clipping, so that at normal listening levels it would be quite insignificant.
Such a low level of distortion is not surprising when one considers the facts. The loop gain is measured as 4750 times, with the closed-loop figure of 16 times. The reduction in gain, and hence also in distortion is therefore 297 times or -49.5 dB , implying a basic open-loop distortion of around 5%, a reasonable figure for a basically linear amplifier. The output of the amplifier operated under loop conditions at just under full output is shown in Fig. 5(b). The variation with output level of the distortion under closed-loop conditions is
shown in the graph of Fig. 4(c).
Due to the use of a regulated supply the noise and hum levels are of a very low value. Hum components alone (50 and 100 Hz) are -83 dB relative to full output. Wideband noise, ignoring hum components, is approximately -100 dB below full output, rising very slightly if the input is open circuit. The result is a background level that is completely inaudible.

Response to square wave input, and to capacitive loads

The effect of capacitive loads is shown in Fig. 5(c) and 5(d). The capacitor was a $1 \mu \mathrm{~F}$ paper type, and little difference in waveform is noticeable, whether or not, the $8-\Omega$ resistive load is connected in parallel. The ring frequency induced is at approximately 200 kHz for a $1-\mu \mathrm{F}$ capacitor but reduces somewhat with larger values of capacitor.

Fig. 5(e) shows the response to a steep input edge the total rise time is around $0.5 \mu \mathrm{~s}$, giving a slewing rate of $40 \mathrm{~V} / \mu \mathrm{s}$. Fall time is similar.

Input impedance

Due to the high degree of series feedback employed, the input impedance is almost entirely that of the base bias network, ie. the two $100-\mathrm{k} \Omega$ resistors effectively in parallel. The value was measured and was found to be such, namely $50 \mathrm{k} \Omega$.

Current sensing resistor

It is desirable that this should be of a noninductive type in order not to introduce high frequency effects, which might limit the available power at that end of the spectrum, and also cause stability problems in the loop.

Fig. 4. Performance curves.

The requirement for a non-inductive resistor is more important in class \mathbf{B} amplifiers, but is by no means unimportant in class \mathbf{A} applications (see "Letters to the Editor", F. Butler and Arthur Bailey, Wireless World, December 1966, pp. 611-614). The construction of the resistors used in the prototype is shown in Fig. 6. An alternative would be to use Eureka wire to connect the emitter of Tr_{4} to the remainder of the circuit, using a single straight length of a suitable gauge (probably 26 s.w.g.). In this case the wire should be covered with high temperature slleeving, say silicone rubber, or glass fibre. The $1 \mathrm{k} \Omega$ resistor feeding the base of Tr_{8} would then be connected direct to the emitter of Tr_{4}.

Heatsinks

In the prototype, finned extruded aluminium heatsinks of approximately 4 in $\times 4$ in are used for each of the output transistors. A similar heatsink is used for the series transistors of the regulator. In each case no insulation is used between the transistors and the heatsink, which is live to the collector in each case. This course of action was taken to maximize the efficiency of the heatsinks, and these must therefore be separately insulated from their mountings. The method used in the prototype is to cut slots in the edge of the heat sinks (0.25 in deep, 0.25 in wide), which then enable the heatsinks to be mounted on 4BA studding using Transiblocks, details of which are to be found in the constructional section below. Silicone grease is used to ensure a good thermal connection between the heat sink and the power transistors.

The amplifier must not be used in confined surroundings such that free air circulation is impeded, as some 60 W of heat have to be dissipated by the complete stack of heat

sinks. The cabinet in which the amplifier is mounted should therefore be well ventilated, and in particular the author has found that a larger area of vent is required at the top of such a cabinet than at the bottom in order to stop the build up of a cushion of hot air at the top. The maximum rise in the centre of the heat sink stack, gives a case temperature for the power transistor which is approximately $40^{\circ} \mathrm{C}$ above ambient. The junction temperature with the dissipation occurring in each transistor will be a further $20^{\circ} \mathrm{C}$ higher in the worst case. Thus at $20^{\circ} \mathrm{C}$ in free air the maximum junction temperature will be $80^{\circ} \mathrm{C}$, allowing a considerable amount of leeway for both raised ambient temperature and less than free air circulation. It is recommended that the maximum case temperature of the power transistors should not be allowed to exceed $100^{\circ} \mathrm{C}$ in use, and in the cabinet in which it is to be mounted, so that a reasonable degree of reliability is achieved.

Adjustment of design for other than 8- Ω load

Referring to Fig. 2 again, we will first calculate the supply voltage required for any given load. (The number suffixes given refer to the transistor numbering in Fig. 2.)
Output voltage swing ($p k-p k$)

$$
\begin{aligned}
=V_{c c}-\left\{V_{c e \cdot s a t_{3}}+V_{b e 4}\right. & +V_{c e \cdot s_{1}} \\
& \left.+(l+\tilde{I}) R_{11}\right\}
\end{aligned}
$$

Also, power output (sinewave)

$$
=\frac{(\text { output voltage swing })^{2} p k-p k}{8 R_{\text {lood }}}
$$

Since $V_{o u t}($ r.m.s. $)=\frac{V_{p k-p k}}{2 \sqrt{2}}$
(for a sinewave),

$$
V_{\text {out }}(p k-p k)=\sqrt{8 R_{\text {load }} \cdot P_{\text {out }}}
$$

Fig. 5. Oscillograms of amplifier performance.
(a) / kHz sinewave being symmetrically clipped.
(b) Full output of amplifier with open loop.
(c) Square wave into resistive load.
(d) Square wave into capacitative load.
(e) Response to input with rise time of $0.5 \mu \mathrm{~s}$.

Fig. 6. Construction of $0.56 \Omega 5 \%$ non-inductive resistors.
and therefore

$$
\begin{aligned}
& V_{\text {cc }}=\sqrt{8 R_{\text {toad }} P_{\text {out }}+V_{\text {ce sat } 3}+V_{\text {bed }}} \\
& +V_{\text {ce }{ }^{\text {sal }}{ }_{6}}+(I+\hat{l}) R_{11} \text {, minimum. }
\end{aligned}
$$

The standing current must exceed $\frac{V_{p k-p k}}{4 R_{\text {load }}}$
in order to achieve the required voltage swing, and for its satisfactory safety margin it should exceed $V_{\text {cc }} / 4 R_{\text {load }}$.
Taking typical values for the circuit given using an $8-\Omega$ load, and $10-\mathrm{W}$ output level
we get $V_{c c}=\sqrt{ } 640+0.25+1 \cdot 0+0.5$

$$
+(0.90+0.79) 0.56=28 \mathrm{~V} .
$$

$I_{\text {min }}=\frac{28}{4 \times 8}=875 \mathrm{~mA}$
(a value of 900 mA being actually used.)
For a $3 . \Omega$ load and $10-\mathrm{W}$ output we get figures of 19.5 V for $V_{\text {cce }}$, and 1.63 A for $I_{\text {min }}$. (Total power $31.8 \mathrm{~W}, 31.5 \%$ efficient).

For a $15-\Omega$ load and $10-\mathrm{W}$ output we get figures of 36 V for $V_{c c}$, and 0.6 A for $I_{\text {min }}$. (Total power $21.5 \mathrm{~W}, 46.4 \%$ efficient)
*From these figures it is apparent that the rise in $V_{c e}$ sal, , and $V_{b e}$ figures with the current used in a $3-\Omega$ amplifier seriously reduces the overall efficiency. In the case of the $15-\Omega$ load on the other hand, the efficiency is not far short of the theoretically possible figure of 50% for a class A stage. The efficiency of the $8-\Omega$ stage is 39.8%.

Details of value changes for $3-\Omega$, and $15-\Omega$ circuits are given with the constructional details below.

Constructional details

Fig. 7 shows the construction of the underside of the chassis of the $10+10-\mathrm{W}$ amplifier. The layout is shown in greater detail in the sketch of Fig. 8-the two amplifiers being constructed as mirror images, as can be seen in the photograph.
To avoid large circulating currents the loudspeaker return leads should be wired to the earth tags of their respective amplifiers, as shown in Fig. 8. The negative lead of the rectifier bridge should be connected to the same earth tag as the negative connection of the $5000 \mu \mathrm{~F}$ main smoothing capacitor, together with the negative connection of the second $50 \mu \mathrm{~F}$ smoothing capacitor of the voltage doubler.
Providing the layout given is followed, and the precautions listed over earth tags are followed, no problems should be encountered.
Layout of the series regulator components is entirely non-critical and uses similar tag strips to those in the power amplifiers.

Fig. 7. View of underside of amplifier chassis.

Performance of 8 - Ω version

Output (at commencement of clipping)	10 W
Frequency response	$36 \mathrm{~Hz}-54 \mathrm{kHz}(-1 \mathrm{~dB}$)
	$15 \mathrm{~Hz}-92 \mathrm{kHz}(-3 \mathrm{~dB}$)
Power bandwidth	Full power $15 \mathrm{~Hz}-30 \mathrm{kHz}$
	-3 dB (half power) at 60 kHz
Hum level	-83 dB relative to 10 W
Noise level	-100 dB relative to 10 W (ignoring hum components)
Rise time	$0.5 \mu \mathrm{~s}$
Input impedance	$50 \mathrm{k} \Omega$
Input sensitivity	0.56 V r.m.s. for 10 W (gain 16)
Open loop gain	4750
Feedback gain reduction	$-49 \cdot 5 \mathrm{~dB}$ (297 times)
Distortion	0.015% at $1 \mathrm{kHz}, 10-\mathrm{W}$ output (almost entirely 3rd harmonic) 0.01% at 2.5 W
	0.005\% at 350 mW
Channel separation	-43 dB at 20 Hz rising to greater than -60 dB at 1 kHz and above

Fixed resistors

With the exception of the current sensing resistors $R_{11}, R_{11_{a}}$ and those marked with * in the circuit of Fig. 3, all resistors are solid carbon moulded $\frac{1}{2} \mathrm{~W} 10 \%$. All resistors marked * are $\frac{1}{2} \mathrm{~W} 2 \%$ metal oxide (Electrosil TR5, Welwyn MR5, Radiospares " $\cdot \frac{1}{2} \mathrm{~W}$ oxide"). See Fig. 6 for details of the construction of R_{11}.

Variable resistors

Both are wirewound Radiospares type "presets" (set +28 V and set output levels). Any good wirewound types such as those quoted of 1 W rating or above are suitable.

Non-electrolytic capacitors

$0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ input capacitor Wima Tropyfol M (160 V) or Mullard C296AA/A220 K. Radiospares also make a suitable type 250 V PDC.
$0.22 \mu \mathrm{~F} 20 \mathrm{~V}$ ceramic disc (base-collector
$T r_{7}$). Radiospares 20 V discs, or use polyester 160 V type as above.
1200 pF tubular ceramic (1000 pF can be used). The capacitor used in the prototype is now obsolete; Radiospares suggest as alternatives "discs $0.001 \mu \mathrm{~F}$ " or "Hi-K $0.001 \mu \mathrm{~F}$ " (tubular).
$0.1 \mu \mathrm{~F} 400 \mathrm{~V}$ (across bridge rectifier, necessary to prevent the generation of mainsborne interference due to hole storage effects in the rectifiers), Wima Tropyfol M(400 V), MullardC296AC/A 100K. Radiospares 400 V PDC.

Electrolytic capacitors

$47 \mu \mathrm{~F} 6 \mathrm{~V}$ (base-emitter $T_{r_{8}}$). This must be solid tantalum type. The Radiospares type used in the prototype is discontinued but is apparently identical to Union Carbide "Kemet E". Alternatives are S.T.C. 472/ LWA/401CA (metal case), S.T.C. TAG47/3 (3 V rating similar to Kemet E), Mullard

C421AM/BP47 (metal case), C415AP/C50 ($50 \mu \mathrm{~F}, 6.4 \mathrm{~V}$ solid aluminium type). $10 \mu \mathrm{~F} 64 \mathrm{~V}$ (input bias chain) Mullard C426AR/H10.
$250 \mu \mathrm{~F} 25 \mathrm{~V}$ (feedback blocking capacitor) Mullard C437AR/F250.
$250 \mu \mathrm{~F} 40 \mathrm{~V}$ (bootstrap capacitor) Mullard C437AR/G250.
$1250 \mu \mathrm{~F} 40 \mathrm{~V}$ (across 28 V supplies) Mullard C431BR/G1250.
$2500 \mu \mathrm{~F} 40 \mathrm{~V}$ (output capacitor) Mullard C431BR/G2500.
$5000 \mu \mathrm{~F} 50 \mathrm{~V}$ (main smoothing) Daly type obtained from Electrovalue. Nearest Mullard type C432FR/G5600 ($5600 \mu \mathrm{~F} 40 \mathrm{~V}$). $50 \mu \mathrm{~F} 350 \mathrm{~V}$ (voltage doubler) Radiospares "tubes $50 \mu \mathrm{~F} 350 \mathrm{~V}$ ". Alternative types of not less than $100-\mathrm{V}$ rating may be used.
Caution should be exercised in the selection of suitable types for the main smoothing capacitor because of the high ripple rating required. The Radiospares type "Cans $5000 \mu \mathrm{~F} 50 \mathrm{~V}$ " is not suitable on this account. The Daly type has a ripple rating of 4.3A.

Transformer

Radiospares "27 V rec trans" Prim. 0-100-115-205-225-245 V $50 / 60 \mathrm{~Hz}$. Sec. 27 V at up to 3 A rectified d.c.

Fuse

2A normal or 750 mA "anti-surge" delay type.

Heatsinks

Power transistors mounted on 5 Radiospares heatsinks, which are equivalent to
"Marex" (Marston-Excelsior) type 10D4 in long. S.T.C. supply a similar type, code HSC4 and a clip for insulated mounting (but not as in photos) FP2551 (Electroniques). Heatsinks mounted on 4BA studding using four transiblocks per heatsink. Transiblocks are made by Industrial Instruments Ltd, Stanley Road, Bromley, Kent. Farnell Instruments Lid (Industrial Supplies Division) also stock these items.

The TO-5 transistors $\left(T_{3}, T_{5}\right)$, are fitted with cooling clips-Redpoint 5F, available from Electrovalue and Electroniques. A similar type-"Sinks TO-5"-is available from Radiospares.

Sundries

Chassis size 7 in $\times 10$ in $\times 2$ in (sheet aluminium type).

The input socket is a 5 pin "DIN" audio connector. The loudspeaker sockets are Radiospares miniature non-reversible 2-way plugs, and sockets. Non-reversibility is essential to preserve the phasing of the outputs to the speakers. It is convenient to mount the fuseholder (Radiospares panel fuse holders or Belling-Lee L. 1348, L. 1382 , L. 1744) on a panel attached to the side of the mains transformer, with a strip on top of the transformer for connection of the mains lead, mains switch, etc., as shown in the photograph.

Modifications for 3- Ω output

R_{11} and $R_{11 a}$ must be reduced to $0.31 \Omega(5 \%)$ each. The mains transformer will require to

Semiconductors

$\mathrm{Tr}_{1}, \mathrm{Tr}_{7}$	2N3702	(BCY70)
Tr $r_{2}, T_{\text {r }}$	BC107	(BC108 suitable for Tr_{9})
Tr_{3}	2N2219	
Tr ${ }_{5}$	2N2905	
$T r_{4}, T r_{6}, T r_{11}$	2N3055	
Tr_{10}	2N3054	
Tr_{8}	BC168	(BC108)
D_{1}	OA200	(HS1010, OA202)
D_{2}, D_{3}	RAS310AF	(Radiospares REC51A, 1 N 4005 , BY103)
$Z D_{1}$	ZF8.2	(Radiospares "MZ-E 8.2 V", Mullard BZY88-C8V2, Texas 1S2068A)
Rect. 1.	Radiospares	REC.40. 5A bridge 200 V (p.i.v.)

be 21 V r.m.s. 3.5 A d.c. rectified rating. The output capacitor feeding the loudspeaker must be $5,000 \mu \mathrm{~F} 25 \mathrm{~V}$. The $12-\mathrm{k} \Omega$ resistor in the regulator will reduce $107.5 \mathrm{k} \Omega$, and the $3.3 \mathrm{k} \Omega$ resistor feeding the 6.8 V zener diode will reduce to $2.2 \mathrm{k} \Omega$. The main smoothing capacitor should be raised to $7,000 \mu \mathrm{~F}$ at not less than 30 V working. The collector resistors of Tr_{2} should be dropped from 820Ω, $1.5 \mathrm{k} \Omega$ and $1.2 \mathrm{k} \Omega$ to $470 \Omega, 820 \Omega$, and 680Ω respectively.

Modifications for $15-\Omega$ output

R_{11} and $R_{11 a}$ must be increased to 0.84Ω (5%) each. The mains transformer must be 34 V r.m.s. 1.5 A d.c. rectified rating. The $12-\mathrm{k} \Omega$ resistor in the regulator must be increased to $17 \mathrm{k} \Omega$ which is not a standard value, alternatively the $4.7 \mathrm{k} \Omega$ may be dropped to $3.6 \mathrm{k} \Omega$ which is a standard value. The $3 \cdot 3-\mathrm{k} \Omega$ resistor feeding the $6 \cdot 8-\mathrm{V}$ zener diode should be raised to $3.9 \mathrm{k} \Omega$. The collector resistors of Tr_{2} may be raised if desired but this is not necessary. Tig must be BC 107 since BCl 108 has an inadequate voltage rating. Tr_{3} may be 2 N 2219 A or

2218 A which have a higher voltage rating than 2 N 2219 . However if 2 N 2218 A is used then Tr_{5} should be changed to 2 N 2904 , to preserve some equality of current gain. If a transistor tester is available then samples of 2N2219 may be selected for $V_{\text {ceo }}$ of above 40 V instead (normal minimum is 30 V).

It should be noted that the output to preamplifier and tuners will alter, being +19.5 V for the $3-\Omega$ version, and +36 V for the $15-\Omega$ version.

It is expected that the distortion of the $3-\Omega$ version will be two to three times greater than that quoted for the $8-\Omega$ version, with similar or slightly better figures for the $15-\Omega$ version. In the author's opinion, since very few speakers deserving the title highfidelity, have a $3-\Omega$ voice coil, the $3-\Omega$ version of the amplifier is not worth considering unless no other choice presents itself.

REFERENCES

1. J. L. Linsley-Hood, "Simple Class A Amplifier", Wireless World, April 1969.
2. I. M. Shaw, "Quasi-Complementary Output Stage Modification", Wireless World, June 1969.

London's New Colour TV Centres

A pictorial look behind the cameras

One of two news studios (top left) at the recently built Television News Spur at the B.B.C. Television Centre. Amid the jungle of lights the four Mk. VII Marconi colour cameras can be seen. These are controlled remotely from control desks from which the operator can adjust pan, tilt, focus, zoom and camera height using simple potentiometers. Two banks of ten push-buttons, positioned one above the other, enable the operator to store up to twenty camera positions. Pressing any one of these buttons causes digital information describing the camera settings to be stored in a ferrite core store. Re-pressing the same button causes the camera to instantly take up the same position again. A "fader" control causes the camera to move between a position set up on one of the top row of buttons to a position which has been set
up on the bottom row of buttons. The camera control system was designed by Evershed Power-Optics Ltd. The news announcer sits in front of a screen which is saturated-blue in colour. The output of the blue gun of the main camera looking at the announcer can be made to switch an auxiliary camera the output of which is mixed with the main camera. If the auxiliary camera is looking at an outdoor scene, whenever the main camera is scanning the blue background the outdoor scene will appear on the screen. When the main camera scans the announcer very little blue signal will be picked up, the auxiliary camera will be switched out and the main camera will provide the vision signal. The effect on the television screen will be to have a picture of the announcer against a background of the outdoor scene. The sub-central apparatus room (top right)
which routes all the incoming and outgoing sound and vision signals to and from the B.B.C's news centre. In addition to this the C.A.R. provides communication facilities and can either route synchronizing pulses from the main television centre or generate its own for the rest of the news complex. The main sound routing system has 100 sources, any of which can be sent to any of 60 destinations. Remote controls also exist for the camera in the parliamentary studio. Part of the telecine area (bottom left) and one of the two telecine control desks (bottom right). Altogether there are nine $16-\mathrm{mm}$ colour machines, two of which are multiplexed to deal with 8 mm and super-8mm film from amateur sources, and two $16-\mathrm{mm}$ monochrome machines. If necessary the colour quality of material from the telecines can be corrected,

The master control desk at Thames Television's new centre in Euston is boomerang-shaped and has positions for the lines engineer (top left), the engineer in charge who performs a quality control function (top right), and the network switcher (botom left). The monitor bank facing the desk has a row of 14 -in. monochrome monitors and a row of colour monitors underneath. These preview incoming sources, check the passage of signals
through the system and view the outputs. The lines engineer has a monitorswitching system controlling the input to an 11 -in. Pye picture monitor and a 529 Tektronix 'scope. Communications and sound monitoring take up the rest of his desk. The central pasition for the engineer-in-charge has very comprehensive monitoring and switching facilities which include a vectorscope and a subcarrier phase meter (by Michael Cox Electronics)
sien below the vectorscope. The network switcher and the presentation mixer were built by Thames using E.M.I. vision matrices and Neve sound matıices. The presentation control room (bottom right) is separated from master control by a glazed screen so that visual contact can be maintained. The transmission controller sits centrally before the monitor bank. clocks, telephones and talkback keys on the desk before him.

ITN's new studios Wells St., London, were officially opened by the Queen on the 20th of November last year. The control room can be seen (left). Beneath the clock is the colour transmission monitor with colour preview pictures on either side. To the left of
the clock are the monitors for telecine and video tape recorders. Below the transmission monitor are the four studio camera monitors. Sitting from left to right: vision mixer, director, production assistant, and producer, rehearsing NEWS AT TEN. Far left
are the monitors for engineers controlling the quality of the picture. The 24-channel sound mixing and production desk in studio No. 1 is shown in the right photograph. This equipment, together with the turntables in the foreground, was supplied by Elcom.

80-metre S.S.B. Receiver

A limited coverage receiver of straightforward design for amateur use

by W. B. de Ruyter, PAOPRW

Since f.e.ts are now available at low-cost it is possible to build a stable receiver with a performance similar to good valve receivers with the attendant advantages of low-power consumption and the absence of self-generated heat. The receiver described here operates on a $12-\mathrm{V}$ supply and consumes only about 35 mA .

Stability is such that the receiver stayed within 3 Hz of zero-beat for several days when tuned to a standard frequency transmission. Detuning in the prototype due to supply voltage variation was about $.50 \mathrm{~Hz} / \mathrm{V}$ making mobile operation using a good $12-\mathrm{V}$ car battery possible. Due to the excellent square law characteristic of the f.e.t., cross-modulation properties are good. In a test, a 60 mV unwanted signal spaced 100 kHz from a weak wanted signal did not result in any harmful cross-modulation.

The sensitivity of the circuit depends almost entirely on the Q-factor of the input coil. It was noticed that practically no change in signal-to-noise ratio resulted when the aerial circuit was fed straight into the mixer instead of to the r.f. amplifier. However, the r.f. amplifier is needed to improve image rejection, reduce 455 kHz interference and to provide adequate automatic gain control.

Circuit description

A block diagram is shown in Fig. 1 and the complete circuit diagram of the receiver is given in Fig. 2. The f.e.t./bipolar transistor r.f. stage, Tr_{1} and $\boldsymbol{T r}_{2}$, does not require neutralizing if due care and attention is taken with screening. Provided that the v.f.o. circuit is properly constructed, mechanical rigidity being important here, a good waveform and a stability approaching that of a crystal oscillator will be attained. The v.f.o. operating frequency is arranged to be 455 kHz above the signal frequency (3.955 to 4.455 MHz).

All the r.f. coils employed in the prototype were of the type intended for valve trawler-band receivers for tuning between 60 and 180 metres.
The 4 to 40 pF main tuning capacitor used in the prototype was salvaged from a Government surplus type 31 receiver and was complete with a $36: 1$ reduction gear box and trimmer capacitors. In fact constructors who are not too keen on "metal bashing" will find, as the author did, that the type 31 receiver cabinet makes an ideal case for the receiver described here.

The author considers that the money spent on the relatively
expensive mechanical filter is more than justified when looked at in terms of receiver performance. An added advantage is that i.f. alignment is reduced to trimming for maximum input to, and output from, the mechanical filter. The cascode i.f. amplifier is designed to properly match the mechanical filter and also incorporates the simple S-meter circuitry.
The use of a Colpitts oscillator for the b.f.o. eliminated the need for any coils in this part of the circuit. The b.f.o. operates below the bandpass of the mechanical filter.

A square law heterodyne detector is employed and it is necessary to adjust the i.f. output coil, L_{5}, for optimum reception quality.

After a d.c. coupled a.f. pre-amplifier stage, $\operatorname{Tr}_{\mathrm{s}}$, the a.f. signal divides into two. One path is to a two stage f.e.t./bipolar a.f. amplifier via the a.f. gain control. This amplifier develops more than enough power to drive a pair of 150Ω headphones. Some readers might prefer to incorporate a simple a.f. power amplifier for loudspeaker reception. The second path from the d.c. coupled a.f. pre-amplifier goes via an impedance converting emitter-follower, Tr_{10} to the a.g.c. rectifier and smoothing capacitor. The a.g.c. performance is such that the heterodyne detector is not overloaded on even very strong signals. The switch S_{1} is connected to the negative terminal of a suitable battery providing an r.f./i.f. manual gain control. The positive terminal of the battery is, of course, connected to earth (power supply negative).

The f.e.t. in the Tr_{7} position, i.f. amplifier, must be selected for a certain value of pinch-off voltage, 3 V being the target figure. It is best to obtain a good supply of these components so that suitable devices can be selected. A test circuit that will perform this task is given in Fig. 3; the meter will indicate pinch-off voltage. It is advisable to use an f.e.t. in the r.f. amplifier, $T r_{2}$, with a pinch-off voltage half a volt or so higher than the f.e.t. in the i.f. amplifier, Tr_{r} This will ensure that the a.g.c. cannot cut off the i.f. amplifier.

Construction

The author assumes that a type 31 receiver will be used as the basis for construction. The first step is to remove all the components from the chassis except the five-gang tuning capacitor and its associated reduction gearing. A small mA meter, which serves as the S-meter, is mounted in the position that was occupied

Fig. 1. Block diagram of the complete receiver.

Fig. 2. The circuit. A power supply is not included in this description, but a car battery or almost any mains 12 V power pack will suffice.

Fig. 5. Front view of the prototype.
by the dial-light knob, and the original squelch control knob becomes the a.g.c. control. The a.f. gain control is retained in its original position.
It was found that the 10 - ft collapsible whip aerial supplied with the 31 set performed very well even without grounding the receiver.

The excessively large holes which now decorate the chassis are blanked-off with plates made from brass sheeting.

As previously stated any 60 to 180 metre trawler band coils can be used. The prototype employed Philips coils; type A3 125-34 for the aerial and mixer coils and type A3 125-68 for the v.f.o. and buffer. Onily four of the sections of the five-section main tuning capacitor are used in the circuit; readers may find the fifth section useful for tuning a loop aerial.

The importance of rigid mechanical construction and good screening between stages cannot be overstressed as is normal with r.f. circuitry. It is a wise constructor who gives careful attention to these points. In particular excessive stray coupling between the input and output of the mechanical filter will seriously degrade the performance. Figs 4,5 and 6 indicate the positions of the main components.

The first task is to check the source voltage of the f.e.ts is

Fig. 4. Skeleton mechanical layout showing position of main components.

Fig. 6. Upper chassis view.
between 1.5 and 2 V . Alignment of the receiver is not difficult and follows conventional practice; a crystal calibrator is of great value when carrying out this task.

The tuning range is set by adjusting the trimmer capacitors with a 3.5 MHz input and the inductors with an input of 4 MHz for maximum output. This procedure is repeated for the v.f.o. and the buffer circuitry. Due to the limited coverage very good tracking can be achieved. Finally the preselection circuits are adjusted and L_{5} set for optimum sound quality.

Conclusion

The prototype receiver performed well and the author considers that its construction is good training for those who wish to construct the receiver designed by D. R. Bowman, which was described in the July, August and September 1969 issues of Wireless World. The frequency coverage of this receiver can be extended using crystal converters; however, the performance will not match Bowman's design under these conditions.

Components List

Resistors

In this list the prefix R and the symbol Ω have been omitted.

$1-3.3 \mathrm{k}$	$12-150 \mathrm{k}$	$23-15 \mathrm{k}$	$35-150$
$2-3.3 \mathrm{k}$	$13-15 \mathrm{k}$	$24-2.7 \mathrm{k}$	$37-150 \mathrm{c}$
$3-150 \mathrm{k}$	$14-150$	$25-150$	$38-150$
$4-560$	$15-1 \mathrm{M}$	$26-2.2 \mathrm{k}$	$39-3.3 \mathrm{k}$
$5-15 \mathrm{k}$	$16-150$	$27-2.2 \mathrm{k}$	$40-2.2 \mathrm{k}$
$6-150$	$17-3.9 \mathrm{k}$	$28-6.8 \mathrm{k}$	$41-5.6 \mathrm{k}$
$7-10 \mathrm{M}$	$18-820$	$30-100$	$42-150$
$8-1.5 \mathrm{k}$	$19-15 \mathrm{k}$	$31-1 \mathrm{k}$	$43-560$
$9-150$	$20-150$	$32-220$	$44-220$
$10-3.3 \mathrm{k}$	$21-680$	$33-100$	-
$11-3.3 \mathrm{k}$	$22-3.3 \mathrm{k}$	$34-2.2 \mathrm{k}$	-

all above resistors ${ }_{8}^{1}$ watt.
$V \boldsymbol{R}_{1}-5 \mathrm{k} \Omega$ preset potentiometer; set S-meter sensitivity.
$V R_{2}-1 \mathrm{M} \Omega$ potentiometer; a.g.c. control (r.f.-i.f. gain).
$V R_{3}-100 \mathrm{k} \Omega$ potentiometer; a.f. gain.

Capacitors

In the list below the prefix C and the suffix F have been omitted.

$1-10 n$	$10-10 n$	$19-3,300 p$	$28-68 p$
$2-82 p$	$11-56 p$	$20-100 \mu$	$29-82 p$
$3-10 n$	$12-10 n$	$21-47 n$	$30-10 n$
$4-82 p$	$13-10 n$	$22-470 n$	$31-10 n$
$5-5 p$	$14-15 p$	$23-10 \mu$	$32-10 n$
$6-4 p$	$15-10 p$	$24-82 p$	$33-320 \mu$
$7-10 n$	$16-340 \mu$	$25-10 n$	$34-100 \mu$
$8-10 n$	$17-10 n$	$26-10 n$	$35 / 36-3.3 n$
$9-10 n$	$18-10 n$	$27-82 p$	$37-1.8 n$

All capacitors should be ceramic with the exception of the 82 pF components, which should be silver mica with a slightly positive temperature coefficient, and the electrolytic capacitors which should be at least 15 V working types.

Other components

$L_{1} \& L_{2}$-Trawler band aerial coils.
$L_{3} \& L_{4}$-Trawler band oscillator coils.
$L_{5} / C_{28}-455 \mathrm{kHz}$ tuned circuit.
f.e.ts- 2 N4303
bipolar transistors-BC109b
455 kHz Collins N 20 mechanical filter b.f.o. crystal- 453.7 kHz .

H.F. Predictions-March

The charts show median standard MUF, optimum traffic frequency (FOT) and lowest usable frequency (LUF) for reception in this country. LUFs were calculated by Cable \& Wireless Ltd for specific point-to-point telegraph circuits. LUFs for domestic reception of high-power broadcast transmissions would be slightly higher and those for the amateur bands considerably higher, especially during daylight.

Commercial working frequencies are kept below FOT to allow for day-to day variations in the ionosphere and the seasonal trend over the month. Amateur 'openings' can be expected in bands up to 15% above MUF. It may be recalled that March 1969 showed a sudden increase in solar activity, the measured IF2 index value being 127. The forscast value for this month's predictions is 98 .

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Capacitor-discharge ignition

I was very interested to read R. M. Marston's article in the January Wireless World but I was unable to convince myself that the storage capacitor C_{1} will charge in 1.6 msec . To either substantiate or disprove this I constructed a test circuit (Fig. 1). The switch simulates the s.c.r. and being two-pole enables the oscilloscope to be triggered at the moment of turn-off. It was found, using three different iron-cored mains transformers (two standard units and one wound as suggested), that the converter did not actually stop oscillating on short circuit but continued at a high frequency (approx. 20 kHz dependent on the transformer). This is due to the transformer leakage inductance, a property which Mr. Marston's transformer obviously had, since he used the overshoot it causes to advantage. The current taken in this condition rose to approx. 2.5 amps . At first I thought that this high-frequency mode would enable the capacitor to charge in the time claimed but operating the switch revealed with these transformers the risetime was never better than 3 msec . The current available from the converter under short-circuit conditions was approx. 20 mA , which is enough to hold on the s.c.r., but the backswing from the ignition coil (Fig. 2) passes through diodes D_{3} to D_{6} for a period over 0.1 msec enabling the s.c.r. to turn off and partially recharging C_{1}. Thus this system has the same disadvantage as the more usual capacitive-discharge system (Fig. 3) has, i.e. without the backswing the s.c.r. may latch on.

To ensure that the converter truly stops oscillating I wound a transformer on a Mullard Vinkor FX2243 core since this would result in low leakage inductance. The low primary inductance of this transformer resulted in a natural operating frequency of approx. 2 kHz and it did stop under short-circuit conditions. Unfortunately the time taken for the oscillator to restart and charge the capacitor resulted in a charge time of approx. 25 msec .

Mr. Marston's system would seem to charge up the capacitor in a short time when the energy is not all used in the coil resulting in a large backswing which will recharge C_{1} (Fig. 2). When the energy is all used the capacitor will have to charge from zero volts and take some time in
excess of 3 msec . This method of utilizing the backswing to recharge the capacitor is also possible in the normal system simply by placing an ordinary $500-\mathrm{V}$ diode across the s.c.r. in the reverse direction (D_{1} Fig. 3).

Considering the action of the rest of the circuit, when the contact breaker points close, with C_{2} charged to 12 volts, a reverse voltage of 12 volts is applied to Tr_{3} base which will break down at typically 8 volts. Since this happens every time the points close it will probably result in premature failure of this device.

Another small point in the article is that the standard ignition coil for a 12 -volt

Fig. 1.

Fig. 2.

Fig. 3.
system without a ballast resistor usually has a $50: 1$ ratio and not $100: 1$ as implied in the article, resulting in half the voltage expected.

For the most effective spark it is necessary for the sparking plug tip to be negatively polarized whereas the configuration used by R. M. Marston will result in a positively polarized tip. This can be easily remedied of course by reversing the C.B. and S.W. connections.

I. M. Shaw,
 Ferranti Ltd.,
 Chadderton,

Lancs.

May I raise a few points on Mr. R. M. Marston's article on a capacitor-discharge ignition system?

The resonant frequency of 1600 Hz quoted corresponds to an inductance of about 10 mH in series with capacitor C_{1}, as the equivalent inductance of a coil. 10 mH is approximately the magnetizing inductance of the primary of a conventional ignition-coil. During discharge, the secondary is more or less short-circuited, and the relevant inductance is the leakage inductance-approximately 1 mH . This gives a resonant frequency of about 5000 Hz .

The inverter design is based on a figure of 7.9 turns per volt, and a supply of 16 V . Centre-tapping the transformer will halve the turns per volt, and hence double the frequency, with double the hysteresis losses. I realize that the 1 ohm resistor to the centre tap will slightly increase the turns per volt, when on load.

The power transistors will suffer from excessive heat dissipation, as during ignition and most of the charging cycle they will not be saturated. Base drive is not removed during ignition, and the only resistance load during charging is the 1Ω resistance plus the winding resistances in the transformer. The mica-washer, plus insulating varnish, will limit the cooling the transistors can receive. A $2 \mathrm{k} \Omega$ or $3 \mathrm{k} \Omega$ wirewound resistor in series with the secondary winding of the transformer would probably help greatly without excessively increasing the charging time-constant.
J. F. Henderson,

Oadby,
Leicester.

In the article on capacitor-discharge ignition the author describes a system where the firing of the s.c.r. short-circuits the secondary of the inverter transformer and stops the inverter oscillation. In my experience this is an unsafe procedure for two reasons: first of all the resistance of the transformer secondary may be sufficiently large for the inverter not to stop oscillating, in which case at the very least excessive power may be consumed and the inverter transistors and the s.c.r. may be damaged by overheating, secondly when an inverter is started the first cycle is often abnormal in containing parasitic oscillations or excess ringing and if the s.c.r. stops the inverter every time it is fired the

Fig. 1. Inductive charging circuit.

Fig. 2. Waveforms in above circuit.
majority of inverter cycles will be first cycles.
I would suggest instead that the inverter voltage be reduced to 200 V and a $32-\mu \mathrm{F}$ reservoir capacitor follow the bridge rectifier (which now need be only 200 V rating) and that the spark capacitor be charged through a $0.1-\mathrm{H}$ choke and a $400-\mathrm{V}$ rectifier as in Fig. 1. The circuit performs as follows: when the s.c.r. is fired C_{0} discharges through the spark coil very quickly and the resultant ringing turns off the s.c.r. There is now 200 V across the choke and the current in it starts to rise; the series resonant circuit $L C$ then oscillates at its fundamental frequency of about 500 Hz for half a cycle when the capacitor is at 400 V and the current in the choke tries to reverse itself, which it cannot do because of the rectifier (which should have a high surge rating), and the voltage on the choke collapses leaving the capacitor charged to 400 V . (Fig. 2.) The advantage of this resonance, besides the voltage doubling, is that there is no series resistance and hence no dissipation-all the power taken from the reservoir capacitor ends up in the spark capacitor. It is also faster.
James M. Bryant,
Cheltenham,
Gloucester.
Thank you for publishing an electronic ignition system. I hope it does not suffer from the shortcomings of some of the other designs that have appeared, e.g.

s.c.r. 'lock on' due to converter not being turned off, with consequent self-destruction; and relatively large delays ($500 \mu \mathrm{~s}$ or more) being incorporated in the trigger circuit so as to overcome points-bounce (Mr. Marston's design certainly appears to overcome the second example).

Regarding Fig. 1 of the article, the conventional circuit, many modern cars do not have quite this circuit, but the one shown below. The primary of the coil is rated at about 7 to 8 V and a 1.5Ω series resistance is added. The ballast resistor is sometimes in the form of resistive cable from the ignition switch to the coil.

This circuit is used to improve starting, the ballast resistor being short-circuited as the starter solenoid operates. Thus the e.h.t. voltage is much higher than would be the case with the conventional ignition when starting and in theory still gives a good output when the battery voltage drops considerably when starting on a very cold morning.

When using Mr. Marston's circuit with this type of coil, a higher e.h.t. voltage will be obtained and the period of oscillation may be much less than the $600 \mu \mathrm{~s}$ quoted (I believe the inductance of the primary of the coil is lower). The ballast resistor must be remembered as the performance will obviously be derated otherwise. Possibly, if it is of the resistive cable type, rather than adding another lead from the ignition switch, it could replace R_{6} in the circuit; it would then be in series with the whole circuit. Would this then cause trouble in the triggering circuit?

M. J. Meadows,

Bishop's Stortford,
Herts.

The author replies to these and other. correspondents:
A large number of letters have been received regarding my "Capacitor-Discharge Ignition System" article, and many different points have been raised. I will try to answer each of these under a suitable heading.

Converter action: In the original article I stated that, when the s.c.r. is on, the converter turns off. This is an oversimplification of circuit action. The converter has a typical output impedance of $3 \mathrm{k} \Omega$, so when its output is shorted by the s.c.r. it in fact continues to operate, but does so in a different mode and at a high frequency (typically at tens of kHz); it returns to 50 Hz operation within a few $\mu \mathrm{sec}$ of the short being removed. This 'two mode' operation is intentional; converters that are designed to stop completely when their outputs are shorted in this type of application usually have long restart times, and are prone to total restart failure; this point should be self-evident when it is remembered that C_{1} is effectively connected across the converter's output, and that C_{1} acts as a virtual short circuit when it is fully discharged!

Converter power losses: Under normal running conditions in a 4 -cylinder vehicle, the converter consumes roughly 12 watts
from the car battery. Under worst-case conditions (at 6000 r.p.m. in a 12 -cylinder vehicle), consumption rises to roughly 24 watts. These power levels are well within the handling capabilities of the 2N3055 transistors, and will not result in 'excessive' heat dissipation, as claimed by Mr. Henderson. When the converter output is shorted, current consumption rises to 2.5 amps ; the 2 N 3055 transistors have maximum collector current ratings of 15 amps . At normal running speeds the converter output is shorted for less than 1% of each ignition cycle; the relatively high short-circuit currents thus cause negligible increase in the mean current of the converter.

The converter transformer: I designed the converter section around a more-orless standard type of l.t. transformer because this component is cheap, readily available, and is naturally suited to the two-mode method of operation. I do not recommend the use of ferrite-cored transformers in this application; they may fail to give good restart operation, and may give insufficient overshoot to give good cold-starting characteristics to the vehicle.

Use of a reservoir capacitor: Mr. Bryant recommends the use of a reservoir capacitor across the converter output, and Mr. Shaw shows the same component in his diagram (Fig. 3) of the 'usual' C-D system. The use of such a capacitor is emphatically not recommended, since it partially nullifies the effects of backswing and almost invariably results in eventual lock-on of the s.c.r.
C_{1} and ignition coil resonant frequency: In the original article I stated that, when the s.c.r. is on, C_{1} and the ignition coil form a resonant circuit with a typical resonant frequency of 1600 Hz . I quoted this figure because it is the 'conventional' one given in most papers on the subject; the precise figure is of negligible importance. The only important point here is that the spark resulting from the C_{1} discharge must be of sufficient duration to ensure proper ignition of the compressed gases in the engine's cylinders. My own investigations in this respect indicate that the minimum acceptable spark times are $20 \mu \mathrm{~s}$; since the spark lasts for roughly one quarter of a resonant cycle, it is evident that the resonant frequency becomes critical only when it exceeds 10 kHz . 'Ideal' resonant frequencies, giving good spark generation with minimum power losses, lay between 1.25 and 5 kHz (this figure is based on published research data).

C_{1} charge time: The measured charge time

 of C_{1} is 1.6 ms . The capacitor charges from two sources. One of these is the converter, which, with its output impedance of $3 \mathrm{k} \Omega$, gives a charge time of 3 ms . The second source is the backswing of the C_{1}-ignition coil resonant circuit. As Mr. Shaw observes, the unit makes use of the backswing or current reversal of the resonant circuit to partially recharge C_{1} via the $\mathrm{D}_{3}-\mathrm{D}_{6}$ network after the s.c.r. has turned off. This backswing gives a considerable reduction intotal C_{1} charging time, gives substantial energy conservation, and ensures reliable turn-off of the s.c.r. Backswing utilization is virtually standard practice in the U.S.A., where many new vehicles are fitted with C-D ignition as standard equipment; it thus seems strange that Mr. Shaw should refer to backswing utilization as a'disadvantage'!

Breakdown of $\boldsymbol{T r}_{3}$: Mr. Shaw's point about the possible breakdown of Tr_{3} is a fair one, although in practice the absolute peak reverse base current will not exceed 80 mA ; this is within the device capability when operated in the zener mode, however, sodamage is unlikely to result. The risk of damage can be eliminated, if required, by wiring a 180 ohm resistor in series with $T r_{3}$ base.

Ignition coil turns ratio: In the original article I implied a 100:1 turns ratio for the ignition coil, since this is the 'conventional' ratio quoted in most articles. The precise ratio is of little importance, since all coils are (in general terms) designed to give an adequate spark voltage (depending on the individual vehicle's compression ratio) with 300 volts on the primary winding.

Spark plug polarization: The centre electrode of a spark plug is hotter than the outer electrode under normal running conditions; if the centre electrode is negatively polarized, thermionic emission takes place and reduces the plug's ionization voltage by (typically) 30%. In conventional ignition systems this is a mainly academic point, since the benefit is not available under cold start conditions (where it would be of most value), and the available spark voltage is so greatly in excess of engine needs under normal running conditions that the 30% reduction is superfluous. The majority of the world's vehicle manufacturers thus ignore the effect, and use positively polarized plugs. The point is even more academic when the C-D ignition system is used, since the secondary voltage is even more in excess of engine needs. No practical benefit will thus result from modifying the circuit to give negative polarization of the plug electrodes.

Effect of a ballast resistor: As Mr. Meadows points out, the majority of modern vehicles have a ballast resistor wired in series with the ignition coil primary. In conventional (I-D) systems, of course, the coil functions both as an energy store (it passes a typical current of 4.5 amps) and as a step-up transformer; in the energy storage mode the ballast resistor has a considerable effect on the available secondary voltage. In the $C-D$ system, on the other hand, the coil is used purely as a step-up pulse transformer, and primary currents are relatively low; the ballast resistor thus has negligible effect on the secondary voltage, and it makes little difference to the circuit if the ballast resistor is wired in series with the ignition coil or not.

Modifying for 6-volt operation: The unit is designed for 12 -volt operation only; it cannot be readily modified for 6 -volt operation, and I can give no further information on this subject.

Velicles with electronic tachometers: Many modern vehicles are fitted with electronic tachometers; in the general case, these devices will operate perfectly well if the vehicle is fitted with the $\mathrm{C}-\mathrm{D}$ ignition system, but it may be necessary to modify the tachometer connections. I regret, however, that I am unable to give any practical information on this subject.

Supply of components: All components used in the C-D system are available from L.S.T. Components, 7 Coptfold Road, Brentwood, Essex.
Radio interference: A great deal of correspondence has appeared in American journals recently concerning the radio interference that is generated by $C-D$ ignition systems. Interference levels are, of course, affected by the positioning of the C-D unit, and by the type of radio aerial used. Naturally, some correspondents claim that the system gives greater interference than I-D ignition, and others claim that it gives less. The general opinion (by four to one), however, seems to be that $\mathrm{C}-\mathrm{D}$ ignition gives a lower interference level than I-D ignition.

R. M. Marston.

In praise of capacitor-discharge ignition

I read with great interest the article by Mr. Marston on capacitor-discharge ignition in the January issue, as I had been trying, with only limited success, to make up a somewhat similar system published elsewhere several years ago. Since I had already most of the components available, I was quickly able to build up two units and have already fitted them to both my cars. I can confirm several of the author's claims regarding improvement of general performance, but in particular cold starting is outstandingly good on both cars, one having four cylinders and the other six cylinders. No doubt all the other improvements will follow.

I may be able to help other readers contemplating making up the ignition unit but who are daunted by the prospect of (a) finding and (b) re-winding a suitable transformer. From my earlier experiments I already had two ready-made transformers, namely the TT $51 / \mathrm{A}$, made by Repanco and which I bought a few months ago from Henry's Radio at 32 s 6 d each. It is not quite capable of 400 V at 12 battery volts, but is nevertheless quite suitable for the purpose. The actual output voltages range from 200 V d.c. at 8 V input up to 350 V at 13.8 V input. On a bench-rig, I could achieve $\frac{1}{2}$ in long sparks from an ordinary ignition coil right down to 5 V input! At a nominal 12 V input, the spark output, which is intense, easily jumps a 1 -in gap to earth. In fact, if one motorizes the make-andbreak under bench conditions, the resulting high-energy sparking causes quite a concentration of ozone in the room.

An alternative thyristor is the RCA type 40379, which is obtainable in small-order quantities from one of the official agents, Roberts Electronics, of Hitchin, price about 17 s . The use of cheap thyristors is not,
unless one is lucky enough to get a good one, worth wasting time and money on. The 40379 has the same voltage ratings as the 3525 recommended by Mr. Marston, but is possibly easier to instail as it is a wirein 'low-profile' version.

I would emphasize that the discharge capacitor(s) must have an adequate voltage rating, 600 V d.c. being the minimum. A 400 V unit will soon fail because of the high-voltage peaks. A final constructional note: all the circuit components, with the exception of the power transistors and the transformer, fit neatly on to a p.c.b. measuring $4 \frac{1}{2} \times 3 \frac{3}{4}$ in.

May I offer my thanks to Mr. Marston for his ingenious and reliable s.c.r. firing circuit, which overcame all my earlier troubles with DISCAP ignition, which, to be viable, must offer at least the same reliability as conventional ignition.
D. E. BOLTON,

Seaford,
Sussex.

New logic symbols?

The article on Logic Symbols in the December issue has prompted me to enclose some new symbols which may be strangers to some of your readers.
E. A. Foulkes,

Billericay,
Essex.
PROPAGATE (Read it aloud): a stream of particles (sheep or cattle) emanating from a single source (or field) and

broadcast in

independent outputs, offering random impedance to traffic.

LYCHGATE: a

number of inputs and
the same number of outputs, except for one which is negated.

COW "AND"
GATE: the output is measured in units of pINTAS.

A digital Christmas tree

I was very interested to see the circuit of the pseudo-random sequence generator which was described in the January issue of the Wireless World (page 35). I recently constructed a similar unit using SGS RT $\mu \mathrm{L}$ elements ($\mu \mathrm{L} 914$ in the oscillator and feedback gate, $\mu \mathrm{L} 923$ in the shift register, and "L900 as the clock pulse driver), and the following points may be of interest to readers.

First, it is possible to increase the number of outputs to the drivers by two by utilizing the signals which are applied to the J_{A} and K_{A} input lines of the shift register. Secondly, the unit will not

function if (on switching on) all the Q outputs are zero. This would be very unusual but it may happen; no matter what one does with the inter-connections between the flip-flops in this type of sequence generator, there will always be one code combination which "locks", and if this is allowed to occur (as it may on switch-on) then the combination firmly refuses to budge. If this occurs, the most satisfactory solution is to employ a circuit to force (at the instant of switchon) one of the flip-flops to generate a logic 1 signal at its Q output terminal. One possible way of achieving this end is shown in the accompanying figure. N. M. MORRIS,

North Staffordshire Polytechnic,
Stoke-on-Trent.

Measuring crossover distortion

Mr. Gordon J. King's letter in the October issue states that it is impossible to measure an amplifier's non-linear distortion at low output levels because of the masking effect of residual noise. This is untrue for the orders of noise level and harmonic content cited in his letter.

The "conventional" method of measurement that he refers to (more commonly known as distortion-factor measurement) is essentially a measurement of total impurity rather than of harmonic content alone, so that it is not the most suitable method for assessment of crossover distortion.

Distortion factor may be defined as the ratio between the r.m.s. sum of the impurity components and the r.m.s. value of the total signal; i.e.,

$$
D F=\frac{\sqrt{N^{2}+D^{2}}}{S}
$$

where S is the total signal voltage, N is the noise voltage, and D is the r.m.s. sum of the harmonic voltage components. Clearly the total harmonic distortion is calculable if the noise level is known. $D / S=\sqrt{D F^{2}-(N / S)^{2}}$. In practice, however, measurement errors become very significant if the noise exceeds the harmonic distortion level by more than about 3 dB .

But, as Mr. King states, most of the noise output is amplified noise originating
in the early stages; so why does he base his argument on measurements made with the gain control set to maximum? Crossover distortion is entirely a function of the output stage, and, provided earlier stages are not overloaded, there is no reason why the tests should be made at maximum gain.

Applying sufficient test signal input to produce the rated output at full gain, and then turning back the volume control to reduce the output power to 10 mW , would reduce the noise together with the signal. The full-power signal-to noise ratio would be retained at the low level, and a reasonably accurate assessment of the nonlinearity could be obtained from a distortion factor measurement. With a signal-tonoise ratio of only $57 \mathrm{~dB}, 0.1 \%$ distortion could easily be measured, provided the necessary calculations were made.

The normal test method in a wellequipped laboratory, however, would be that of harmonic analysis; i.e., measurement of each harmonic separately with a wave analyzer.

A good quality wave analyzer normally has a 3 dB bandwidth less than 10 Hz . This approximates very closely to its noise bandwidth. Since the total noise bandwidth of the amplifier is likely to be at least 30 Hz , the noise power in the measurement channel would be some 35 dB less than the total noise power. Thus, even if the overall signal-to-noise ratio at the measurement level were as low as 40 dB , individual harmonics of less than 0.1% of the fundamental could easily be measured with negligible error from noise interference.

An even more revealing test would be an intermodulation analysis, using a two tone test signal. For it is surely the intermodulation products that offend Mr. King's sensitive ear rather than the harmonics of 20 kHz , which he mentions in his letter.

J. F. Golding,

St. Albans, Herts.

Doctors in industry

In your editorial "Is there a doctor in the house?" you refer to a Royal Society Report entitled "Postgraduate Training in the United Kingdom, Engineering and Technology". Your readers may not be aware that this is a somewhat controversial report prepared by a group of four
professors, all of whom are at one London college.

The important practical questions are the prospects for an engineer with a doctorate and the need of industry for such people, which are mentioned in your penultimate paragraph. It is clear that industry does not at present feel a real need for many Ph.Ds, but there are two factors which must be considered. The first is that a generation ago considerable sections of the engineering industry would not tolerate the employment of a university graduate, and the real needs of industry for qualified personnel are not always the same as its immediate wants. The second factor is that the purpose of taking a higher degree should be an improvement in general capability plus training in research methods (the latter is specifically quoted by the Science Research Council as the reason for giving research studentships). It is commonly thought that the effect of taking a higher degree is to narrow a man's interest to the particular specialized topic which forms the subject of his thesis. This ought not to be so, but there is little doubt that it does sometimes happen. We must all continue to be on our guard against it.
D. A. BELL

Professor of Electronic Engineering, The University of Hull.

Relay contact symbols

In his article on Graphical Symbols in the February issue, Mr. Amos does not comment on the fact that in his Figs. 8 and 9 the relay contacts are drawn differently from those presented in BS 3939. The British Standard (which states that it coincides with I.E.C. on this point) shows the make and the break contacts both as solid triangles. Mr. Amos shows a solid triangle for the break contact and a hollow triangle for the make contact.
The difference is of no importance if contacts are drawn only for the case where all relay coils are unenergized; there may be redundancy but there is no conflict with the British Standard. However, it is often useful when analysing a system to draw the circuit for various particular states, such as standby, forward run, etc. Here it is of great value to have this convention of a hollow triangle for the make contact so as to be able to show clearly which contacts are in the operated condition.

This is a well-known convention of long standing which for some reason has been ignored in the current edition of BS 3939. To preserve uniformity it should be defined and given in the Standard as a permissible alternative.
James M. Little,
Welwyn Garden City, Herts.

The author replies:

J am grateful to Mr . Little for pointing out my oversight. To agree with BS 3939 , make and break contacts should be shown as solid
triangles in Figs. 8 and 9. As Mr. Little implies there is, in general, no need to have different symbols for make and break contacts because the distinction is normally indicated: (a) by the position of the contact symbol relevant to that of the lead to the moving spring, and (b) by the standard convention that moving springs are drawn in the positions they take up when relay coils are unenergized, i.e. make contacts are shown open and break contacts closed.

On the infrequent occasions when make contacts must be shown made and break contacts open, hollow and solid triangles could be used as Mr. Little suggests. B.S.I. considered this suggestion, but decided in the Guiding Principles to BS 3939, due for publication shortly, to recommend that all contacts should be represented by solid triangles and that on any diagram where contact symbols do not follow the normal convention, attention should be drawn to this, e.g. by a note. This decision was adopted because of the tendency in reproduction of diagrams from microfilm for hollow triangles to become solid and, in other reprographic processes, for solid triangles to become hollow.
S. W. AmOS.

Simple linear a.c. voltmeter
 On page 578 of your December 1969

 issue there appears an article by G. W. Short entitled "Simple Linear A.C. Voltmeter". This describes the connection of a rectifier-type meter between the collector and base of a transistor (via a d.c. blocking capacitor) for the purpose of attaining an almost linear meter scale calibration.This proposal was made in 1962 by me and is the subject of British Patent No. 1020154 granted to Creed and Co. Ltd. (now ITT Creed) on 27th June 1963. The basis of the proposal is that, if the transistor has a high enough current gain, the current in the feedback path from collector to base is substantially equal to the current flowing from the input terminal to the base, irrespective of the resistance of the feedback path, within the constraint that the d.c. supply voltage is sufficient to permit the collector potential to rise high enough to drive the current through the feedback path.

Since the current in the feedback path, for a given input current, is independent of the resistance of this path, the path can include elements whose resistance depends on current without any effect on the current value. Hence, in the arrangement described, in which the input path is of virtually constant resistance, the current in the feedback path (and thus in the meter) will be proportional at all instants to the potential applied to the input terminal, despite the concomitant variations in rectifier resistance.

There are two minor differences between the diagram in Patent No. 1020154 and that shown in the article. These concern the point of connection of the basebias resistor (to d.c. supply, or to collector,
respectively) and the point of connection of the base-end of the feedback path (to $R_{\text {in }} / C_{1}$ junction, or to base, respectively). These differences have no significant effect on the principle of operation or on practical performance.

The circuit values quoted in the Specification, merely as an example for a 1 mA f.s.d. movement, were: $R_{\text {in }} 10 \mathrm{k} \Omega ; C_{1} 8 \mu \mathrm{~F}$; $R_{1} 100 \mathrm{k} \Omega$ (chosen to give Class A conditions); $\mathrm{R}_{2} 10 \mathrm{k} \Omega ; C_{2} 25 \mu \mathrm{~F}$; transistor: current gain not less than 30; meter diodes: OC81; battery: 9 volts, 5 mA drain; meter: 1 mA f.s.d.

In practical tests, this circuit provided a 10 -volt f.s.d. instrument with an almost undiscernible deviation from linearity, usable also for any multiple of 10 volts without change of scale. By change of resistor $R_{\text {in }}$ a l-volt f.s.d. is attained in which the non-linearity is less than that normally associated with a 40 -volt f.s.d. rectifier voltmeter. Further, by use of a lower value of $R_{\text {in }}$ a 100 mV f.s.d. is attained in which the non-linearity is only about as much as is normally associated with a 5 -volt f.s.d. rectifier voltmeter.

The upper frequency limit of use is set by the transistor and diodes and stray capacitances, while the lower frequency limit is set by the capacitors. It is interesting to note that to a significant extent the increasing impedance presented by C_{2} as the frequency drops is catered for in the same way as variation in diode resistance change. If electrolytic capacitors are used the leakage of C_{1} must be watched, particularly if the alternating potential to be measured is riding on a d.c. component. It will be necessary to ensure that such a d.c. component polarizes C_{1} in the permitted sense, or that C_{1} is of the reversible type. Frederick P. Mason,

ITTCreed,

Burgess Hill, Sussex.

The author replies:

I wasn't aware of Mr. Mason's patent: all honour to him for thinking of it first. Hedoes well to point out the danger of depolarizing C_{1}. This component is to be regarded, in my voltmeter, as a device for keeping the right d.c. conditions at the base of the transistor rather than a d.c. block to external potentials. For many applications an extra capacitor will have to be added temporarily, or the design modified by substituting a non-polarized capacitor of adequate working voltage. The value of R_{2} in Mr. Mason's circuit should, presumably, be $1 \mathrm{k} \Omega$, since $10 \mathrm{k} \Omega$ would absorb too much voltage. Placing C_{1} inside the feedback path has the advantage of extending the l.f. response. Connecting R_{1} between base and collector makes it unnecessary to adjust the value, if a close-tolerance transistor is used and some slight deviation from optimum d.c. conditions is permissible. C_{2} must not present too high an impedance at the lowest frequency of interest, because although the feedback will maintain the response to l.f. signals the risk of peak
clipping increases as the impedance of the feedback path increases.

Finally, may I correct a printer's error in the design data in my article? Step (4) should read: $R_{2}=\left(V_{C C}-\right.$ $\left.V_{C E}\right)_{C}$. G. W. Short.

The engineer in State and private enterprise

Contrary to what Mr. Clarke suggests in his letter in the February issue, I have not found that whether a person is an engineer or a technician has much to do with his quality as a person or as an employee. I have known many chartered engineers who do not appear to be able "to apply their training to the solution of any engineering problem", and are only moderately expert in a few special techniques. In contrast to this, I find that the well-trained technician with a broad-based education is often extremely adaptable, and is able to use his training to approach new technical problems with a confidence and lack of conservatism that would be a credit to any chartered engineer.

Perhaps some chartered engineers are "loyal", "outspoken" and "obstinate". The choice of words is curious. I would prefer to hear a good technician, or an engineer for that matter, described as dedicated, reliable or dependable in his work, and tenacious and resourceful in solving problems in his work. I would expect that he would go about his business quietly, and that his standard of social and ethical conduct would be no worse than that of any other section of the community. What differentiates the engineer from the technician is the "nature"' of his employment and training, and not the extent to which he is a specialist. It is a serious fault in the order of society that academic achievement continues to be confused with personal quality and high moral calibre. Thus the question of social and ethical standards is irrelevant and ought not to arise.

The question of specialization, on the other hand, is important, as it bears heavily on the kind of training needed by engineers and technicians alike. Insofar as bona-fide technician courses are concerned, I can assure Mr. Clarke that specialist techniques occupy only about 15% of the total time in a five-year part-time course. I suspect that this is a smaller proportion than in a typical engineers' training course.

If more lecturers in technician courses would put away their engineering notes and if more prominent senior technicians with vision and insight into a technician's training needs were consulted at the syllabus writing stage, then I see no reason why future technicians should not be every bit as broad-based as the best of engineers. Perhaps it is not too much to hope that this is what Dr. Hazelgrave's committee had in mind.

A. J. Sargent,

Carshalton,
Surrey.

Swings and Roundabouts

A bottoms up (meaning fundamental) view of the LC circuit

by Thomas Roddam

We have seen in a previous article ("Time", February 1970 issue) that an examination of the way in which current flows in a circuit consisting of one resistor and either one capacitor or one inductor leads us toassimple equation

$$
\frac{d y}{d t}=-\frac{1}{\tau} \cdot y
$$

This is the defining equation of a function which turns out to be the exponential function and which, we may as well note now, is defined for all values of the constant τ.

At this stage of our studies we need to keep things simple. The object is, in case you have forgotten, to look fairly closely at some of the concepts we take for granted. We can stick to only two circuit elements by considering a circuit containing only inductance and capacitance. It is not tremendously important how we get charge moving in this circuit, but the arrangement of Fig. 1 will, I hope, lead us to a differential equation rather than an integral equation.

The current source, a high voltage and high resistance, has set up a current $I=I_{0}$ through the inductor before we start. The contact S_{2} is closed, so that there is no charge on the capacitor. And now, at time $t=0$, we open S_{2} and close S_{1}, leaving the $L C$ circuit isolated. The current in the inductor continues to flow : nothing has yet shown cause why it should not. Thus current flows into the capacitor. Now:

$$
\frac{d V}{d t}=\frac{I}{C}
$$

The appearance of V is a reason why I shouid change, and since V will be growing in the sense which opposes the current

$$
\frac{d I}{d t}=-\frac{V}{L}
$$

We differentiate this to get

$$
\frac{d^{2} I}{d t^{2}}=-\frac{1}{L} \cdot \frac{d V}{d t}=-\frac{1}{L C} \cdot I
$$

If we had chosen a different approach, the integral equation approach, we should have needed to take the boundary conditions in at this stage. They are special to the starting situation and much better forgotien for the moment. We can write this equation conveniently as

$$
\frac{d^{2} I}{d t^{2}}=-K^{2} I .
$$

Now we start guessing, or, as it is expressed more elegantly, we use the heuristic method of solution. With L and R we get an exponential function: with C and R we get an exponential function: with L and C, if there is any justice we should get an exponential function, or, perhaps, a pair of them. So we write*:

$$
\begin{aligned}
I & =\exp m t \\
d I / d t & =m \exp m t \\
d^{2} I / d t^{2} & =m^{2} \exp m t
\end{aligned}
$$

giving

Comparison shows that this works, provided that

$$
m^{2}=-K^{2}
$$

Don't make a dash for freedom by writing $m=j K$, where j is the well-known square root of -1 . (If you use i you are a mathematician and have no business here.) $m=-j K$ is also satisfactory. We keep both forms, since both are good, writing

$$
I=\exp (+j K t)+\exp (-j K t)
$$

There are some constants to be slipped in, the constants which disappear when you differentiate. These represent, in plain language, the range of the meter used for monitoring I and the time interval between operating the switches and starting the clock. We shall be just as much in need of extra constants if we write:

$$
I=\frac{1}{2}[\exp (j K t)+\exp (-j K t)]
$$

Let us substitute $\zeta=K t$. Then we have an expression

$$
\frac{1}{2}[\exp j \zeta+\exp -j \zeta]
$$

of which I find Hardy (Pure Mathematics, p. 415) saying: "We are therefore naturally led to adopt the formulae (1) (that is this expression) as the definition of $\cos \zeta$ for all values of ζ." This means that ζ may be real

- It is easier to type $\exp (y)$ than e^{y}, and in printing it means that y, the bit which really matters, is in type which you can read.

Fig. I. At $t=0, S_{1}$ is closed and S_{2} opened.
or complex. So now

$$
I=\cos (K t)=\cos \left[t /(L C)^{\frac{1}{2}}\right] .
$$

The conclusion we reach is that the cosine function is the function which is produced by an $L C$ circuit swinging away free. There is, however, an important extra feature which is left out in the beginners' account of this circuit. We have kept matters just formal enough to include the possibility of K being a complex number.

We saw that $C R$ is a time, and L / R is a time, so quite clearly $(C R . L / R)^{\frac{1}{2}}$ is a time, too. The final form of our current equation is therefore

$$
I=\cos (t / \tau)
$$

and we have, for the $L C$ circuit, a time constant $\tau=(L C)^{\frac{1}{2}}$.

At this point I feel some sympathy for the young man who once explained to me why he could not design the aerial system I wanted. He agreed that it was described by certain mathematical functions, but, he said hotly: "There's no function theory, only tables." It is not necessary to go through the theory, but it can be shown that for this general function $\cos \zeta$ the ordinary equations of elementary trigonometry still hold. Cheating slightly, because there is an exponential definition,

$$
\sin \zeta=-\cos (\zeta+\pi / 2)
$$

and $\quad \cos \zeta=+\sin (\zeta+\pi / 2)$
so that $\cos (\zeta+\pi)=-\cos \zeta$
and $\quad \cos (\zeta+2 \pi)=\cos \zeta$
With this in mind, we write $1 / \tau=f$, and

$$
2 \pi f=\omega \quad t^{\prime}=2 \pi t
$$

Finally, then, the old familiar

$$
I=\cos \left(\omega t^{\prime}\right)
$$

Looking back, we have an equation

$$
V=-L d I / d t
$$

and making use of what we have shown, and the familiar ordinary equations we get

$$
V=L \sin \left(\omega t^{\prime}\right) .
$$

Again a familiar result : we are not worrying about scale constants, and we can see that for shape

$$
\begin{aligned}
I_{t^{\prime}}=\cos \left(\omega t^{\prime}\right) & =\sin \left(\omega t^{\prime}+\pi / 2\right) \\
& =V \sin \left[\omega\left(t^{\prime}+\pi / 2 \omega\right)\right] \\
& =V_{\left(t^{\prime}+\pi / 2 \omega\right)}
\end{aligned}
$$

and so on.
V reaches a maximum when I is zero: I is a maximum when V is zero, and since energy must be conserved (for sines and cosines go on for ever)

$$
L I_{\max }=C V_{\max }
$$

Also, from the equation

$$
\begin{aligned}
\cos ^{2} x+\sin ^{2} x & =1 \\
L I^{2}+C V^{2} & =\text { const. }
\end{aligned}
$$

There are several ways in which the practical engineer must concern himself with the facts revealed by this analysis. First of all, what is happening is that energy is stored by the inductor and the capacitor in the way that one holds a hot chestnut, tossing it from hand to hand. We get a similar situation in some active $R C$ systems, where we have two stores, here both capacitors, with an active element to restore the energy lost in the shifting process. This turn and turn about arrangement, in one sense, gives the "tuned circuit" behaviour. There is, however, another way of considering active circuits which we must leave until later.

A second "practical" point is this: for about one-quarter of the characteristic time most of the energy is stored in element A; for the next one-quarter in element B, and then back again. This energy may be considerable, but I am not sure that we know enough yet to do the calculations.

Perhaps the best next step is to find a new function. We have the exponential and the cosine, produced by using two elements at a time. Now let us take three elements, in the circuit of Fig. 2. As before, we get a current I_{0} flowing before we start, and then close S_{1} and open S_{2}. As before,

$$
\frac{d V}{d t}=\frac{l}{C}
$$

Now, however, the voltage drop across the resistor will help to reduce the current through the circuit, and so, of course, will any voltage across the capacitor.

$$
L \frac{d I}{d t}=-R I-V
$$

Thus

$$
V=-L \frac{d I}{d t}-R I
$$

and

$$
\frac{d V}{d t}=-L \frac{d^{2} I}{d t^{2}}-R \frac{d I}{d t}
$$

giving the equation:

$$
\frac{d^{2} I}{d t^{2}}+\frac{R}{L} \frac{d I}{d t}+\frac{I}{L C}=0
$$

Guessing $I=\exp m t$ we get

$$
m^{2}+\frac{R}{L} m+\frac{1}{L C}=0
$$

as the defining equation for m. The solution is, of course

$$
m=\frac{1}{2}\left[-\frac{R}{L} \pm \sqrt{\frac{R^{2}}{L^{2}}-\frac{4}{L C}}\right]
$$

There are three possible conditions. If R^{2} / L^{2} is greater than $4 / L C$, or, rearranging things, $L / C<R^{2} / 4$, the term under the square root is positive, and so the square root has no j in it. If $L / C=R^{2} / 4$ the two roots run together, a slightly awkward situation. If $L / C>R^{2} / 4$ we have our j term. Let us move the $\frac{1}{2}$ and write :

Fig. 2. The circuit of Fig. 1, with resistance added.

$$
m=-\frac{R}{2 L} \pm j\left[\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}\right]^{ \pm}
$$

Now let us take

$$
\left[\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}\right]^{\frac{1}{2}}=\omega
$$

and then twist things around again:

$$
m= \pm j\left[\omega-j \frac{R}{2 L}\right]
$$

And so $I=\cos (\omega \pm j R / 2 L) t$, excluding integration constants. As you see, we have progressed from the real circular function, the ordinary cosine, to the general circular function, the cosine of a complex number. The very practical man might say that as he cannot produce ideal inductors and capacitors, this waveform is the one he will use. It is, of course, a damped cosine wave. Before you reject this view, remember just what a spark transmitter produces: that's where our business began.

The more familiar form for the response of the $R L C$ circuit is the form $I=\varepsilon^{-\alpha t} \cos \omega t$, a combination of the two functions we have already encountered. We find that as we add more inductors, capacitors and resistors we do not introduce new functions, but more of the same kind. In the world of passive networks it really is true that electricity comes in sine waves: this is a fundamental dogma of the electric motor designer, who bends only to admit that European and American sine waves do have different frequencies. Notice, though that he designs for sine waves because that is what comes down the wire : what I have tried to show here is that our circuit elements make it natural for us to send sine waves down the wire.

Now we can safely write, for our energy source,

$$
V=V_{0} \sin \omega t .
$$

This is a reasonable sort of basic signal to use, the language of the country. If we apply this signal to an inductor, we have

$$
L \frac{d I}{d t}=V=V_{0} \sin \omega t
$$

and

$$
I=-\frac{V_{0}}{\omega L} \cos \omega t=\frac{V}{\omega L} \sin \left(\omega t-\frac{\pi}{2}\right)
$$

Observe how unwieldy this result is. There are two ways of making life a little easier. One is to use the Argand diagram and get the familiar $j \omega$ in by that route. The other is more formal, but does strengthen the foundations. It is the second path which we shall take.

When we took Hardy's definition of the
cosine function 1 did not include his definition of $\sin \zeta$. In fact,

$$
\cos \zeta=\frac{1}{2}(\exp (j \zeta)-\exp (-j \zeta))
$$

and

$$
\sin \zeta=-\frac{1}{2} j(\exp (j \zeta)-\exp (-j \zeta))
$$

and

$$
\cos \zeta+j \sin \zeta=\exp (j \zeta)
$$

The basic signal which we use to test our circuit is, reasonably, $V=V_{0} \sin \omega t$, or equally, reasonably $V=V_{0} \cos \omega t$. If we apply a combination of these two signals together, $V=V_{0}(\cos \omega t+j \sin \omega t)$ we can write for our inductor

$$
\begin{aligned}
L \frac{d I}{d t} & =V_{0} \exp (j \omega t) \\
I & =\frac{V_{0}}{j \omega L} \cdot \exp (j \omega t)=\frac{V}{j \omega L}
\end{aligned}
$$

This, as you would expect, is the familiar general form of Ohm's Law. We could, in the same way, arrive at $V / I=1 / j \omega C$. There is only the worrying feeling that somehow, in adopting the $\cos +j \sin$ approach there is a slight swindle. What is the hidden catch?

The astute reader will have spotted the catch. The basic signal we have used for mathematical purposes is a fiction. What we actually see on the oscilloscope is $\cos \omega t$ or $\sin \omega t$. Plumping for cos, what we see is

$$
\text { Real Part of } \exp (j \omega t),
$$

and so, in fact

$$
\begin{aligned}
I & =\frac{V_{0}}{\omega L} \times \text { R.P. of }\left(\frac{\exp j \omega t}{j}\right) \\
& =\frac{V_{0}}{\omega L} \times \text { R.P. of }\left(\sin \omega t+\frac{1}{j} \cos \omega t\right) \\
& =\frac{V_{0}}{\omega L} \cdot \sin \omega t
\end{aligned}
$$

That j in $j \omega L$ is not really there; you only imagined it. However, this is not a lot of airy-fairy nonsense. There are some pretty real implications. As a simple example, we have seen that the mathematics of the $L C$ circuit throws up a time constant $(L C)^{\frac{1}{2}}$, which we write as $1 / \omega$. But in fact the solution is not just one angular frequency ω, but two, $+\omega$ and $-\omega$. In many modulator problems we find that if we forget the $-\omega$ term we finish up with some unwanted products in the working frequency band. These products arise from the simple fact that
$\cos (-\omega t)$ looks just the same as $\cos (\omega t)$ to the load.

The choice of $\exp (j \omega t)$ is, in a way, a simplification, a throwing away of one of the frequencies, $-\omega$, which the natural circuit demands. The price paid for this simplification is that at the end of the day we must pay the bill by taking the real part of the solution. The important thing is that you do not need to pay until the end of the day, and very often you do not realize that you have paid at all.

Let us consider the circuit made up of resistance and inductance in series. Normally we just write down the impedance

$$
Z=R+j \omega L
$$

If we force a current I through this, we get a voltage $V=Z I$ across the terminals. Now,
if we write R.P. on the slate, and

$$
\begin{aligned}
I= & I_{0}(\cos \omega t+j \sin \omega t)=I_{0} \exp (j \omega t) \\
V= & I_{0}[R \cos \omega t+j R \sin \omega t \\
& \quad+j \omega L \cos \omega t-\omega L \sin \omega t] \\
= & I_{0}[R \cos \omega t-\omega L \sin \omega t \\
& \quad+j(R \sin \omega t+\omega L \cos \omega t)]
\end{aligned}
$$

Here we pay the real part bill and say
$V=I_{0}(R \cos \omega t-\omega L \sin \omega t)$

$$
\begin{aligned}
& =I_{0}\left(R^{2}+\omega^{2} L^{2}\right)^{\frac{1}{2}} \times \\
& {\left[\frac{R}{\left(R^{2}+\omega^{2} L^{2}\right)^{\frac{1}{2}}} \cos \omega t-\frac{\omega L}{\left(R^{2}+\omega^{2} L^{2}\right)^{\frac{1}{2}}} \cdot \sin \omega t\right.} \\
& V=I_{0} \cdot\left(R^{2}+\omega^{2} L^{2}\right)^{\frac{1}{2}} \cdot \cos (\omega t+\phi)
\end{aligned}
$$

where

$$
\cos \phi=R /\left(R^{2}+\omega^{2} L^{2}\right)^{\frac{1}{2}}
$$

We need not have put in this real part step, if we had started with

$$
I=I_{0}(\exp (j \omega t)+\exp (-j \omega t))
$$

Then the terms $\cos \omega t$ and $\omega \sin \omega t$ would have remained, but

```
\(\sin (\omega t)+\sin (-\omega t)\)
and \(\quad \omega \cos \omega t+(-\omega \cos (-\omega t))\)
```

both vanish, eliminating the imaginary part automatically. The use of the real part operation simply enables us to cut our expressions down in size while we are manipulating them.

At this stage we can summarize our results so far as revealing to us the idea of a characteristic time, or time constant, for $R L$ or $R C$ circuits, a characteristic frequency, $1 / \sqrt{ } L C$, for LC circuits, which is actually a frequency pair, $\pm \omega$. For the $R L C$ circuit we have a rather more complicated looking characteristic frequency pair, $\pm(\omega-j R / 2 L)$. The rather special behaviour of the pure $L C$ circuit has the practical advantage that since it goes on and on it is very convenient for circuit testing. If we choose to make use of this special case we get some rather simple concepts, like reactance, with nice simple expressions like $R+j \omega L$. We evolve procedures which enable us to dodge, most of the time, the debt we owe for this simplicity. Fourier analysis and the superposition theorem justify us, in general terms, but philosophically it is a bit thin. A single pure tone is meaningless. Its message is zero. One hundred such tones together: one hundred times nowt, in my part of the world, is still nowt. One might say that it is the small print well along in the Fourier series which really carries the information which matters.
I am labouring this point because I feel that the experimental and theoretical simplicity of the sine-wave analysis tend to turn it into a closed technique. You get to this point, you can bash away with the j ω terms and watch the pretty sine waves on the scope, and there it all is. All there is to stop you is the sheer labour of handling the long expressions you get with a dozen or so mixed circuit elements. If you regard it as a closed technique you need a lot of mental energy to break out of the circle. Your elders and betters knew this and made "Don't fence me in" their theme song.

Implicitly we have been assuming that R was the resistance of an ordinary passive resistor. When this is so, the closed circle of sine-wave users is justified, because with any
other waveform, or almost any other, the transientat $t=0$, the time weswitch on, may dominate the behaviour until the decaying drive is too small to be useful for measurement. If, however, we make R a negative quantity, by tricks with active elements, we get a signal which grows exponentially out of the inherent circuit noise. Behaviour under these conditions may be studied more casily by using the complex frequency concept.

In the end, however, the real point is that the complex frequency concept is just the beginning of a whole field of circuit studies. It is to this subject that I shall turn in another article

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

Mar. 2-5
Alexandra Palace
Physics Exhlbition
(I.P.P.S., 47 Belgrave Sq, London S.W.1)

Mar. 10-12
Camden Town Hall
Sound '70 International
(Association of Public Address Engineers,
394 Northolt Rd., South Harrow, Middx.)
Mar. 17-19 Savoy Place
Electrical Methods of Machining,
Forming and Coating
(I.E.E., Savoy Pl., London W.C.2)

Test Record for Audio Systems

Stereo test record HFS69, available from the Haymarket Publishing Group, enables distinctions to be made between various grades of pickups and loudspeakers, and also provides a means of determining the side-thrust adjustment and minimum tracking weight of a pickup. There are ten tracks. The first side has five listening tests including white noise and applause, and the second side has more advanced tests some for use with an oscilloscope. Price 30s plus 2s 6d postage. Haymarket Publishing Group, 9 Harrow Road, London W.2.

"Wireless World" Index

The Index to Volume 75 (January-December 1969) is now available price 2 s 6 d (postage 4 d). Cloth binding cases with index cost 11s 6d, including postage and packing. Our publishers will undertake the binding of readers' issues, the cost being 40s per volume including binding case, index and return postage. Copies should be sent to IPC Business Press Lid, Binding Department, c/o 4 lliffe Yard, London S.E.17, with a note of the sender's name and address. A separate note confirming despatch and enclosing the remittance, should be sent to the Binding Department, Dorset House, Stamford Street, London S.E. 1.

BRIGHTON

Mar. 2-6
Exhibition Halls
Engineering Design Show
(Business Conferences \& Exhibitions,
Mercury House, Waterloo Rd., London S.E.1)

CAMBRIDGE

Mar. 19.22
Churchill College
Television Tomorrow
(Royal Television Society, 166 Shaftesbury
Ave., London W.C.2)

CRANFIELD

Mar. 23-26 College of Aeronautics
Aerospace Instrumentation Symposium
(N. O. Matuhews, Dept. of Flight, College of Aeronautics, Cranfield, Beds.)

EDINBURGH
Mar. 17-20
The University
Management and Economics in the
Electronics Industry
(D. J. T. Williams, Ferranti Lid., Ferry Rd., Edinburgh 5)

OVERSEAS

Mar. 5-10
Paris
Audio Festival
(Fed. Nat. des Ind. Electroniques,
16 rue de Presles, Paris 15)
Mạr. 11-13 Zurich
Digital Processing of Analogue Signals
(E. H. Rothauser, I.B.M. Research Lab., Zurich)

Mar. 11-13
Washington
Scintillation and Semiconductor
Counter Symposium
(Louis Costrell, Radiation Physics Inst. Section, N.B.S., Washington, D.C. 20234)

Mar. 17-19
Freiburg
Field Effect Transistors
(H. H. Burghoff, Stresemann Allee 21, 6 Frankfur//Main)

Mar. 18-21
Nairobi
Electro 70 Show
(Electronics Institution of East Africa,
P.O. Box 9690 , Nairobi, Kenya)

Mar. 23-26
New York
I.E.E.E. Convention \& Exhibition
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

Ferrograph F307 stereo amplifierthe heart of great $\mathrm{Hi}-\mathrm{Fi}$
 F307 is an integrated Stereo Amplifier, built in a tradition of excellence and extremely versatile

 in its capabilities.It presents a clean uncluttered appearance, conforming very closely with the Series Seven Recorder in this regard. Only its main controls appear on the panel-all subsidiary controls being housed beneath a hinged extruded aluminium flap.

F307 delivers power output of 20 watts RMS per channel into a load of 8 ohms and has a total harmonic distortion of less than 0.25% at 1 kHz at all levels up to its rated output.

Your Ferrograph dealer will be pleased to demonstrate F307 to you. When planning your Hi -Fi system, this is an Amplifier to which the most serious consideration must be given and its Manual makes informative and compelling reading.

FERROGRAPH

The Ferrograph Co. Ltd.
Mercury House, 195 Knightsbridge, London, S.W.7. Telephone: 01-589 4485

The light heavweight champion wins on points

Solartron's light heavyweight champion, the CD1642, is a natural-born winner. Look at its advantages.
Fully transistorised portability, running off every power source you use, with an optional rechargeable battery attachment too. And you lose nothing in full-size lab. 'scope performance. It has $10 \mathrm{mV} / \mathrm{cm}$ sensitivity at 15 MHz , triggering to 25 MHz , dual trace, D.C. -15 MHz , brilliantly crisp displays and exceptional focus right to the edges. And to top it off, we AGREE test every machine for a week in the toughest conditions to assure top performance.
So stop worrying about losing performance in the field. The CD1642 gets a load off your mind as well as your arm. Post the magazine's reply-paid card and we'll send you our data sheet of full details.

GOLAFITRON Schlumberger

The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433

Simple Active Filters

Design procedure

by M. Bronzite, B.Sc.

In recent years there has been much work on low-frequency active filters using twintee, op-amps, n.i.cs, and gyrators. For all of these, the calculation of the necessary frequency selective components can be tedious, and some knowledge of filter theory is desirable in order to match the chosen type of filter to the particular requirement. It is, perhaps, time to re-examine a simpler structure using unity-gain amplifiers ${ }^{1.2}$, which lends itself to rapid design without the use of precision components, yet is stable and may be readily "bread-boarded".

This design of a low- or high-pass filter will rely on evaluating three dependent variables, any two of which may be used to determine the third: (1) the pass-band ripple ($m \mathrm{~dB}$), which constitutes the variation in output over the whole of the passband with a constant amplitude input; (2) the reject-band attenuation, one useful measure of this being the attenuation one octave away from the pass-band limit; and (3) the order of the filter (N) which is the number of filter elements required to achieve a given performance. Given, say, (1) and (2), this article will describe how the rest of the design may be accomplished.

The filter itself consists of simple units which are added together to provide the required complexity, and these units are
shown in Fig. I along with the pertinent design equations. With types (a) and (d) the first set of components ($R_{1} C_{1}$) may be designed independently of the second set ($R_{2} C_{2}$), whereas in types (b) and (e) the series elements are equal in value, giving an advantage of one less active element being used at the cost of reduced component flexibility. Due to the amplifier isolation, each unit can be considered without regard to the requirements of other units and can even be separated from them by intervening linear circuitry without degrading the overall performance. In many cases, a value of C is chosen and the value of R is calculated on the grounds of restricted capacitor availability, and this tends to favour the use of units (a) and (e) for low- and high-pass filters respectively, since (b) requires two capacitor values and (d) requires two amplifiers. The unity gain amplifiers can consist of any available active element with a gain of 1 ± 0.05 assuming the filter performance is not required to be too stringent. (Naturally, a very "tight" specification would demand both precision components and an accurate amplifier). Thus op-amps and emitter followers are of immediate application but some care must be taken with the design of source and cathode followers since their transmission
characteristics can be significantly less than 0.95 . The drive capability will depend on the source and load presented to the amplifier, i.e., using unit (d) from Fig. 1, if R_{2} is much larger than R_{1}, then a Darlington pair would be used for the second amplifier, but if R_{2} is very roughly equal to or smailer than R_{1} then a simple emitter follower is suitable.
Now a filter pass-band limit may be defined as either the frequency at which the output has diminished by $m \mathrm{~dB}\left(f_{m}\right)$ or the frequency where it has diminished by 3 dB ($f_{3 \mathrm{~dB}}$) and obviously the attenuation in the first octave after this point will depend on which criterion is chosen. In the latter case, the filter performance is related to $\int_{3 \mathrm{~dB}}$ and it is necessary to generate the equivalent value of f_{m} in order to apply the design equations given in Fig. 1. This is done by means of a coefficient β which is given in Table 3 for various values of ripple and order of filter, and the appropriate conversion equations are appended to the table. The calculation of β itself is derived from ref. 3.
The only matter outstanding to finish the design is the value of T_{n} and this is given in Tables 1 and 2, with an outline of its derivation given in the appendix. The tables contain nine groups of figures of which the first eight generate a Chebychev response ($m \neq 0$) and the last one generates a Butterworth response $(m=0$ and $f_{m}=f_{3 \mathrm{~dB}}$). The figures quoted in the attenuation column cater for the two different cases discussed above, and it would seem practical to use the first when m is large and the second when m is small. In any case, these attenuation figures were extrapolated from graphical sources ${ }^{1.4 .5}$ and can only be considered as approximate with a maximum error of $\pm 5 \%$ on the quoted figure. While on the subject of attenuation it should be recalled as a rough rule of thumb that all the filters have a roll-off of $6 \mathrm{NdB} /$ octave after the first octave. Thus a five element 1-dB low-pass filter with a pass-band limit of 1 kHz will be 1 dB down at $1 \mathrm{kHz}, 45 \mathrm{~dB}$ down at 2 kHz (from Table 1), 75 dB down

$R C=\frac{T}{f_{m}}$

Fig. i. Block configurations.
at $4 \mathrm{kHz}(45+6 \times 5)$, and so on. For more accurate figures, refs. 1 and 4 may be consulted, although the values given in the tables will be found adequate in the majority of case.

Having covered the process of design, two examples will be given to illustrate the approach. The first concerns a low-pass filter with a maximum permitted in-band variation of $2 \%, f_{3 \mathrm{~dB}}=4.5 \mathrm{kHz}$, and the first octave attenuation must be in excess of 50 dB . Now 2% is approximately 0.2 dB so $m=0.1$. Examination of Table 1 gives a value of $N=6$ for 52 dB of attenuation. Moving to Table 3, for the given values of m and N it is found that $\beta=1.093$, and this in turn gives $f_{m}=4 \cdot 5 / 1.093=4.12 \mathrm{kHz}$. Returning to Table 1, $T_{1}=0.69383$ for the first Double . . and the rest of the design is straightforward, having agreed on which unit to use. The second example will be worked out in full and consists of a highpass filter with a pass-band ripple of less than $10 \%, f_{m}=100 \mathrm{~Hz}$, and 50 Hz rejection must be better than 35 dB . Selecting $m=0.5(6 \%)$ gives the required order as $N=5$ with 42 dB attenuation. It was arbitarily decided to use a $0.1-\mu \mathrm{F}$ capacitor throughout, and the filter would consist of two (e) units with one (f) unit. Thus, with T_{n} selected from Table 2, for the first unit, $\mathrm{D}_{1}, R_{1}=0.0356 /\left(2 \times 0.1 \times 10^{-6} \times 100\right)=$ $1.78 \mathrm{k} \Omega, R_{2}=2 \times 0.736 /\left(0.1 \times 10^{-6} \times 100\right)$ $=147.2 \mathrm{k} \Omega$; for $\mathrm{D}_{2}, R_{1}=0.0933 /(2 \times 0.1$ $\left.\times 10^{-6} \times 100\right)=4.66 \mathrm{k} \Omega, R_{2}=2 \times 0.129 /$ $\left(0.1 \times 10^{-6} \times 100\right)=25.8 \mathrm{k} \Omega$; and for the (f) unit $R=0.0577 /\left(0.1 \times 10^{-6} \times 100\right)=$ $5.77 \mathrm{k} \Omega$. The final circuit is shown in Fig. 2 where the resistors are 5% and the capacitors are 10% tolerance. As this is a high-pass filter it is a good practice to decouple the h.t. lines, although it is hardly ever necessary for the low-pass circuits. The performance is shown in Fig. 3, and owing to the use of a relatively high distortion input signal there was some 2 nd harmonic breakthrough below 30 dB which reduced the effective accuracy of measurement.

With the design established, some of the limitations of the filter will now be discussed and these should be borne in mind when considering a given filter for a given application. In the first place, no mention has been made of the pulse response of these filters and in general it can be said that the higher the ripple, and the higher the order, the more the overshoot on the output to a square-wave input. Where the matter is critical then Thomson filters ${ }^{6,7}$ should be used, and using say, the values given in ref. 7, and applying the method given in the Appendix, values of T_{n} suitable for a maximally-flat delay filter may be readily found. On a more mundane subject care must be taken that the input amplitude does not approach that of the h.t. supplies. Apart from the problem that the emitter followers will have a large variation in output current (this can be minimized by using constantcurrent generators as emitter loads), amplification occurs in the heart of the filter, especially near the pass-band limit, which is not seen either at the input or output. Again, the higher the ripple, and the higher the order, the more the gain, and in practice, gains in the order of 6 dB or more may be

TABLE 1 Low-pass coefficients										
Ripple order	Elements	Att. 1 st octave		D		D_{2}		D_{3}		Single
$m \mathrm{~dB}$	N	$m \mathrm{~dB}$	3 dB	T,	T_{2}	T_{1}	T_{2}	T,	T_{2}	T
3.000	2	17	17	0.24679	0.14498					
	3	28	28	0.53297	0.05664					0.53297
	4	39	39	0.93434	0.03002	0.38701	0.33397			
	5	51	51	1.45056	0.01866	0.55407	0.12126			0.89650
	6	62	62	2.08158	0.01274	0.76191	0.06371	0.55776	0.51140	
	7	75	75	2.82735	0.00927	1.00907	0.04002	0.69830	$0 \cdot 17759$	1.25829
2.000	2	14	16	0.19800	0.15543					
	3	26	27	0.43142	0.06626					0.43142
	4	38	37	0.75870	0.03595	0.31426	0.36378			
	5	48	49	1.17961	0.02255	0.45057	0.14299			0.72904
	6	60	60	1.69411	0.01548	0.62009	0.07665	0.45393	0.55843	
	7	73	72	$2 \cdot 30217$	0.01129	0.82164	0.04852	0.56859	0.20976	1.02456
1.000	2	11	15	0.14499	0.15847					
	3	22	26	0.32207	0.07911					0.32207
	4	34	36	0.57030	0.04502	0.23623	0.38378			
	5	45	47	0.88955	0.02881	0.33978	0.17365			0.54977
	6	57	58	1.27977	0.01998	0.46843	0.09696	0.34291	0.59233	
	7	70	69	1.74096	0.01466	0.62134	0.06239	0.42998	0.25563	0.77480
0.500	2	8	14	0.11164	0.14965					
	3	19	24	0.25406	0.08727					0.25406
	4	30	34	0.45381	0.05248	0. 18798	0.37808			
	5	42	44	0.71075	0.03441	0.27148	0.19570			0.43927
	6	54	55	1.02482	0.02416	0.37511	0.11445	0.27460	$0 \cdot 58755$	
	7	67	66	1.39602	0.01786	0.49823	0.07511	0.34479	0.28938	0.62129
$0 \cdot 100$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 3 \\ 12 \end{array}$	$\begin{aligned} & 13 \\ & 22 \end{aligned}$	$\begin{aligned} & 0.06709 \\ & 0.16418 \end{aligned}$	$\begin{aligned} & 0.11393 \\ & 0.09131 \end{aligned}$					0.16418
	4	23	31	0.30125	0.06322	0.12478	0.32588			0.16418
	5	35	40	0.47785	0.04436	0.18252	0.21824			0.29533
	6	47	52	0.69383	0.03233	0.25396	$0 \cdot 14323$	0.18591	0.51735	
	7	61	62	0.94915	0.02443	$0 \cdot 33875$	0.09928	0.23442	0.32722	0.42241
0.050	2	2	12	0.05509	0.09839					
	3	10	21	0.13996	0.08858					0.13996
	4	21	30	0.26049	0.06523		$0 \cdot 29955$			
	5	33	39	0.41602	0.04728	0.15890	0.21876			0.25711
	6	45	50	0.60633	0.03510	0.22193	0.15075	0.16246	0.48102	
	7	57	60	0.83134	0.02683	0.29670	$0 \cdot 10721$	0.20533	0.33048	$0 \cdot 36998$
0.010			12	0.03572	0.06802					
	3	5	20	0.10014	0.07721					0.10014
	4	15	28	0.19368	0.06519	$0 \cdot 08023$	0.24303			
	5	27	37	0.31514	0.05112	0.12037	0.20768			0.19477
	6	39	47	0.46410	0.03978	$0 \cdot 16987$	0.15882	$0 \cdot 12436$	0.40265	
	7	51	58	0.64039	0.03133	0.22855	$0 \cdot 12006$	$0 \cdot 15816$	0. 32024	0.28500
0.005	2	0.1	12	0.02982	0.05762					
	3	3	19	0.08757	0.07137					0.08757
	4	12	27	0.17258	0.06366	0.07148	0.22170			
	5	24	36	0.28339	0.05166	$0 \cdot 10825$	0.19980			0.17515
	6	36	46	0.41950	0.04107	0.15355	0.15905	0.11241	$0 \cdot 37299$	
	7	48	56	0.58069	0.03280	$0 \cdot 20725$	0.12339	0.14342	0.31121	0.25843
0:000	2		12	0.11254	0.22508					
	3		18	0.15916	0.15916					0.15916
	4		24	0.08613	0. 29408	0.20795	0.12181			
	5		30	0.09836	0.25752	0.25752	0.09836			0.15916
	6		36	0.08238	0.30746	0.11254	0.22508	$0 \cdot 30746$	0.08239	
	7		42	0.08832	$0 \cdot 28679$	0.12763	0.19846	0.35762	0.07083	0.15916

used which permit resistors in excess of $10 \mathrm{M} \Omega$. At the h.f. end, high f_{T} transistors permit reliable operation up to, say, 10 MHz , in direct contradistinction to op-amp filters where 100 kHz represents a sensible limit. With this range, and using high density packaging for the active elements, video band-pass amplifiers without transformers or chokes become a distinct possibility. Again, d.c. offsets may dictate the selection of components; e.g., in a digital filter where
encountered. However, an empirical approach will soon establish the extent of the problem and the permitted input levels for a given supply may be easily found. The choice of active element will depend to a certain extent on the frequency of operation envisaged. At the v.l.f. end, in order to keep the size of capacitors to reasonable proportions (and with exact requirements it is far easier to obtain low value precision capacitors), Darlington pairs of f.e.ts should be

TABLE 2
High-pass coefficients

Ripple order	Elements	Att. 1 st oçtave		D_{1}		D_{2}		D_{3}		Single
$m \mathrm{~dB}$	N	m dB	3 dB	T_{1}	T_{2}	T_{1}	T_{2}	T_{1}	T_{2}	T
3.000	2	17	17	0.10264	0.17472					
	3	28	28	0.04753	0.44725					0.04753
	4	39	39	0.02711	0.84379	0.06545	0.07585			
	5	51	51	0.01746	1.35776	0.04572	0.20889			0.02825
	6	62	62	0.01217	1.98755	0.03325	0.39758	0.04541	0.04953	
	7	75	75	0.00896	2.73259	0.02510	0.63295	0.03627	0.14263	0.02013
2.000	2	14	16	0.12793	0.16297					
	3	26	27	0.05871	0.38228					0.05871
	4	38	37	0.03339	0.70458	0.08060	0.06963			
	5	48	49	0.02147	1.12319	0.05622	0.17714			0.03474
	6	60	60	0.01495	1.63643	0.04085	$0 \cdot 33047$	0.05580	0.04536	
	7	73	72	0.01100	2.24373	0.03083	0.52206	0.04455	0.12076	0.02472
1.000	2	11	15	0.17471	0.15985					
	3	22	26	0.07865	0.32020					0.07865
	4	34	36	0.04442	0.56261	0.10723	0.06600			
	5	45	47	0.02848	0.87916	0.07455	0.14587			0.04607
	6	57	58	0.01979	1.26791	0.05407	0.26125	0.07387	0.04276	
	7	70	69	0.01455	1.72822	0.04077	0.40602	0.05891	0.09909	0.03269
0.500	2	8	14	0.22690	0.16927					
	3	19	24	0.09970	$0 \cdot 29025$					0.09970
	4	30	34	0.05582	0.48264	0.13475	0.06700			
	5	42	44	0.03564	0.73618	0.09330	0.12943			0.05766
	6	54	55	0.02472	1.04842	0.06753	0.22132	0.09224	0.04311	
	7	67	66	0.01814	1.41851	0.05084	0.33725	007347	0.08753	0.04077
0.100	2	3	13	0.37757	$0 \cdot 22233$					
	3	12	22	0.15429	0.27742					0.15429
	4	23	31	0.08408	0.40067	0.20300	0.07773			
	5	35	40	0.05301	0.57100	0.13878	0.11607			0.08577
	6	47	52	0.03651	0.78360	0.09974	0.17685	0.13625	0.04896	
	7	61	62	0.02669	1.03689	0.07478	0.25515	$0 \cdot 10806$	0.07741	0.05997
0.050	3	${ }^{2}$	12	0.45981	0.25745					
	3	10	21	0.18098	0.28595					0.18098
	4	21	30	0.09724	0.38834	0.23476	0.08456			
	5	33			0.53570	0.15941	0.11579			0.09852
	6	45	50	0.04178	0.72162	0.11414	0.16803	0.15591	0.05266	
	7	57	60	0.03047	0.94402	0.08537	0.23627	$0 \cdot 12337$	0.07665	0.06846
0.010	2	0.5	12	0.70912	0.37242					
	3	5	20	0.25296	0.32806					0.25296
	4			0.13078	$0 \cdot 38858$					
	5	27	37	0.08038	0.49548	0.21043	0.12197			0.13005
	6	39	47	0.05458	0.63671	0.14911	0.15949	0.20369	0.06291	
	7	51	58	0.03955	0.80839	0.11083	0.21098	0.16015	0.07910	0.08888
0.005	2	0.1	12	0.84936	0.43959					
	3	3	19	0.28925	0.35493					0.28925
	4	12	27	0.14678	0.39787	0.35436	0.11426			
	5	24	36	0.08938	$0 \cdot 49034$	$0 \cdot 23401$	0.12678			0.14462
	6	36	46	0.06038	0.61675	0.16497	0.15926	0.22535	0.06791	
	7	48	56	0.04362	0.77218	$0 \cdot 12222$	0.20528	0.17662	0.08139	0.09802
0.000	2		12	0.22508	0.12254					
	3		18	0.15916	0.15916					0.15916
	4		24	0.29408	0.08613	0.12181	0.20795			
	5		30	0.25752	0.09836	0.09836	0.25752			$0 \cdot 15916$
	6		36	0.30746	0.08238	0.22508	0.11254	0.08239	0.30746	
	7		42	0.28679	0.08832	0.19846	$0 \cdot 12763$	0.07083	0.35762	0.15916

a number of identical low-pass units are used, and any offsets would constitute a serious noise problem. In this case, a first order palliative would be to use p-n-p alternating with $n-p-n$ transistors for the first and second amplifiers ("throwing in" an extra emitter follower if N is odd), but if this is not good enough then it will be necessary to revert to feedback amplifiers to provide the unity gain.

Appendix

The following analysis will indicate the way in which T_{n} has been calculated for Tables 1 and 2 , and will show how the method may be used for creating other types of filters (such as Thomson). Considering unit (a) in Fig. 1 :
Assume $1 / R_{i n}=0$

$$
\left.\begin{array}{rl}
1 / R_{i n} & =0 \\
R_{0} & =0 \\
\text { Gain } & =1
\end{array}\right\} \text { for the amplifiers, }
$$

and $v_{\text {in }}=$ input voltage
$v_{0}=$ output voltage of second amplifier
$v_{1}=$ output voltage of first amplifier
$G=$ transmission function of unit
and let $\quad p_{n}=\omega C_{n} R_{n}$
then

$$
v_{1}=\frac{v_{\text {in }}-v_{0}}{1+\mathrm{j} p_{1}}+v_{0}=\frac{\left(v_{\text {in }}+\mathrm{j} p_{1} v_{0}\right)}{1+\mathrm{j} p_{1}}
$$

and

$$
v_{0}=\frac{v_{i n}+\mathrm{j} p_{1} v_{0}}{\left(1+\mathrm{j} p_{1}\right)\left(1+\mathrm{j} p_{2}\right)}
$$

i.e. $\quad v_{0}=\frac{v_{\text {in }}}{\left(1+\mathrm{j} p_{1}\right)\left(1+\mathrm{j} p_{2}\right)-\mathrm{j} p_{1}}$
or $\quad G=\frac{1}{-p_{1} p_{2}+\mathrm{j} p_{2}+1}$
Putting $s=j \omega$ and $t_{n}=R_{n} C_{n}$
then $\quad G=\frac{1}{s^{2} t_{1} t_{2}+s t_{2}+1}$
or

$$
G=\frac{1 /\left(t_{1} t_{2}\right)}{s^{2}+s / t_{1}+1 /\left(t_{1} t_{2}\right)}
$$

and similar expressions can be developed for the other double units. Now, any filter with zeroes at infinity can be expressed as

$$
G=\left[\left(s^{2}+a s+b\right)\left(s^{2}+c s+d\right) \ldots\right]^{-1} \times \alpha
$$

where $\alpha=1$ for low-pass filters and $\alpha=s^{N}$ for high-pass filters, and the values of a, b,

TABLE 3
Value of coefficient β for $\boldsymbol{f} 3 \mathrm{~dB}$ filters

$N=$| | $m=$ | 0.500 | 0.100 | 0.050 | 0.010 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1.390 | 1.943 | 2.268 | 2.867 | 3.903 |
| 3 | 1.167 | 1.389 | 1.512 | 1.728 | 2.075 |
| 4 | 1.093 | 1.213 | 1.278 | 1.390 | 1.566 |
| 5 | 1.059 | 1.135 | 1.175 | 1.245 | 1.351 |
| 6 | 1.041 | 1.093 | 1.121 | 1.168 | 1.240 |
| 7 | 1.030 | 1.068 | 1.088 | 1.122 | 1.175 |
| | Low-pass: $\quad f_{m}=t_{3} \mathrm{~dB} / \beta$ | | | | |
| | High-pass: $\quad f_{m}=t_{3 \mathrm{~dB}} \beta$ | | | | |

Fig. 3. Performance of filter

c, d, \ldots can be found from the mathematical formulation of the filter under consideration. (Thus for a Butterworth two-element network, $a=1.414$ and $b=1.000$, while for a Thomson four-element network $a=5.792$, and $b=9 \cdot 140$, and so on.)

Then, taking the first quadratic expression and equating coefficients,

$$
\begin{aligned}
a & =1 / t_{1} \\
& \quad b \\
\text { i.e., } \quad & =1 /\left(t_{1} t_{2}\right) \\
& t_{1}
\end{aligned}=1 / a+t_{2}=a / b
$$

But the above expressions are related to the angular frequency $\omega=1$, and must be converted to $f=f_{m}$, giving

$$
\begin{aligned}
& t_{1}=1 /\left(2 \pi f_{m} a\right) \\
& t_{2}=a /\left(2 \pi f_{m} b\right)
\end{aligned}
$$

i.e., $R_{1} C_{1}=T_{1} / \int_{m}$ where $T_{1}=1 /(2 \pi a)$

$$
R_{2} C_{2}=T_{2} / f_{m} \quad \text { where } T_{2}=a /(2 \pi b)
$$

REFERENCES

1. R. P. Sallen and E. L. Key, "A Practical Method of Designing RC Active Filters"; M.I.T. Tech. Rep. No. 50, p. 17. Published by Lincoln Labs. May 1954.
2. R. E. Bach, Jr., "Selecting RC values for Active Filters"; Electronics, p. 82, May 13th 1960.
3. H. Mager, "The Chebychev Normalised Low-Pass 3 dB Frequency"; I.E.E.E. Trans. on Circuil Theory, p. 287, June 1963.
4. "Reference Data for Radio Engineers", F. 193. Published by S.T.C.
5. M. Kawakami. "Nomographs for Butterworth and Chebychev Filters", I.E.E.E. Trans. on Circuit Theory, p. 288, June 1963.
6. W. E. Thomson, "Networks with MaximallyFlat Delay", Wireless Engineer, p. 256, October 1952.
7. N. Ralabanian, "Network Synthesis", p. 390, Published by Prentice Hall, 1958.

News of the Month

Mediator cleared for take-off in 1971

Mediator, the computer-assisted air traffic control system, will go into service at West Drayton (West London) early in 1971 and will replace existing facilities now being used at Heathrow airport.

Following the publicity given to the recent near collision of two aircraft the press were invited to have a look at the preparations being made for Mediator, and other a.t.c. systems, at the College of Air Traffic Control and the Air Traffic Controd Evaluation Unit at Bournemouth airport.

A rnold Field, director of the National Air Traffic Control Service, likened a.t.c. to a high-speed game of three-dimensional chess. The magnitude of the problem, discussed in Wireless World (Nov. 1969, p.511), was vividly demonstrated in a speeded up film of a radar display covering the London area. Incoming, outgoing and over-flying aircraft looked like a swarm of angry bees round a jam-pot.

At the present time controllers from Heathrow are being brought to Bournemouth for a course in using the Mediator system. The method employed to realistically simulate air movements during these
courses is of great interest. However, the simulator is not only used for teaching, it was, and still is being, used in evaluating and developing Mediator procedures.

The simulator consists of three distinct sections: a Ferranti 1600 Hermes computer, the "pilots" who have alphanumeric displays and key boards, and the trainee controllers who have a radar display of the area they are covering. The computer drives the "pilots" alphanumeric displays and the controllers radar displays. Simulated r.t. communication is provided between the controllers and the "pilots". In practice one person will act as pilot for several "aircraft".
A program containing the detailed flight plans of up to 80 aircraft, any of which can fall into one of ten performance categories, is fed to the computer. The computer also simulates four radar stations and 500 navigational beacons; each "radar station" can consist of one primary and one secondary radar installation. The radar displays are presented to the controliers in standard form.

If left unattended the computer will fly

Controllers at work during a Mediator simulation.
Recentlv the equipment was used to determine which was the best site for London's third airport from an air traffic control point-of-view; Foulness came out tops.
the programmed aircraft through the airspace in accordance with the flight plans; either landing, taking-off or overflying as the case may be. The controllers get a radar picture of all the aircraft in the airspace and can contact the "pilot" of any aircraft on one of the nine available r.t. frequencies.

There are therefore nine pilot positions and one "pilot" will handle all the aircraft on a particular r.t. frequency.

The system works as follows. As soon as the program flies an "aircraft" into the controlled air space a blip will appear on the appropriate radar display in the correct position. At the same time one of forty buttons available to each "pilot" lights up. The "pilot" presses the button and an alphanumeric display gives all the details, to the "pilot" only, of the aircraft. These details include the call-sign, position, speed, height, type, etc, of the simulated aircraft. The pilot labels the button he has pressed with the aircraft call-sign. Repressing this button at any time lets the "pilot" see the current position of the aircraft he is "flying".

As the program continues more and more aircraft enter the airspace and the computer allocates a "pilot's" button for each; the particular "pilot" selected by the computer depends on the "aircraft's" r.t. frequency. The controllers have to ensure that all the aircraft are properly spaced out and that none of the current air traffic regulations are contravened. If a hazardous situation is developing the appropriate controller contacts the "pilot" on the correct r.t. frequency in the same way as is done in real life. The "pilot" then presses the button allocated to the aircraft by call sign and obtains an alphanumeric display of the aircraft's current situation from which he can give the information requested by the controller. If the controller requests say a course or altitude change the "pilot" can feed this information into the computer via a key-board. The computer alters its program in accordance with the instructions and controls the radar and alphanumeric displays appropriately.

The system simulates accurately air traffic control problems as far as the controller is concerned and can lead to some quite heated situations. After an exercise the results of particular actions can be studied and analysed.

This is only one facet of the great variety of work being carried out at the Bournemouth establishment and airline passengers can rest assured that a large number of people are working very hard to ensure their safety.

New weather satellite

In January, almost ten years after the first operational weather satellite, TIROS-1, was launched (April 1960), the first of a new series of weather satellites, called ITOS (Improved TIROS Operational Satellite), went into orbit. Hundreds of

receiving stations, belonging to many nations, are using information from TIROS transmissions for their weather forecasting services and an unknown number of amateurs, who have designed and built their own equipment, receive the pictures regularly.

The first satellite in the ITOS series, called TIROS-M, was launched using a two-stage Delta- N vehicle with six additional solid-fuel rockets attached to give extra thrust on lift-off. The rocket also carried the 39 -pound amateur satellite OSCAR-5 into orbit which is described in this month's "World of Amateur Radio" section.

TIROS-M contains two distinct camera systems. The first of these, the A.V.C.S. (advanced vidicon camera sub-system), takes a series of wide-angle, high-resolution, cloud cover pictures of the earth and stores these in a tape recorder for replay on command from a ground station. A picture sequence lasts about 48 minutes and consists of eleven pictures taken at 260 second intervals. The initiation of a picture sequence is controlled from the ground.

The second camera sub-system is called A.P.T. (automatic picture transmission), and like the A.V.C.S. takes a series of wideangle, high-resolution photographs. Once a sequence has been started, as dictated by a ground station, up to eleven pictures, at the rate of one every 260 seconds, can be taken. The exact number of pictures taken is under the control of the ground station and a sequence may consist of between one and eleven photographs. The pictures taken by this system are transmitted at the time, i.e. in real time, and are not recorded in the space-craft. A high-persistence vidicon is employed that allows the use of fairly simple receiving equipment.

The remaining item of primary measuring equipment is a scanning radiometer which takes infra-red pictures of the earth during both day and night. Data from this sub-system is recorded on board the satellite and transmitted in real-time as well.

Secondary equipment consists of a solar proton monitor to measure proton fluxes encountered in orbit and a flat plate radio-

The Omega navigation receiver fitted to the Q.E. 2 which provides position fixing to an accuracy of two miles
meter to measure the amount of heat being radiated into space by the earth.

Plotting the stars

The first machine to bring automation to optical astronomy has been installed at the Royal Observatory, Edinburgh. It is called Galaxy (General Automatic Luminosity And XY measuring machine), and was originally conceived by Dr. P. B. Fellgett, now professor of cybernetics and instrument physics at Reading University. The design and construction of the machine was entrusted to the Scientific Instrument Control Department of Ferranti at Dalkeith, now Faul Coradi Scotland Ltd, in 1965.

Astronomers have had at their disposal for many years an instrument, called a Schmidt telescope, which enables photographs to be taken of areas of the sky a few times larger than the moon. Each photograph contains the images of tens of thousands of stars and can provide a wealth of information, if that information can be extracted. Precise measurements that have to be made are the position of each star relative to the others and the brightness of the stars. Comparison of two photographs of the same area taken at different times enable angular motion, velocity and distance to be calculated. Galaxy determines the position of each star image on the photograph to within 1 micron, it measures the size of the images to within 0.25
microns and in addition it measures the density of each image.

Measurements are carried out in two distinct operations. First, in the search mode, a flying-spot c.r.t. scanner is used to determine the approximate X and Y coordinates of every image on a photograph; the co-ordinates are punched out on eighthole paper tape. This search-scan is carried out by movement of both the c.r.t. spot and a carriage which holds the photograph.

For the second stage of the operation, which is the actual measurement, the system operates at a high magnification. The c.r.t. spot, which is only 1 micron in diameter, is made to scan in a spiral which is 256 microns in diameter.

Under the control of the paper tape produced in the first operation each image is brought by the carriage servo mechanisms approximately to the centre of the spiral scan. Control of the servos, which up until this stage has been digital, is handed over to the analogue signals from a photo-multiplier which "looks" through the film at the c.r.t.
If the image is not centred in the spiral there will be more light output from one side of the image than the other so the servos move the carriage until equality results. The density profile of the image is then compared with 1024 standard profiles held in a core store. The address of the matching profile together with the co-ordinates of the image centre (carriage position) within one micron are punched out on paper tape for computer analysis.

Galaxy was first switched on in June 1969 and, after a few minor modifications had been made, it has performed well since. Ferranti "Micro-spot" cathode-ray tubes are used and the carriage measuring system was originally designed by Ferranti for industrial use. The problem now is to programme a computer to make maximum use of the output from Galaxy.

It is predicted that Galaxy, as well as being of value to astronomers, will have applications in medical and industrial fields.

Omega for Q.E. 2

On the introduction of the Omega 1 relative navigation receiver (the commercial version of the equipment designed by the Northrop Corporation for the United States Navy) the Cunard Steam-Ship Co., was one of the first to consider the possibilities of using the system. Arrangements were therefore made with the Marconi International Marine Co.,

who market the new Omega receivers in the U.K., to install one on board the liner Queen Elizabeth-2 to enable Cunard to carry out extensive trials of the system during a number of voyages.
Following an evaluation period of several months Cunard have now decided to retain the Omega receiver for regular use in the navigation of the Queen Elizabeth-2, and have accordingly purchased the equipment from Marconi Marine

With four shore transmitting stations currently operating, the Omega system provides full coverage of the North Atlantic and of the eastern North Pacific. The addition of four more shore transmitters, which should be in operation before the end of 1972 , will give full global coverage.

I.T.T.-S.T.C. Semiconductors forecast 44% growth in 1970

"If you don't want to sell a product in the semiconductor business you just stoplowering the price. This is just one way of shutting down unprofitable production lines," says Joseph Hurley, general manager of I.T.T.S.T.C. Semiconductors. In the past few years I.T.T. semiconductor companies throughout the world have undergone a major rationalization and in this country S.T.C. have shut down several lines that were not profitable or that were duplicating work done elsewhere.

As a result of these and other moves sales of the group expanded by 53% last year and I.T.T. predicted a further expansion of 44% next year.
I.T.T.-S.T.C. calculated that in the U.K. they were in fourth position as far as sales are concerned at the end of 1969 and expect to move into third position by mid-1970. The company estimate that the total sales of semiconductors in the U.K. during 1970 will be about $£ 115 \mathrm{M}$.

An interesting prediction made by Mr Hurley is that in America 25% of i.c. production by 1971 will be for the consumer market with the same sort of percentage being reached in the U.K. a year or two later.

Britain at Hanover Fair

The British contingent of electronic and electric component and equipment manufacturers will share a common stand at the forthcoming Hanover Fair (March $1-10$). The exhibit, which is made up of 25 firms, is being sponsored by the British Electrical and Allied Manufacturers' Association.

Trainee awards

The annual presentation of prizes to trainee technologists and technicians completing their final year of training with a member company of the Telecommunication Engineering and Manufacturing Association was made during the Association's annual dinner on February 3rd. The first
prize is $£ 50$ and the second $£ 20$ in each class. Prizewinners in the technologist class (students who have obtained a degree or equivalent qualification or are completing their final year in a degree course) were 1st. M. W. Brown (GEC/AEI), 2nd. A. R. Riddiough (Plessey Telecomms). Technician prizewinners were 1st. D. Smith (Plessey Telecomms) and tied 2nd. R. A. Cooper (GEC/AEI) and V. W. Smith (Creed). Candidates have to write a technical essay on some personal aspect of his training or work related to the T.E.M.A. side of the activities of his company.

Film and television training committee formed

Concern in matters relating to training for film and television production has led the British Kinematograph Sound and Television Society (B.K.S.T.S.) to set up a special committee to deal with training and education. The film and television industries have no nationally recognized training schemes, nor are covered by an industrial training board.

The B.K.S.T.S. Education \& Training Committee will be concerned with varying requirements over a wide range of operations throughout the industry. Activities of the Committee will include the appraisal of existing training schemes, investigation into the present and future needs of employers, the giving of advice and information, and the possibility of introducing professional qualifying structures.

New names for SI units

Two more famous scientist/engineers of the past, Siemens and Pascal, are honoured in suggestions for short names for SI (Systéme International) units of measurement. The name siemens (symbol, \mathbf{S}) is proposed for the unit of conductance, and the name pascal (symbol, Pa) for the newton-per-square-metre unit of pressure. These are being put forward by an advisory body on units for consideration by the International Committee for Weights and Measures (C.G.P.M.)

Electronic information service

INSPEC, the I.E.E's information service in physics, electrotechnology and control, has introduced a service which will provide selected information on electronic literature published in English (including translations). Called S.D.I. (selective dissemination of information), the service will give information on only the new literature which is of interest to the particular subscriber ($£ 45$ per individual or $£ 65$ for a group).
For the last year the I.E.E. has operated an S.D.I. service to 600 research and development workers as part of an information research project which is supported by the Office for Scientific and Technical Information. The service proved so successful that it has now been made generally
available a year earlier than was originally planned.

The amount of material available to the service is being expanded as a result of a new agreement between the I.E.E. and the I.E.E.E. in which an exchange of information from the institutions' "data pools" is to take place. Readers interested in the service should contact: The Manager, INSPEC SDI Investigation, I.E.E., 26 Park Place, Stevenage, Herts.

Physics exhibition

The Physics Exhibition is to be held from the 2nd to the 5th of March at Alexandra Palace, London. Tickets may be obtained from The Exhibitions Officer, Institute of Physics and the Physical Society, 47 Belgrave Square, London, S.W.1, price 5s each.

Faraday lecture "down under"

The 1968 Faraday Lecture, entited "Microelectronics", which was presented in the U.K. by the I.E.E., is to be given in Australia under the auspices of the Institution of Radio and Electronic Engineers of Australia in conjunction with Mullard-Australia Pty Ltd, and Mullard Ltd.
The lecture, which will be the first of an annual series, will be given by Edward T Emms of the Mullard Control Application Laboratory. In addition to the lectures being held in Sydney, Melbourne, Adelaide and Canberra plans are being made for a deputy to deliver the lecture in other major Australian cities including Hobart, Perth and Brisbane, and at two or three centres in New Zealand.

At the output interface

One of the big problems in industrial control systems is finding ways of controlling large loads from low-level control circuitry and sensing transducers. For many years the relay has reigned supreme in this field and, in fact, has much to commend it. Even so, very often some amplification is needed to drive the relay.

In recent years the thyristor, and later the triac, have challenged the relay with fast switching speeds, low weight, highcurrent handling, no moving parts and no contacts to weld together or become dirty.

Even using these devices interface circuitry between the control circuitry or sensor and the switching component is necessary with the attendant printed circuit boards, wiring costs, etc.

FR Electronics, a department of Flight Refuelling, has produced a range of modules containing the switching device and the necessary interface circuitry. These are available to replace ordinary relays or to provide timing or comparator functions.

Circuit Ideas

Long-tailed pair LC oscillator

Oscillation is maintained by a positive feedback loop consisting of an emitter follower and a common-base stage (like an emitter coupled multivibrator), but with a tuned circuit to fix the oscillation frequency. The collector-emitter bias is set by the baseemitter bias to about 0.7 volt for a typical silicon transistor, and the peak to peak output is limited to twice this. Only three cheap components are used apart from the tuned circuit. As there are no inductors or capacitors in these additional components, the circuit will operate over a very wide range

Sinewave oscillator.

of frequencies with a suitable change in the tuned circuit. Predictable oscillation level is approximately $1 \frac{1}{2} \mathrm{~V} \mathrm{pk}-\mathrm{pk}$, and predictable d.c. current is $\left(V_{S}-0.7\right) / R$. The circuit is relatively unaffected by changes in supply voltage. With a suitable value of R the circuit will work with any supply from 1 V upwards. A current of 1 mA is generally suitable. Operation should be restricted to frequencies for which C is large compared with the emitter-base capacitance, which is commonly $20-40 \mathrm{pF}$.

D. T. Smith,

Clarendon Laboratory,
Oxford.

Mock tunnel diode

The combination of two transistors and four resistors shown above simulates a tunnel diode. Below a certain voltage, R_{3} and R_{4} divide the $V_{c e}$ such that there is less than 0.6 V on the base of Tr_{2}-hence no current flows through $T r_{2}$. But $T r_{1}$ is turned on by R_{2} and this current flows through the circuit. If the voltage across

Transistor circuit operating as a tunnel diode.
the circuit is increased, current starts to flow through Tr_{2} reducing the current through Tr_{1}. Thus the total current through the circuit decreases with increasing $V_{c c}$. The negative resistance may be reduced by increasing R_{2}, and the ratio of peak-to-valley current may be changed to some extent by varying R_{1}. With the circuit shown peak and valley voltages were 3.4 V and 3.9 V respectively. The "device" will operate to beyond 1 MHz .
D. BLOOMER,

Derby.

Combined low-pass and high-pass filter

The circuit employed for magnetic-pickup equalization in my pre-amplifier design (July 1969) can be modified to provide
simultaneous low distortion low-pass and high-pass filtering. The capacitor value given (5% tolerance) can be altered proportionately for other turn-over frequencies. Mid-point gain is 50 and the filter slopes $18 \mathrm{~dB} /$ octave.
J. L. Linsley Hood,

Taunton,
Somerset.

Square pulse from unijunction transistor

In the circuit shown below, C charges via R_{1}, R_{2} and D_{1} until the potential at the anode of D_{1} switches the unijunction transistor into conduction. The potential at the emitter now drops and D_{1} is reverse biased so that C cannot discharge via

Modified unijunction transistor oscillator.
the transistor which continues to conduct whilst C discharges through the relatively high resistance R_{4}. The on-time of the transistor is dependent on the time constant $C R_{4}$ which is made large in comparison with that of $C R_{5}$-itself limited by the necessarily low value of R_{2}. The off-time is controlled similarly by R_{2}. The pulse was used repeatedly to turn on a transistor for a period sufficiently long to energize a solenoid type of motor vehicle petrol pump -it replaced an unreliable mechanical system.
G. M. PAUL,

Whitstable,
Kent.

Low-pass and high-pass filter circuit.

Tone-balance Control

A different kind of characteristic, to suit "difficult" programme material

by R. Ambler, B.Sc., Ph.D.

It seems to the writer that there are occasional programme sources, both records and radio, that do not sound correctly balanced as between bass and treble, yet there is no obvious harmonic distortion and the condition cannot be satisfactorily corrected by the usual type of bass and treble tone controls.
If the bass is originally too strong and the treble too weak, normal bass cut and treble boost may be applied : however this removes too much of the extreme bass, provides too much extreme treble, and still leaves the bass in general too strong and the treble in general too weak. The opposite effect may also occur, when the bass is originally too weak and the treble too strong. These effects are more often but not invariably found when the programme source is on older or cheaper gramophone record, or a radio programme from one of the less usual concert halls involving landlines which may be longer or less well equalized.
The type of tone control usually included in a high-fidelity audio assembly always operates more powerfully on the extreme bass and treble parts of the audio spectrum than on the less extreme parts. This characteristic is shown by both the passive type of network exemplified by Williamson's circuit ${ }^{1}$ and by the feedback type of system such as Baxandall's. ${ }^{2}$ In both these circuits separate bass and treble controls are provided.
It occurred to the writer that a tonebalance control would be useful in the circumstances described above, which at one end of its range boosts the whole of the bass fairly uniformly, slopes across the middle frequencies, and cuts the whole of the treble fairly uniformly. At the centre of its range it should provide a flat frequency response and unity gain, and at the other end of its range bass cut, slope across the middle, and treble boost. A negativefeedback system would be preferred, to minimize distortion.
A basic tone-balance control system which meets these requirements is shown in Fig. 1(a). At low frequencies where the admittance of the capacitors has become negligibly small, the circuit reduces to that shown in Fig. 1(b). Moving the potentiometer slider to the left reduces the input resistance and increases the feedback resistance, hence giving a uniform boost at these

Fig. 1. Basic tone balance control system (a); exact equivalent at low frequencies (b); and approximate equivalent at high frequencies (c)
low frequencies. Moving the slider to the right gives a uniform bass cut. At high frequencies, where the impedance of the capacitors has become negligibly small, the circuit approximates to that shown in Fig. 1 (c), as R_{4} has a lower value than R_{1}. Here the "input" and "reedback" ends of the potentiometer have been reversed, so movement of the slider to the left gives a uniform treble cut to go with the bass boost and movement to the right gives a uniform treble boost to go with the bass cut. It seems reasonable to assume a smooth transition between the cut and boost conditions at any one setting of the potentiometer as the frequency is varied, and also that the system gain will be equal to (-1) at all frequencies with the potentiometer centred, and hence with the inpui//reedback network symmetrical. These assumptions are in fact confirmed by a detailed analysis.
If the usual assumption is made that the
amplifier is an ideal inverting amplifier so that its input voltage and input current are both negligibly small, it can be shown by consideration of the voltage at each junction point and current in each arm of the network that system gain equals
$\frac{V_{E}}{V_{A}}=-\frac{R_{1} R_{2}+\left(R_{1}+R_{3}\right)\left(R_{4}+1 / \mathrm{j} \omega C_{1}\right)}{R_{1} R_{3}+\left(R_{1}+R_{2}\right)\left(R_{4}+1 / \mathrm{j} \omega C_{1}\right)}$
from which

$$
\begin{align*}
& \frac{V_{E}}{V_{A}}= \\
& -\sqrt{\left[\frac{\left(R_{1} R_{2}+R_{1} R_{4}+R_{3} R_{4}\right)^{2}+}{\left(R_{1} R_{3}+R_{1} R_{4}+R_{2} R_{4}\right)^{2}+}\right.} \\
& \left.\frac{\left(R_{1}+R_{3}\right)^{2} / \omega^{2} C_{1}^{2}}{\left(R_{1}+R_{2}\right)^{2} / \omega^{2} C_{1}^{2}}\right] \tag{2}
\end{align*}
$$

If $\frac{V_{E}}{V_{A}}=-1$, equation (2) reduces to

$$
\begin{align*}
0= & \left(R_{3}-R_{2}\right)\left(2 R_{1}+R_{2}+R_{3}\right) \\
& {\left[\frac{1}{\omega^{2} C_{1}^{2}}+R_{4}^{2}-R_{1}^{2} \frac{R_{2}+R_{3}+2 R_{4}}{R_{2}+R_{3}+2 R_{1}}\right] } \tag{3}
\end{align*}
$$

There are two practical conditions for unity gain. The first is $R_{2}=R_{3}$; i.e., with the potentiometer centred. This is independent of frequency. The second is with the right-hand bracket equal to zero and it shows a unity gain crossover frequency which is independent of the setting of the potentiometer.

The component values required to give the desired response were calculated from equations (2) and (3). After choosing (somewhat arbitrarily) a value of $100 \mathrm{k} \Omega$ (linear) for the potentiometer $R_{2}+R_{3}$, the value of R_{1} was calculated to frequencies at four different potentiometer settings: these results are shown graphically in Fig. 2 together with the flat response produced with the potentiometer centred.
It is obvious that a lower impedance level could be used in the input feedback network, but there are disadvantages in going too low. A potentiometer value of $20 \mathrm{k} \Omega$ or $50 \mathrm{k} \Omega$ would be satisfactory, with the other values altered to suit. The value of $100 \mathrm{k} \Omega$ arose when the circuit was first being developed and tested. A greater maximum boost or cut was originally allowed for, and then found in practice to be unnecessary and indeed undesirable. The values given are perfectly satisfactory, however, with a suitable amplifier. The system requires to be fed from a fairly low
impedance source (say $<1 \mathrm{k} \Omega$) to avoid degradation of its response, and itself has a low output impedance ($<1 \mathrm{kS}$).

The tone balance contrel has been incorporated in an experimental mono tone control system, the circuit of which is shown in Figs. 3-5. The input stage Fig. 3 is a slightly modified version of that published by Bailey ${ }^{3}$ adjusted to suit the writer's signal sources. After the volume control, Fig. 4, comes an impedance conversion stage, followed by Baxandall type bass and treble controls, then the tone balance control, and finally a feedback amplifier stage to raise the output level to the 4 volts peak-to-peak maximum needed to drive the Williamson amplifier ${ }^{4}$ which the writer is still using. Like Mr. Linsley Hood ${ }^{5}$ the writer has not come across any other amplifier which actually sounds better when driving moving-coil loudspeakers. A signal level through the control system of 200 mlV peak maximum is convenient, being well below the overload point and above the noise level.

The final stage in the control unit could be omitted if a more sensitive power amplitier were used, and the impedance conversion stage after the volume control could be omitted at the cost of a slight degradation of the response, particularly if treble boost is called for in the Baxandall tone control. However this impedance converter is a convenient poirt at which to insert a stereo balance control, as indicated in Fig. 4.

It should be noted that the whole of the signal network after the volume control in Fig. 4 is floating at a level of about +6 V d.c. This has the advantage of saving capacitors. The savings are cost. space, and fewer unwanted phase shifts. There appears to be no significant disadvantage even with a series of stages in cascade, as in the present circuit: capacitors are needed only at the beginning and end of the series. The bypass capacitor in the bias network of each amplifier may be omitted if desired: the change in response is small as the bias

Fig. 4. Control unit incorporating tone balance control. Details of op. amps. and input stage in Figs. 5 and 3.
resistors become a minor adjustment to the audio feedback network. The op. amps. shown in Fig. 4 have the circuit of Fig. 5.
The layout does not appear to be critical in the trial equipment the signal network is mounted between the tags on the potentiometers and tags on a tag strip : the amplifier sections are built on Radiospares miniature 18 -way group boards. The bias resistors marked $1.41 \mathrm{M} \Omega^{*}$ in Fig. 5 are each made up of three resistors in series, the values being selected on trial to give a d.c. level of $6 \mathrm{~V} \pm 0.2 \mathrm{~V}$ at the output point with a supply voltage of $12,1.41 \mathrm{M} \Omega$ being the calculated value. This method of adjustment is cheap and not seriously time-consuming or inconvenient for the home constructor: otherwise a variable resistor of $1 \mathrm{M} \Omega$ in series with a fixed resistor of $820 \mathrm{k} \Omega$ or $1 \mathrm{M} \Omega$ could be used. Half-watt moulded carbon resistors have been used throughout, with no apparent disadvantages.
Power is obtained from a small commercial stabilized supply unit: this is not strictly essential provided there is good smoothing, but it is a very convenient way of providing the smoothing and obtaining the correct operating voltage.
The tone balance control performs satisfactorily the function for which it was intended and which cannot be performed by the normal Baxandall bass and treble controls. It compensates quite accurately (judging by ear) for some of the variations in recording characteristics used in the early days of l.p. records and for similar sounding, probably fortuitous, variations in some more recent records : it even enables reasonably well-balanced results to be obtained from a variety of 78 r.p.m. records reproduced through the current standard l.p. playback characteristic, with some help from the normal treble control. It compensates satisfactorily most (but not all) of the "off-balance" radio programmes mentioned earlier.
The approximate equality of maximum bass boost or cut and treble cut or boost, together with the choice of $800-880 \mathrm{~Hz}$ for the centre frequency, ensures that the general volume level remains reasonably constant when the tone balance control is adjusted. The frequency of 800 Hz is a reasonable compromise between the geometric mean of the audio spectrum (630 Hz), the nominal bass-to-middle crossover of the writer's speaker system (750 Hz), the nominal bass boost hinge frequency of commercial records (500 Hz) and the nominal treble cut hinge frequency of records (2 kHz).
The tone balance control has been found to have additional uses. On the writer's equipment its normal setting is one giving a little bass boost and treble cut, to compensate for a slightly lower sensitivity in the bass speaker compared with the middle speaker. The control also seems able to provide a useful single-knob tone control in moderate quality systems of slightly restricted frequency range, simulated on a wide-range system by the application of some bass cut and treble cut with the normal Baxandall controls.
It is not suggested that the tone balance control supersedes the Baxandall circuit in

Fig. 5. Circuit of each op. amp. in Fig. 4. Resistor marked " $1.41 \mathrm{M}^{* "}$ to be adjusted on trial-see text.
high-fidelity equipment; it has a different function. In fact the best results and the widest range of control and compensation are obtained by providing both the Baxandall type of control and the new one. If this is done there is some advantage in adjusting the characteristics of the Baxandall system to leave a slightly wider "flat" gap than would normally be provided between the bass and treble characteristics. It would also seem desirable to provide both lowpass and high-pass variable filters but the writer has not yet done this.

REFERENCES

1. D. T. N. Williamson, "Design of Tone Controls and Auxiliary Gramophone Circuits," Wireless World, October, November 1949.
2. P. J. Baxandall, "Negative-Feedback Tone Control," Wireless World, October 1952.
3. A. R. Bailey, "High Performance Transistor Amplifier" (Control Unit), Wireless World, December 1966.
4. D. T. N. Williamson, "Design for a HighQuality Amplifier," Wireless World, May 1947, August 1949.
5. J. L. Linsley Hood, "Simple Class A Amplifier," Wireless World, April 1969.

Announcements

The series of Electronic Instruments Exhibitions initiated in Manchester in 1967 will again be held at the Hotel Piccadilly from September 8 th to 1 th this year. A second will be held at the Skyway Hotel, Southampton, from September 22nd to 24th. Organizers are Industrial Exhibitions Ltd, 9 Argyll Street, London WIV 2 HA .

Standard Telephones \& Cables has received orders totalling more than £12M for three submarine telephone cables into the Spanish mainland. Two of these will link the Canary Islands and the Balearic Islands with the mainland and will employ over 150 transistor repeaters. The third, a 640 circuit cable with 51 transistor repeaters, will connect Spain with the United Kingdom.

Applied Research Laboratories Ltd, of Wingate Road, Luton, Beds., have sold two electronic systems, valued at about $£ 60,000$, to the Soviet Union. The systems automatically determine the precise chemical composition of metallic and non-metallic substances and print out the results within seconds.

Multitone Electric Co. Ltd. has announced that the New York Stock Exchange have placed a contract with Multitone Electronics Inc., their wholly owned U.S. subsidiary, to install a pocket paging system in the Wall Street building.
U.K. orders totalling in excess of $£ 140,000$ for seven Philips EM 300 electron microscopes have been received by Pye Unicam of Cambridge during the first week of 1970.

The marine division of Redifon Ltd has won a $£ 24,500$ order to supply marine radio equipment to the Lloyd Brasileiro shipping line, R$\overline{10}$ de Janeiro.

Gelman-Hawksley, of 12 Peter Road, Lancing, Sussex, have signed a three-year agreement for an exclusive dealership for the products of Royco Instruments Inc, of California. Royco manufacture particle counting systems.
Rastra Electronics Ltd, 275 King Street, Hammersmith, London W.6, have been appointed distributors for the products of Silicon General Inc, of California, U.S.A.

Sharp Corporation, of Japan, has formed a wholly owned subsidiary, Sharp Electronics (U.K.) Lid, at Derby Sireet, Manchester, 10 handle the distribution and marketing of Sharp equipment throughout the United Kingdom.

Standard Telephones and Cables Lid will combine Submarine Cables Ltd, whom they recently acquired from Associated Electrical Industries, with their submarine systems group.

Coutant Electronics have appointed Polyamp A.B. of Stockholm as their exclusive agents in Sweden.

Henry \& Thomas Ltd, Yeo Street, Bow Common, London E.3, have signed an agreement with the Hirose Electric Company Ltd, of Tokyo, which gives the British company sole marketing rights in the U.K. for the complete range of Hirose connectors.

A range of semiconductor devices manufactured by Philco Ford will now be available in the U.K. through Auriema Ltd, 23-31 King Street, London W.3.

The full range of potentiometers made by the Clarostat Manufacturing Co. Inc., of the United States, is now available in the U.K. exclusively from Welwyn Electric Ltd, Bedlington, Northumberland.

Impectron Ltd, 29-31 King Strect, London W.3, have been appointed sole representatives for Sylvania's semiconductor components in the U.K., Northern Ireland and Eire.

Ates Electronics Ltd, the recently formed British company of the Italian semiconductor manufacturer, is moving to Mercury House, Park Royal, London W. 5 (Tel: 01-998 6171).
F.W.O. Bauch Ltd, has moved to premises at 49 Theobald Street, Boreham Wood, Herts. (Tel: 01-953 0091).

The group headquarters and registered office of The Morgan Crucible Company Ltd, are now at 98 Petty France, London S.W. 1 (Tel: 01-222 7212).

Digitally-controlled Tape-recorder Pre-amplifier

An accurate system for automatically optimizing recording level to obtain maximum dynamic range

by P. C. Grossi, B.Sc., and C. Marcus, B.Sc.

In the course of developing semiprofessional tape-recording systems the authors realized the importance of optimizing recording levels. In order that the full dynamic range of the recording medium can be exploited, modulation must be maximized but kept below a preset level which is determined by the saturation flux density of the tape.

An automatic system was developed to replace the conventional meter and a potentiometer with which the authors were dissatisfied because of the inherent inaccuracies involved; one of the most significant of these resulting from the slow response time of the meter. Also, due to observational difficulties, the recording level usually cannot be set more accurately than 5 dB . In addition, one must often consider cost, panel space and convenience of operation.
The automatic system does not operate on the same principles as automatic volume controls, which merely restrict the dynamic range without effectively eliminating tape overmodulation. The system is best described with the aid of the block diagram (Fig. 1). The input signal is fed to a variable gain amplifier. If the peak level of the output is excessive a series of pulses is generated by the peak-level sensor, which, through the action of the pulse counter, reduces the amplifier gain.

The variable-gain amplifier consists of six cascaded stages. The voltage-gain of each stage may have either of two preset values, selected by a transistor switch. The output signal is fed to the peak-level sensor which generates pulses whenever the output voltage exceeds a preset level; these pulses are counted by the gain-control pulse counter which consists of a set of six cascaded bistables which determine the state of the above mentioned transistor switches.

It was decided that $1 V$ r.m.s. insignificantly distorted output should be obtainable for any input between 1 mV and IV r.m.s.; this necessitates a control range of at least 60 dB . Since an accuracy of better than IdB is not required, this can be accomplished by the use of six amplifiers whose greatest voltage gains form a binary progression.

It is necessary to have two switches in the system. One of them-possibly a push
button-resets the bistables so that the amplifier gives full gain. Since the signal level cannot cause the amplifier gain to be increased, the switch must be operated each time a new signal is to be controlled. Another switch is incorporated which disconnects the pulse input from the bistables. Thus once the greatest input signal has been controlled the bistable input can be manually disconnected; this prevents motor switching and other sources of undesired transients from progressively reducing the amplifier gain. The two switches can be incorporated into a single three-position mechanism should panel space be at a premium.
The prototype illustrates that this system is capable of truly high-fidelity operation as the bandwidth at full gain was 25 Hz to $100 \mathrm{kHz}-1 \mathrm{~dB}$; the noise output was less than 1 mV (unweighted) for a source impedance of $100 \mathrm{k} \Omega$ and for a bandwidth of 60 kHz . At unity voltage gain the bandwidth was 2 Hz to 200 kHz $\pm 3 \mathrm{~dB}$ and the noise figure was

Fig. 1. Block diagram of system.

Fig. 2. Circuit diagram of the pre-amplifier. Tr_{1} and Tr_{2} can be any high-gain silicon transistor, e.g. BC109, 2N3707; Tr $_{3}$-2N4058, 2N4286, etc; $\mathrm{Tr}_{4}-\mathrm{BCl} 108$, 2N2925, etc; Tr_{5} 2N4062, 2N4289, etc; Tr_{6} and Tr_{7} 2N2926, BC168, etc; and Tr_{8} to ${T r_{13}}^{-}$ 2N706, 2N708, 2N2926, etc.

considerably improved. The maximum distortion occurred at unity voltage gain and was less than 0.05% for an output of IV r.m.s. For a heavy overload the gain reduced at the rate of 4000 dB per second and the greatest gain reduction step was less than 2 dB . The prototype was constructed for less than $£ 5$ 10s using components as advertised in Wireless World and was placed in an aluminium box measuring approx. $100 \times 150 \times$ $65 \mathrm{~mm}\left(4 \times 6 \times 2 \frac{1}{2} \mathrm{in}\right)$.

The amplifier

The complete circuit diagram of the amplifier is shown in Fig. 2. Direct coupling is used throughout as it avoids the use of large and costly electrolytic capacitors. However, this means that a low-impedance stabilized power supply must be used.

The input stage is similar to a Darlington pair for high input impedance but R_{1} has been added to improve the gain of Tr_{1}. Each of the following stages derives its bias conditions from those of the previous stage. Emitter and collector resistors are approximately equal-the difference being to compensate for the base-emitter potential of each stage, hence increasing the signal handling capability.

Fig. 3. Peak-level sensor circuit. Tr ${ }_{14}$ and Tr_{15} can be 2N3702 or 2N4289; and $\operatorname{Tr}_{16}-T I S 43$ or $2 N 2646$.

The amplifier terminates in an emitter-follower stage for low output impedance.

To minimize noise, the high-gain stages should be placed near the input; however, the first stage should be of low gain for high input impedance. The best compromise was achieved by placing the 8 dB stage at the input, followed by the 32 dB stage, then the 16 dB 4 dB 2 dB and 1 dB stages in that order.

The voltage gain of each stage is given by R_{c} / R_{E}, where R_{c} is the collector load, taking into account the loading of the next stage, and R_{E} consists of three component parts. R_{e}, the total external emitter resistance; r_{s}, the reflected source impedance, given by the source impedance divided by the transistor current gain (β); and r_{e}, the internal emitter resistance of the transistor, given by $26 / I_{E} \Omega$ for the emitter current in milliamps.

The a.c. voltage gain of each stage is increased if the emitter resistor is shunted by a network comprising a d.c. isolating capacitor in series with another resistor. The gain is selected by the action of a transistor switch $\left(T_{8-13}\right)$. The shunt resistor values are calculated using the formulae shown above. By means of a simple calculation it can be shown that, to the required accuracy, R_{18} and R_{19} can both be connected to the same stage, since they each involve only a small increase in gain. The purpose of $V R_{1}$ in the prototype was to adjust the d.c. gain to be exactly unity.

Each transist or switch is operated such that when it is 'on' it is heavily saturated with a base current of 1 mA . This gives a very low a.c. bilateral impedance. In order to turn a switch 'off' the base must be reverse biased by several volts to prevent emitter-base conduction on large signals at the emitter. Each switch is shunted by a large resistor so that the charge on the isolating capacitor does not change significantly during switching; the switches themselves are operated in inverse mode as the d.c. offset voltage is reduced. These
precautions ensure that large switching transients do not appear at the output.

Peak-level sensor

With reference to Fig. 3, it can be seen that $T r_{14}$ and $T r_{15}$ are connected as a long-tail pair. By means of the divider $R_{25}, R_{26}, V R_{2}$ the base of $T r_{14}$ is held at a quiescent potential 1.4 V lower than that of $T r_{15}$. Hence $T r_{14}$ normally conducts and $T r_{1 s}$ is normally cut off. The output signal is fed to the base of Tr_{14} through C_{8}; if the peak amplitude of this is less than 1.4 V then Tr_{14} will remain conducting. If, however, the positive signal excursion exceeds 1.4 V , then a sharp transition will take place turning Tr_{15} 'on' and $T r_{14}$ 'off'. This state will be maintained until the positive signal excursion no longer exceeds 1.4 V .

When $T r_{15}$ is conducting it acts as a current source linearly charging C_{9}. When the emitter potential of Tr_{16} reaches triggering potential, C_{9} is rapidly discharged and a negative pulse is fed through C_{10} to the first bistable. When the potential across C o reduces below a critical level the emitter conduction in Tr_{16} ceases and the initial conditions are restored. This cycle is repeated until Tr_{15} is turned 'off'.
Due to the large tolerance on the interbase resistance of unijunction type TIS43, a variable resistor $\left(V R_{2}\right)$ should be incorporated in the base bias chain of Tr_{14}. By this means the stabilized output level can be adjusted. $T r_{15}$ is biased from R_{29} in order to minimize the effects of temperature changes. The purpose of R_{28} is to ensure that the leakage current of Tr_{15} does not cause any significant charge to be placed on C_{9}.

Gain-control pulse counter

This consists of a set of six bistables, cascaded in the usual manner. A resistor is connected to one collector of each

Fig. 4 (a). First bistable. Diodes are germanium types, e.g. OA81, OA91, IN914. T_{17} and $T r_{18}$ can be 2N3708, BC108, etc. (b). Circuit for remaining five bistables. Diodes and transistors as for first bistable.

Fig. 5. A suitable power supply.
bistable to drive a transistor switch. Although the amplifier and sounter may share a common positive rail, separate negative rails are used so that the transistor switches can be back biased when they are required to be 'off'.

The circuit diagram of the first bistable is shown in Fig. 4(a); it can be seen that base triggering is used here as the input pulses are too small to give reliable collector triggering. The remaining five bistables are as shown in Fig. 4(b) where collector triggering is used as it is less critical of pulse amplitude. The bistables were designed to use components already in the authors' possession, and were found to be entirely suitable for this application. Provided they will correctly drive the transistor switches (as mentioned above), any form of bistable can be used; some constructors may wish to use integrated circuits.

To ensure that the amplifier is giving sufficient gain for a new signal, it must first be restored to full gain; this will be appropriately reduced by the automatic system. In the prototype this was accomplished by connecting the 'reset' line to the positive rail; a large base current then flows into one transistor of each bistable, ensuring that the transistor switches are all turned 'on'. The 'reset' line, switches and pulse outputs must be connected as in Fig. 4; if this is not so, either the amplifier will not be reset to full gain or the gain will not reduce each time a pulse is fed to the bistables.

Construction

The prototype was built on two boards. One held the gain-control pulse counter, and the other the amplifier and peaklevel sensor.

The gain control pulse counter was built on 0.2 in matrix copper clad wiring board measuring $120 \times 75 \mathrm{~mm}$ ($4 \frac{3}{4} \times$ 3 in). Since the device operates at audio frequencies, the layout of this is not at all critical; the constructor will wish to adopt a layout most suited to the size of available components and the alloted space. Any n-p-n silicon transistors with a greater than 30 may be used here and any diode with a reverse breakdown voltage greater than 30 V ; the resistors and capacitors may be of large tolerance.

The layout of the prototype is

The components of the digitally-controlled pre-amp. need take up little space-the aluminium case shown measures only 6 in $\times 4$ in $\times 2 \frac{1}{2}$ in. The bistables are mounted on the board attached to the lid of the container, the other board carrying the amplifier and the peak-level sensor. Amplifier input and output are carried by screened leads. The bunch of unscreened leads joining pulse counter to the amplifier carries switching signals only. The power supply is external.
shown in the photograph. No trouble was experienced with instability in the prototype, but it is recommended that the usual precautions for high-gain, wideband amplitiers should be taken. A layout similar to the circuit diagram should be adopted, with input and output leads well separated and completely screened.

Very high-gain transistors must be used throughout the amplifier, but low-noise devices need only be used in the first three stages. Any audio transistor may be used as a switch provided the base-emitter reverse breakdown voltage is greater than 4 V . All the amplifier resistors should be of close tolerance (2% or better).

Although the above theory is sufficiently accurate, preferred resistor values are not always yielded; hence the constructor may find it convenient to obtain the correct shunt resistor values by means of series or parallel combinations, which should be checked empirically. If the resistor values are in error such that the gain of any stage is too large, the range of control will be increased but several large gain steps may be introduced. If a stage gain is too small, the range of control will be reduced but some of the gain steps will be smaller. If a range of control less than 63 dB can be tolerated, the latter type of error is preferable as the regulation is improved.

Although it was stated that $V R_{2}$ could be used to adjust the output signal level, it is recommended that an output level close to 1V r.m.s. should be selected. Outputs greater than 1.4 V r.m.s. will suffier severe distortion due to clipping, and temperature effects in the unijunction transistor make small outputs impracticable.

The power supply shown in Fig. 5 was designed to operate the amplifier. However any power supply with an output impedance less than 1Ω and delivering the specified voltages may be used.

Acknowledgments

The authors would like to thank Professor G. D. Sims, of the Department of Electronics, Southampton University, for laboratory facilities. They are also grateful for the encouragement and interest shown by Dr. A. R. Brunnschweiler and Mr. A. P. Dorey.

Pulse Generator Using Integrated Circuits

A versatile two-channel instrument using only three integrated circuits

by C. Djokic*, M.Sc., M.I.E.R.E.

The pulse generator described in this article was designed for use in a University teaching laboratory but may well be used for many other applications.

The repetition rate may be altered from 1 Hz to 1 MHz in six decades, with a continuous fine control covering each decade. In addition there is provision for operating the pulse generator from an external source and a single shot facility is available in the form of a push-button mounted on the front panel. The pulse generator has two independent positive outputs which are continuously adjustable in amplitude from $0-10 \mathrm{~V}$ and have an output impedance of approximately 50Ω. The pulse width of either channel may be varied from I sec to $\mu \mathrm{sec}$ in six decades with a continuously variable fine width control covering each decade.
The output of channel A may be delayed with respect to that of channel B and to a pre-trigger output pulse, by an amount variable from 1 sec to $1 \mu \mathrm{sec}$ in six decades with a fine delay adjustment. In addition the unit may be operated with the two output pulses in coincidence.

A pre-trigger positive output pulse of approximately 3 V across a low impedance is provided at $0.5 \mu \mathrm{~s}$ before each channel B output pulse. In addition the output of both channels may be inhibited by the application of a 3 V positive level. With this facility the instrument may be used as a burst pulse generator. The output pulsess are practically free from overshoot and have rise and fall times of 25 ns , when measured into a 50Ω load.

The satisfactory performance of the

[^5]instrument is best illustrated by the typical output waveforms shown in Fig.1. In Fig. 1 (a) the two outputs are shown with that from channel A delayed by 50 usec with respect to channel B Fig.1(b) shows the rise time of the output pulses from the two channels and illustrates that true time coincidence may be obtained. Finally, in Fig.1(c) the inhibit pulse is illustrated.

Operation of the instrument is best understood by considering the block dia-
gram shown in Fig. 2 in conjunction with the complete circuit diagram as shown in Figs. 4 and 5. All the integrated circuits employed contain four two-input NOR gates the circuit diagrams of which in discrete component form with the pin connection details, are given in Fig.6. The integrated circuits are all of the same type and are from the Motorola range of plastic encapsulated, medium power, r.t.l. Two types may be employed, the MC724P

Fig. I. (a) Output pulses with chamel A delayed (vertical gain: $2 \mathrm{~V} /$ div.; timebase: $10 \mu \mathrm{~s} / \mathrm{div}$.). (b) Rise time of both channels showing that time coincidence can be achieved (Vertical gain: $2 \mathrm{~V} /$ div.; time base: $50 \mathrm{~ns} /$ div.). (c) The action of the inhibit pulse (vertical gain: $2 \mathrm{~V} / \mathrm{div} . ;$ timebase: $0.5 \mathrm{~ms} /$ div.).

(+15 to $75^{\circ} \mathrm{C}$) or the $\mathrm{MC} 824 \mathrm{P}\left(0\right.$ to $\left.75^{\circ} \mathrm{C}\right)$. The repetition rate generator is a crosscoupled multivibrator formed by gates A and B. With the fine repetition rate control potentiometer set to minimum resistance the output is a square-wave and by setting this potentiometer to maximum resistance, a mark to space ratio of $1: 20$ is obtainable.

The differentiated output of the multivibrator is fed to the delay monostable, formed by gates E and F, in channel A, and also via a double inverter, gates C and D, to the pulse width monostable in channel B (Gates K and L). The double inverter isolates the pre-trigger output pulse from the rest of the circuit and by differentiating the output of the first inverter and using this pulse to drive the pulse width monostable in channel B , the gate propagation delay across gates E and F may be equalled thus providing true time coincident output pulses in channels A and B when desired.

The output of the delay generator (gates E and F) is differentiated and fed to the channel A pulse width monostable (gates G and H). Both the pulse width monostables may be inhibited by the application of a positive pulse or level greater than 1.5 V to the inhibit terminal.

The outputs of the pulse width monostables are inverted (gates J and M) and fed to the output amplifier input transistors. These transistors are run under saturated condition with the collector potentials set by the amplitude control potentiometers. The output from these transistors is fed to emitter followers to provide lowimpedance outputs. The series resistance (30Ω) ensures that the output transistors are protected against accidental earthing of the output terminal.

The power supply (Fig.3) uses a conventional bridge rectifier circuit with zener diode voltage reference levels controlling the series stabilizer transistors.

World of Amateur Radio

Slow-scan amateur TV

Despite the efforts of the British Amateur Television Club to popularise longdistance h.f. transmission of slow-scan television pictures, there remains a paucity of British activity in this field. Progress continues to be made in this interesting form of video communication by amateurs in the United States, Canada, Sweden, Belgium and Italy, yet so far as can be ascertained there are currently no British amateurs equipped to receive slow-scan TV pictures to the American standards established in 1961. These are: 120 lines, $1: 1$ aspect ratio; horizontal frequency, 16.666 Hz , vertical 7.2 seconds per picture, horizontal 5 msec , vertical sync pulse 30 msec , f.m. subcarrier (sync 1200 Hz , black level 1500 Hz , peak white 2300 Hz). The video transmissions to this standard can be sent over conventional s.s.b. or a.m. channels and can be recorded on an audio tape recorder. One of the main enthusiasts for slow-scan TV in Britain is C. Grant Dixon, G6AEC/T and G8CGK, of Kyrle's Cross, Peterstow, Ross-on-Wye, Herefordshire, but he is not licensed for h.f. operation and is anxious to hear from any h.f. amateur interested in experimenting with this mode of television. Live scenes can be transmitted as a series of 8 -sec stills, while the system is also suitable for slides and photographs. Typically the

Typical slow-scan picture received on 14 MHz over a 9800 -mile contact from Indiana, U.S.A., to Melbourne, Australia. (Courtesy of British Amateur Television Club.)
pictures can be received on 5FP7 long-persistence radar c.r.ts with the bright blue trace filtered out, leaving the yellow afterglow to provide the picture. A recent technique, according to S. Horne, VE3EGO, of Ottawa, takes the output from a "fast scan" camera and samples the output to produce a picture at slow scan rate-sampling type s.s. television cameras are used at stations VE3EGO, W9NTP and WB6ZYE. A slow-scan net is understood to operate on 14230 kHz at 19.00 G.M.T. on Saturdays.

Australis Oscar 5 launched

Australis Oscar 5, an amateur radio beacon satellite, was successfully launched into polar orbit on January 23rd. The satellite, built by an amateur team at Melbourne University, was launched from the Western Test Range by N.A.S.A., as a secondary payload to a TIROS weather satellite, as a result of the efforts of AMSAT (Radio Amateur Satellite Corporation).

Oscar 5 carries two beacon transmitters radiating about 50 mW on 144.050 MHz and 150 mW on 29.450 MHz . Transmissions are automatically keyed to send "HI" in Morse, as well as telemetry data of temperature, spin rate and battery performance by varying audio tones. Power is derived from 28 alkaline manganese cells with an estimated life of about two months.

Beacon transmissions began 66 minutes after launch, and have since been heard by many amateurs, including a number in the U.K. where signals are usually weak. Regular bulletins of orbital data are being transmitted by the A.R.R.I. over W1AW on 14.020 MHz at 19.00 G.M.T. on weekdays.

The satellite, box-shaped 12 by 17 by 6 inches and weighing 39 pounds, is orbiting at about 910 miles and has a periodicity of 115 minutes. This is the first amateur satellite to be launched by N.A.S.A. although four previous Oscars (Orbiting Satellite Carrying Amateur Radio) have been launched by the U.S. Air Force; the last about 1965.

Construction of the satellite started in 1966 by Project Australis, a group formed by the Melbourne University Astronaut-
ical Society; it is the first amateur satellite to incorporate simple attitude control, and the transmissions are intended to provide amateur training in satellite tracking as well as permitting propagation experiments.

The successful launching of Australis lends further encouragement to the new British Project Trident group members of which are working on plans for the construction in the U.K. of an active satellite transposer which would accept $144-\mathrm{MHz}$ amateur signals and re-transmit them on about 432 MHz . Detailed work is being undertaken by a group of South Coast v.h.f. enthusiasts and a number of British electroniç firms have already romised support.

50 years of callsigns

The Ministry of Posts and Telecommunications has recently begun issuing Class A amateur licences in the G3ZAA seriesthe final letter sequence of the G3-threeletter callsigns which have been used for all new standard licences since 1946. It thus seems likely that a start will be made this year on G4-four-letter callsigns. This year also marks the fiftieth anniversary of the modern form of amateur callsigns introduced in Britain in 1920-the pre1914 callsigns consisted of three letters one of which was always " X " to indicate an "experimental" station. Details of the "new" licences were announced at the first annual conference of amateur wireless societies of the Royal Society of Arts on February 27th, 1920 when it was also revealed that "wireless receiving licences would be issued freely to all approved persons".

In Brief: Brian Armstrong, GEDD, has been elected 1970 executive vice-president of the R.S.G.B. . . . The annual R.S.G.B. amateur radio exhibition this year is to be held from August 19th to 22nd instead of the usual October or November date. . . . A new $70-\mathrm{cm}$ beacon station, GB3SC, at the B.B.C. Sutton Coldfield station operates on 433.5 MHz . . . A 70.69 MHz beacon, GB3SX, is to be sited at Crowborough, Sussex. . . . It is planned to establish two beacon stations on 23 cm , one on the South Coast, another in London. . . The 33 rd BERU h.f. contest will be held from 00.01 G.M.T. March 7th to 23.59 G.M.T. March 8th for amateurs throughout the British Commonwealth. ... The second sections of the A.R.R.L. DX Contests are March 7th to 8th (phone) and March 21st to 28th (c.w.). ... Two Russian stations of interest on 14 MHz recently have been UPOL16, an Arctic weather station giving the location as 84° $\mathrm{N}, 162^{\circ} \mathrm{W}$ and temperature around -26° C , and UWOIH / M a ship in the Antarctic . . . YU stations are this year using the prefix YT to mark 25 years of Yugoslav independence. .. . The prefix 3B has replaced VQ8 for the group of islands which includes Mauritius and Chagos.

Pat Hawker, G3VA

The new SM1 11 dual-channel Oscilloscope. It's not the smallest scope sold, but, thanks to an SE breakthrough, gives you a full $10 \times 8 \mathrm{~cm}$. display, easily the highest screen-to-instrument ratio ever achieved in the world. The specification is of a good laboratory scope -18 MHz bandwidth 20 mV sensitivity - increased in $\times 10$ mode to

2 mV on both channels, d.c. trigger facility and a dc coupled X-amplifier. It's portable, a.c. or d.c. powered, the rugged performance is guaranteed in all environments. It's a star-studded SE Production, on general release NOW. We bet it costs much less than you think. Write or ring today for full details or for an immediate demonstration.

SE Laboratories (Engineering) Limited. North Feltham Trading Estate. Feltham, Middlesex Telephone:01-890.1166\&5246(sales): 01:890.5876(works). Telegrams: Selab. Feltham. Telex 23995. Northern Sales Office. Bessell Lane. Stapleford. Nottingham Telephone: Sandiacre 3255

Some notes on Bridge Measurement by WAYNE KERR

Number 8

The Logarithmic Scale

This series of notes has described Transformer Ratio Arm networks which can be constructed to form manually operated or self-balancing bridges. In many cases, a linear relationship between the scale and the impedance or admittance parameter being evaluated is satisfactory, but when components are being selected to a specific tolerance, or a simple, wide range bridge is required, a logarithmic scale offers several advantages. Figure I shows a section of a scale obeying the logarithmic law of a sliderule.

Figure 1
The spacing of the tolerance marks on the cursor is correct for any point on the scale and can be extended to include a range of tolerances in addition to the 10% marks illustrated.

A convenient logarithmic scale giving a reasonable overlap between decades can be achieved by using the arrangement shown in figure 2.

A linear wound variable resistor is connected across part of the winding of the left hand transformer. The sliding contact on the resistor covers a voltage range of 1:16 and as this voltage is applied to the standard impedance it varies the current flowing through the right hand transformer by an equivalent ratio. The resistor is connected by means of five equi-spaced taps to the transformer windings which supply voltages in the ratio $1,2,4,8$ and 16. Although this arrangement gives correct balance points on the logarithmic scale when the sliding contact lies precisely on a tap, the interpolation between these points is linear and errors arise of up to 6%. However, a resistor (R) connected in shunt to the voltage produced corrects the errors to less than 1% and a further slight correction to the scale calibration removes the errors completely. The advantages of the transformer ratio arm bridge described in earlier issues of this series can be obtained from this network. Two, three and four terminal measurements can be made and high impedance components can be connected to the bridge with long
lengths of screened cable without the capacitance of these cables affecting the bridge balance point. A wide range of decade ratios between the standard and unknown impedances can be achieved by varying the tapping points on the right hand transformer. Furthermore, the unknown impedance can be connected to alternative voltage decade taps on the left hand transformer

Figure 2

A further advantage of the bridge illustrated in figure 2 lies in the reciprocal nature of the standard logarithmic voltage and its relationship to the calibrated scale. The arrangement shown is correct for a capacitance or conductance scale with suitable standards but it can be easily adapted to inductance and resistance measurements by re-connecting the $1,2,4,8$ and 16 points to taps F, E, D, C and B, i.e.: reversing the order shown. Separate standards are necessary in this case and for component measurements a simple network must be added to balance the phase angle of the unknown impedance.

Personalities

J. A. F. van dijk

Donald Rowley, M.A., executive director of British Aircraft Corporation's Electronic and Space Systems Group, Bristol, has been appointed chairman of the National Industrial Space Commit-tee-the professional industrial organization sponsored by the Society of British Aerospace Companies, the Electronic Engineering Association and the Telecommunication Engineering Manufacturing Association. Mr. Rowley had been acting as chairman of N.I.S.C. since Group Captain E. Fennessy, C.B.E., resigned last summer on joining the Post Office Corporation. Mr. Rowley will head the organization in co-ordinating and representing to the Government the considered views of the aerospace, electronics and telecommunications industries in space matters. Mr. Rowley, who is 43, and a graduate of Selwyn College, Cambridge, joined the Guided Weapons Department of the Bristol Aeroplane Company in 1949 and, on the formation of B.A.C's guided weapons division in 1963, was appointed chief engineer of the Bristol Works. In April last year he became executive director, Electronics and Space Systems.

Peter Bettridge, A.M.1.E.E., has joined the board of Elremco Sales Ltd. He is also general marketing and sales manager of Electrical Remote Control Co., Ltd and its subsidiaries. His appointment follows the tragic death of Roy Martin in a motor car accident. Mr. Bettridge, who is 39, has served with E.M.I. Research Laboratories Lid, Research and Control Instruments Ltd, Sperry Gyroscope Co., Ltd, and Associated Automation Ltd.

Dr. John V. N. Granger, chairman of the board of Granger A ssociates at Palo Alto, California, and also chairman of the British subsidiary, has been elected president of the Institute of Electrical and Electronics Engineers for 1970. Dr. Granger was at one time teaching fellow in physics and
communications at Harvard University, instructing in the pre-radar school for Army and Navy officers. During World War II he served the U.S. Ninth Air Force and the First Tactical Air Force in planning and evaluating radar counter measures. Returning to Harvard, he became a research fellow in electronics. His doctoral thesis was on low-frequency aircraft aerials. Dr. Granger joined Stanford Research Institute in 1949 to organize and supervise the aerial research programme. He resigned in 1956 to form Granger Associates.

Brookdeal Electronics, signal recovery instrument manufacturers, who recently moved from Lewisham to Bracknell, Berks, have announced two appointments. John Roberts, aged 39, and formerly sales promotion manager with Hewlett-Packard, has joined the company as sales manager. Cedric Shore, who is 32, has been appointed production manager. He was formerly senior project engineer with the Data Recording Instruments Division of I.C.L.

Mullard recently announced the appointment of three new directors, C. Barwell, J. A. F. van Dijk, M.Sc., and J. A. Jenkins, M.A. A.Inst.P. Mr. Barwel! joined the company in 1932, was

C. Barwell
head of Central Marketing Services from 1963-68, and since September 1968 has been head of the company's Industrial Electronics Division, the three main product areas of which are semiconductors (including ì.cs), passive components (including magnetic materials), and valves and tubes. Mr. van Dijk was born in Rotterdam and obtained his degree in engineering at Delft University, Holland. He joined Mullard's

J. A. Jenkins

Blackburn (Lancs) plant in 1948 as chief valve engineer, becoming manager of the Valve Division five years later. He has been plant director at Blackburn since 1963. Mr. Jenkins, who graduated in mathematics and natural philosophy at Glasgow University, joined Mullard Research Laboratories in 1947 and subsequently took charge of the photo-electronics division. In 1955 he established the company's semiconductor manufacturing division. On the formation of Associated Semiconductor Manufacturers Lid at Southampton he was appointed to the board as general manager and in 1967 was made managing director.

The Radio Industries Club has nominated as its $1970 / 71$ president Dr. F. E. Jones, M.B.E., F.R.S., managing director of Mullard

Ltd. Dr. Jones, who is 56 and a graduate of King's College, London, where he also obtained his Ph.D., led the team in the Ministry of Aircraft Production which developed the OBOE blind bombing system used by the R.A.F during World War II. In 1952 Dr. Jones was appointed deputy director of the Royal Aircraft Establishment, Farnborough, and four years later joined Mullard as technical director. He has been managing director of the company since 1964, and also a director of the British Space Development Company since 1965. Dr. Jones has served on many government and industrial committees and was chairman of the Working Group on Migration (the Brain Drain enquiry), the report of which is colloquially known as the Jones Report.
"For his many contributions to the development of microwave valves and particularly for his outstanding leadership of the team at Cambridge University responsible for the development of the scanning electron microscope" Professor C. W. Oatley, O.B.E. F.R.S., has been awarded the 48 th Faraday Medal by the I.E.E. Professor Oatley, who is 66, graduated at St. John's College, Cambridge, and subsequently became a lecturer in the Department of Physics at King's College, London. After wartime service at the Radar Research \& Development Establishment he became a lecturer in the Department of Engineering at Cambridge University in 1945. He has been professor of electrical engineering since 1960.

Dr. Dennis Gabor, F.R.S., has been awarded the I.E.E.E. Medal of Honour "for his ingenious and exciting discovery and verification of the principles of holography". Dr. Gabor is Professor Emeritus, Department of Electrical Engineering at Imperial College of the University of London and is also staff scientist for CBS Laboratories at Stamford, Connecticut, where he is a member of the team which developed Electronic Video Recording. Dr. Gabor will receive the bronze medal at the Institute's annual banquet on March 25th during the International Convention. Born in Hungary in 1900, Dr. Gabor studied in Berlin where he received his doctorate. He came to England in 1934 and worked in the B.T.H. Research Laboratory, Rugby, until joining the staff of Imperial College, London, in 1949. It was in 1948 that he discovered how to reconstruct objects from their light-wave interference patterns.

Norman King, aged 33, has been promoted to marketing manager of the Instrument Division of Cossor Electronics Lid. Mr. King has been sales manager of the Division since last March.

Active Filters

8. The two-integrator loop, continued

by F. E. J. Girling* and E. F. Good*

The versatility of the two-integrator loop is illustrated by descriptions of its application to selective circuits of very low frequency, a tunable crossover filter, a two-phase low-frequency oscillator, a frequency discriminator, and to an electronically-tuned oscillator and self-tuning filter.

Compensation of q for finite gain

When A is finite and the ideal design values do not give the required q to a close enough approximation, a new (higher) value of q_{i} may be set into the design; and it follows from equn. (28) of Part 7 that the appropriate new value is given by

$$
\begin{equation*}
\frac{1}{q_{i}}=\frac{1}{q}-\frac{1}{q_{r}} . \tag{1}
\end{equation*}
$$

Alternatively the positive damping attributable to finite gain,

$$
\begin{align*}
\frac{1}{q_{r}} & =\frac{1}{A_{1}}+\frac{1}{A_{2}} \tag{2}\\
& =\frac{2}{A}, \text { when } A_{1}=A_{2}=A, \tag{3}
\end{align*}
$$

can be counterbalanced by an equal negative damping. Since the inner feed back loop, Fig. 1(a), produces positive damping, a similar loop giving feedback of the opposite sign is required. This is shown in Fig. 1(b), where only the relevant parts of the circuit of Fig. 1(a) are reproduced. As the scaling factor of the positive damping loop is $1 / \boldsymbol{q}_{\mathrm{i}}$, the scaling factor for the negative damping (or positive feedback) should be $1 / q_{r}$, so that

$$
\begin{equation*}
\frac{1}{q}=\left(\frac{1}{q_{i}}+\frac{1}{q_{r}}\right)-\frac{1}{q_{r}}=\frac{1}{q_{i}} \tag{4}
\end{equation*}
$$

An essentially equivalent method of compensation is to apply positive feedback to the integrator amplifiers individually so that the zero-frequency gain of each becomes approximately infinite.
However, these methods of compensation, which are not self-adjusting but based on a supposed constant value of gain, give no reduction in sensitivity to changes in gain. From this point of view equn. (4) may be written

$$
\begin{equation*}
\frac{1}{q}=\text { constant }+\frac{1}{q_{r}} \tag{5}
\end{equation*}
$$

[^6]Hence, since relative changes in q_{r} are proportional to relative changes in A, equn. (3), sensitivity of q to relative changes in A can be reduced only by making $1 / q_{r}$ a smaller fraction of $1 / q$, i.e. by increasing A. This may be expressed

$$
\begin{equation*}
\frac{\Delta q}{q}=\frac{\Delta A}{A} \cdot \frac{q}{q_{r}} . \tag{6}
\end{equation*}
$$

The above discussion refers to finite gain in the integrator amplifiers. Provided the inverting amplifier that closes the main feedback loop gives no appreciable phase shift, changes in its internal gain cause only an indirect and very small change in q by causing a small change in resonant frequency and consequently a small change in the Q 's of the integrators; and similarly changes in the internal gain of the amplifier (if any) in the damping loop cause only a small change in q by making a small change in q_{i}. It follows that these amplifiers need not be of particularly high gain for a high value of q_{r}; and the small effects of their finite gain can, moreover, be corrected by adjusting the values of appropriate resistors in the circuit, e.g. one of the resistors R^{\prime}. But phase defects in the integrators cannot be so corrected.

Compensation of the phase errors caused by finite gain

As well as lowering the Q factor of the circuit, the less than 90° phase shift given by a finite-gain integrator also modifies the characteristic shape of many of the various filter responses available, and the most serious effect can be noticed in the symmetrical notch response. Clearly a transmission zero can be obtained only when V_{C} and V_{L} are exactly out of phase, so that their addition is in effect a subtraction. This condition exists when $A \rightarrow \infty$ and the total phase shift for the two integrators is 180°. When A is finite V_{L} may be resolved into a component exactly out of phase with V_{c} and a quadrature component, which remains at the notch output when V_{c} and the out-of-phase component cancel-and so prevents the notch going to zero. Its magnitude at ω_{c} relative to V_{C} and V_{L} is $2 / A$. But at this frequency V_{C} and V_{L} have magnitude $q V_{i n}$. If then, for example, $q=10$ and $A_{1}=A_{2}=A=100$, the minimum of the notch will be approximately $V_{i v} / 5$,
-14 dB , not a very satisfactory attenuatic ..
Now because the feedback integrators give inversion in addition to integration the quadrature component causing the imperfection is approximately out of phase with the voltage $q V_{R}$ at the tuned-circuit (or band-pass) output, Fig. 2. It follows, since the relative magnitudes of V_{C} and V_{L} change with frequency, that the output \boldsymbol{V}_{N}

Fig. I. (a) Ideal two-integrator system (b) Showing a method of correcting Q factor and notch response when integrators have finite gain.

Fig. 2. Relative phases of three primary responses at ω_{c}.
will be exactly out of phase with $q V_{R}$ at a frequency close to ω_{c}. This offers the possibility of producing a perfect notch by adding a fraction of $q V_{R}$, as the following analysis confirms.

Let the finite-gain responses be distinguished from the ideal responses by added primes, V_{c}^{\prime} etc., Fig. 3(a). Then we know from the analysis of a loop containing two lags and gain that V_{C}^{z} retains perfect low-pass form,

$$
\begin{equation*}
V_{C}^{\prime}=\frac{1}{1+p T / q+p^{2} T^{2}} V_{i n} \tag{7}
\end{equation*}
$$

though q is lower than the ideal value, and also T is a little affected by finite A_{1}, A_{2}, A_{3}, and is only approximately equal to $C R$

The band-pass and high-pass outputs, if factors of the type $A /(A+1)$ are ignored, are given by

$$
\begin{align*}
q V_{R}^{\prime} & =\left(\frac{1}{A_{1}}+p T\right) V_{C}^{\prime} \tag{8}\\
V_{L}^{\prime} & =\left(\frac{1}{A_{2}}+p T\right) q V_{R}^{\prime} \tag{9}\\
& =\left\{\frac{1}{A_{1} A_{2}}+\left(\frac{1}{A_{1}}+\frac{1}{A_{2}}\right) p T+p^{2} T^{2}\right\} V_{C}^{\prime} \tag{10}
\end{align*}
$$

Thus it is seen that the tuned-circuit response $q V_{R}^{\prime}$ levels off on the low-frequency side of resonance to $V_{\text {in }} / A_{1}$, and the high-

Fig. 3. (a) Analysis of system with finite-gain integrators.
(b) Method of compensation.
pass response to $V_{i n} / A_{1} A_{2}$. These characteristics, which are also apparent from inspection of the equivalent passive network, Fig. 4(a), are sketched in Fig. 4(b). With reasonably high values of A_{1} and A_{2} the departures from the ideal forms do not usually matter much; but Fig. 3(b) shows how corrections can be made if required, the extra linkages serving to cancel the unwanted terms in equns. (9) and (10).

The removal of the quadrature component from $-V_{L}^{\prime}$ can, however, give a useful improvement in the notch response. For this purpose the significant correcting term is the fraction of $q V_{R}^{\prime}$ added to the high-pass output, which leads to the arrangement shown in Fig. 1(b). The fraction is the same as that needed to restore the Q factor, equn. (2), and both compensations may be made simultaneously as shown in the figure Provided the various resistors are reasonably accurate, observation of a null at V_{N} provides the most direct indication of correct adjustment, although it is not necessary to the formation of a deep notch that q should also be compensated. Because of the approximations made, and because no notice has been taken of possible tolerance in the passive components, the analysis given is not exact. However, with amplifiers of gain say 100 , the compensation will typically increase the depth of the notch by 20 dB .

Frequency shift caused by finite gain

If A_{1}, A_{2}, A_{3} are all $\gg 1$, the frequency shift caused by finite gain in the three amplifiers is given by

$$
\begin{equation*}
\frac{1}{\omega_{c}^{2}} \simeq \frac{\left(1+\frac{1}{A_{1}}\right)\left(1+\frac{1}{A_{2}}\right)\left(1+\frac{n}{A_{3}}\right)}{\left(1+\frac{1}{q_{i} A_{1}}\right)} T^{2} \tag{11}
\end{equation*}
$$

where n is the number (or equivalent number) of equal resistors connected to the

Fig. 4. (a) Equivalent circuit of system with finite-gain integrators.
(b) Uncompensated responses.
input of the A_{3} amplifier. When $q_{i} A_{1}$ is so large that the second term of the denominator can be neglected, the equation shows that finite gain in any of the three amplifiers moves ω_{c} to a value lower than $1 / T$. Thus, if $A_{1}=A_{2}=A_{3}=100, q_{i} A_{1} \gg 100$, and $n=4$, the shift is about 3%

The second term of the denominator arises from the fact that when A_{1} is finite $q V_{R}^{\prime}$ is not exactly in quadrature with $-V_{C}^{\prime}$. To obtain equn. (11) accurate expressions for the voltage transfer ratio of each stage must be used, e.g.

$$
\frac{A_{1}}{1+\left(A_{1}+1\right) p T} .
$$

High Q circuits

Because of the small phase margin, the greatest scope for realising high Q factor in a predictable and stable manner is at low frequencies, where unwanted phase shifts can be kept low. The problem of unwanted phase shifts is also less severe in a fixedtuned circuit, where they will be more constant. With conventional techniques $q=10$ can be obtained with reasonable constancy in a variably-tuned circuit with an upper frequency of about 100 kHz . For an upper limit of 10 kHz the maximum value of q might be raised to 25 or 50 . The increase will not be quite in inverse ratio to the upper frequency. because amplifiers of higher gain are needed if q is not to be sensitive to changes in amplifier gain, and this calls for more severe curtailment of bandwidth to obtain Nyquist stability. It is clear, of course, that upper frequency limits may be increased considerably by improvements in micro-electronic techniques.

For stable values of q greater than 100, high-gain amplifiers are needed; but this is no difficulty at low frequencies. Secondly the Q of the capacitors must be considered. A lossy capacitor shows a phase angle of less than 90° between current and voltage; so even if everything else is perfect each integrator has a phase defect of this amount, and the Q factor of the loop is limited to a value given by

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{Q_{c 1}}+\frac{1}{Q_{c_{2}}}=\frac{1}{Q_{c}} \tag{12}
\end{equation*}
$$

if $Q_{C_{1}}=Q_{C_{2}}=Q_{C}$.
Some better quality dielectrics are polycarbonate, mica, silicon dioxide, polystyrene. Capacitors with the latter dielectric are usually stated to have a maximum power factor of 0.05%, i.e. $Q_{c}=2000$ minimum. In practice at very low frequencies, using amplifiers with $A=10,000$ approx. and no intentional damping, values of q of 1,500 and more are found, suggesting that $Q_{c} \geqslant 4,000$.

Very low frequencies

A loop with $f_{c}=1 / 6 \cdot 3 \mathrm{~Hz}\left(\omega_{\mathrm{c}}=1 \mathrm{radian} /\right.$ second) calls for $T=1$ second. If the capacitors are to be of good quality and not too bulky, they must be of comparatively low capacitance, say $0 \cdot 1 \mu \mathrm{~F}$. The resistors must therefore have a resistance of $10 \mathrm{M} \Omega$, and if the gain of the integrator amplifiers is not
to be considerably eroded their input resistance should be much greater than this. By using amplifiers with field-effect transistors at the input this requirement is easily met, and by using m.o.s.f.e.ts amplifiers suitable for use with very high values of resistance can be made. Thus a circuit was made with $C=1 \mu \mathrm{~F}$ and $R=1,000 \mathrm{M} \Omega$ ($T=1,000$ seconds, $2 \pi T=2$ hours approx.) and set ringing by charging one of the capacitors from a battery. The time of decay to half amplitude was about 7 days; so the decay time constant was about 10 days. This is just over 800×10^{3} seconds, and therefore corresponded to a Q factor of over 400. The capacitors were polycarbonate dielectric. The Q factor of such a circuit is not, of course, well controlled, as it depends entirely on imperfections such as capacitor leakage and amplifier open-loop gain.

2nd- and higher-order band-pass filters

If good rejection at frequencies somewhat removed from the wanted frequency is required, rather than sharpness at the peak; or if to obtain the required selectivity with a 1 st-order tuned-circuit filter, an uncomfortably high Q factor would be needed; a higher-order filter should be used.

A conventional way of setting up a bandpass filter of 2 nd-order is to cascade two stages with tuned-circuit response, and to stagger their centre frequencies suitably to either side of the specified centre frequency. Clearly this method can be followed using two two-integrator loops. A rather more convenient method, however, is to use two synchronously tuned stages, and to apply overall feedback (negative) to obtain the required bandshape. This is an analogue of a two-lags-and-feedback low-pass filter. For a 3rd-order filter a third tuned-circuit section can be added in cascade, a 4th-order filter can be made as a cascade of two 2nd-order loops, and so on. This method of design will be treated in detail in later parts.

Cross-over filters

To separate a broad band of frequencies into upper and lower parts, for example in a sound reproducing system when a separate loudspeaker is used for the higher frequencies, two complementary filters, one highpass and one low-pass, are generally used, Fig. 5. The responses are arranged to cross over at the half-power points, and usually Butterworth, or maximally flat, response is chosen for each. On a power basis $\left(V^{2}\right)$ the sum of the responses of two complementary Butterworth filters is constant, Fig. 6. This follows from the defining equations:
$G_{1}(\omega)=\frac{1}{\left[1+(\omega T)^{2 n}\right]^{\frac{1}{2}}} \quad$ (low-pass)
$G_{2}(\omega)=\frac{(\omega T)^{n}}{\left[1+(\omega T)^{2 n}\right]^{\frac{1}{2}}} \quad$ (high-pass)
whence $\left[G_{1}(\omega)\right]^{2}+\left[G_{2}(\omega)\right]^{2}=1$.
If therefore, the cross-over networks are passive, as in Fig. 5, and the Ls and Cs are lossless and the load resistances are equal, the input impedance of the combination is a pure resistance of equal value.

l-p

Fig. 5. 2nd-order passive crossover filter.
For 2nd-order Butterworth response, $q=1 / \sqrt{ } 2$, i.e.

$$
\begin{align*}
G_{1}(p) & =\frac{1}{1+\sqrt{ } 2 p T+p^{2} T^{2}} \tag{16}\\
\text { and } \quad G_{2}(p) & =\frac{p^{2} T^{2}}{1+\sqrt{ } 2 p T+p^{2} T^{2}} \tag{17}
\end{align*}
$$

Clearly a two-integrator loop is not needed for such a low Q factor, but its use may be justified, especially for experimental purposes:

- The low-pass and high-pass outputs come from the same circuit, so the corner frequencies are automatically the same.
- Variable tuning over a wide range may be had by varying either two $R \mathrm{~s}$ or two Cs .
The obvious disadvantage is that when the loads are, for example, loudspeakers, two power amplifiers are needed.
The basic circuit arrangement for simultaneous $1-p$ and $h-p$ output has already been given. If 3 rd-order Butterworth. response is wanted, the damping of the loop is altered to $q=1$, and a lag, $1 /(1+p T)$, and a lead, $p T /(1+p T)$, are connected as shown in Fig. 7. The two responses are not now entirely tuned by the same components; but the extra components can hardly need to be accurate to better than a few per cent. and continuously variable tuning is still possible if a four-gang potentiometer is accepted. Probably for most purposes incremental tuning with a switch would be sufficient. For versatility buffer amplifiers after the added networks may be thought advisable, so that response is not dependent on the input impedance of the amplifiers following. The difference between 2ndand 3rd-order Butterworth response is shown in Fig. 6.

Two-phase low-frequency oscillator

The selectivity of the frequency-selective network in a conventional $C R$ oscillator is low. For example, the Q factor of a conventional Wien-bridge network is $\frac{1}{3}$. Consequently the amplitude-limiting device must be linear at the oscillation frequency, since any harmonics generated would not be attenuated very much relative to the fundamental. This means the limiting device must be slow-acting relative to the period of the oscillation and respond only to the average amplitude of oscillation over many cycles; since otherwise the amplitude would be modulated at oscillation frequency (or twice it), a non-linear process generating harmonics. Such a slow-acting limiter is unacceptable at very low frequencies.

Fig. 6. Power responses of $2 n d$ - and $3 r d$ order crossover filters with Butterworth response.

Fig. 7. Two-integrator system as crossover. filter.

An LC oscillator can use an effectively instantaneous limiter. This distorts the waveform, reducing it to pulses. But the Q factor of the $L C$ circuit can be high, giving good discrimination against the harmonics generated, so the output waveform can be a good sine wave.

Clipping diodes are an example of an instantaneous limiter, and if clipping is hard and symmetrical the output from the limiter approximates to a square wave, the Fourier analysis of which shows that it consists of the fundamental and odd harmonics in relative amplitudes inversely as their order:
$v=\frac{4 E}{\pi}\left\{\sin \omega t+\frac{1}{3} \sin 3 \omega t+\frac{1}{5} \sin 5 \omega t \ldots\right\}$

Now tuned-circuit response when q is high, see Fig. 8, multiplies the fundamental by q and the harmonics by $n /\left(n^{2}-1\right)$ approximately. So if $q=10$, for example, the relative amplitude of the third harmonic is changed from $\frac{1}{3}$ to

$$
\frac{1}{3} \times \frac{1}{10} \times \frac{3}{8}=1.25 \%
$$

the fifth harmonic from $\frac{1}{3}$ to

$$
\frac{1}{5} \times \frac{1}{10} \times \frac{5}{24}=0.4 \%, \text { etc. }
$$

Thus the square wave becomes a fairly good sine wave even with this not very high

(b)

Fig. 8. Two-phase low-frequency oscillator.
value of q. But the two-integrator loop can do better than this.

Besides the tuned-circuit output there is the low-pass output, which, because of the integrator between, is the tuned-circuit output multiplied by $1 / p T$ or $1 / j \omega T$. At this output, therefore, the harmonics are further attenuated by a factor n; so for $q=10$ the third-harmonic content becomes about 0.4% and the fifth-harmonic content less than 0.1%.

To turn the circuit into an oscillator the input must come from a source within the circuit itself, and consideration of the phase response shows that at the resonant frequency the voltage at the tuned-circuit output is in phase with the input voltage, Fig. 8(a). The oscillation loop may be closed, therefore, by connecting the input of the limiter to the tuned-circuit output, as shown in Fig. 8(b). If oscillation is to start and restart reliably, transmission through the limiter for amplitudes below the clipping level must give enough positive feedback to overcome all damping and make the circuit regenerative. Then the amplitude of oscillation will build up until, because of the clipping, a condition of balance is reached where the output from
V_{R}

$\omega(\log$ scale $) \longrightarrow$

Fig. 9. Frequency discriminator.
the limiter is just sufficient to maintain a steady level of oscillation. If the output from the limiter is effectively a square wave, and the two-integrator loop has ideal component values and $R^{\prime \prime}=R^{\prime}$, the magnification for the fundamental is q, and the voltage at both outputs (less harmonics) is $4 q E / \pi$ peak or $2 \sqrt{2 q E / \pi}$ r.m.s.
When the A of the second integrator is high, and also the Q of the capacitor, or if compensation is used, the low-pass output is almost exactly at 90° phase angle with respect to the tuned-circuit output. This is of practical value, particularly in making phase measurements.

If the circuit is to be used as an oscillator and versatile filter, an independent damping loop is used, Fig. 8(b). If the circuit is to be used only as an oscillator, however, the method of damping shown in Fig. 8(c) may be used, in which capacitance C / q is placed across the R of the first integrator. This also allows the convenience of tuning with a two-gang variable resistor, and when q is high makes a negligible change in the responses at the two outputs.

Use as a frequency discriminator

Some applications require that a bandpass filter be tuned to the frequency of an input signal, while others, conversely that an input signal be adjusted to the frequency of a filter. Either type of operation may be performed under the control of the output from a frequency discriminator. The twointegrator loop can be arranged to combine the functions of selective amplifier and frequency discriminator. The feature that
makes it attractive in this dual role is that the cross-over frequency of the discriminator is tuned by the same components that determine the resonant frequency of the filter. It follows that the cross-over of the discriminator will move in sympathy with any variation in the tuning of the filter and also that any change to the bandwidth of the filter is accompanied by a corresponding change in the discriminator slope.

Figure 9 is a block diagram of the essential features of the arrangement. The tuned-circuit response, $q V_{R}$, provides the characteristic for the selective amplifier. The symmetrical notch response, $V_{N}=V_{C}+V_{L}$, provides the basis for the discriminator.

It will be remembered that the notch response carries the phase of the low-pass response below the notch frequency and the phase of the high-pass above. At the notch frequency there is an abrupt change of phase through 180°. Thus, for example, if the output at V_{N} is phase-sensitively rectified using the output at V_{c} as reference, the resulting voltage will have a d.c. component whose polarity will depend upon the sense of the error between the input frequency and the notch frequency. The magnitude of the d.c. component will indicate the magnitude of error, approximately linearly for small errors. However, the rapid rate of attenuation given by the low-pass response restricis the range of operation, and usually a better reference can be formed by subtracting the high-pass response from the low-pass, i.e.

$$
V_{r e f}=V_{C}-V_{L}
$$

This subtraction brings the high-pass response into phase with the low-pass so that, in effect, the two responses add, yielding a symmetrical response as sketched in the diagram.

Tuning an integrator

There is often a need to vary the effective - T of an integrator. Obviously in Figs. 10(a) and (b) varying either C or R varies T. Since there is no change in zero-frequency gain with variation of C, the Q factor of the integrator is unaffected, i.e. $Q=A \omega C R$. The same is true for variation of R provided $R^{\prime} \gg R$. But there are practical limits to the values of C and R if the tuning is to be continuously variable.
The method of Fig. 10(c) gives $T=k_{1} C R$ approx.; for, if $A k_{1} \rightarrow \infty$, the voltage across the capacitor (and hence the current through it) is k_{1} times what it would be if the capacitor were joined directly across the amplifier, and so the equivalent capacitance is $k_{1} C$. This method is used to good effect in the well known Baxandall tone-control circuit. As operation of the potentiometer does not reduce the zero-frequency gain, there is in principle no loss of Q. For this to be true in practice it is necessary for r to be effectively zero so that no appreciable unwanted resistance appears in series with C. If, at any particular setting, the potentiometer has output resistance r_{o}, i.e. $r_{o}=k_{1}\left(1-k_{1}\right) r$, there is a fall in Q caused by the introduction of a term $\left(1+p \mathrm{Cr}_{o}\right)$ into the numerator of the transfer function. This advances the phase and so increases the phase margin. At frequencies where $C r_{o} \ll 1 / \omega$ this increase in phase margin, measured in radians, is given by $\omega C r_{o}$, and hence, even when $A \rightarrow \infty$ the Q factor of such an integrator is limited to $Q=1 / \omega C r_{0}$. With A finite (and since losses add as the reciprocals of Q s) the Q factor may be written down approximately as

$$
\begin{equation*}
\frac{1}{Q}=\frac{1}{A \omega k_{1} C R}+\omega C r_{0} . \tag{18}
\end{equation*}
$$

The maximum value of r_{o} is $r / 4$ (at $k_{1}=\frac{1}{2}$), and if then the second term on the r.h.s. of equn. (18) is too great to be neglected, an emitter follower or other buffer amplifier may be interposed between the slider of the potentiometer and the capacitor.
The method shown in Fig. 10(d) gives $T=C R / k_{2}$, so now the potentiometer effectively increases $C R$. As the zerofrequency gain is $k_{2} A$ there is a fall in Q when $k_{2}<1$ (except in the ideal case where $A=\infty$). It is often a convenient arrangement, however, if used with care. If $R \gg r$, k_{2} is the off-load attenuation ratio of the potentiometer, but, if this condition is not met, the output resistance of the potentiometer merely increases R and distorts the tuning law.

Fig. 10(e) shows graphically the essential effects of tuning a finite-gain integrator by a potentiometer.

Voltage controlled tuning

The continuous tuning of higher order filters, requiring a large number of variables, is generally impracticable using ganged

Fig. 10. Some methods of tuning an integrator.

Fig. 11. Electronic tuning of an integrator.

(b)

Fig. 12. Electronic tuning applied to a two-integrator system.
potentiometers or capacitors, and even switched tuning with a large number of banks is not always convenient. Voltage controlled tuning offers an alternative solution. A scheme suggested and used some years ago by a colleague, Dr R. L. Ford, is described here for the purpose of illustration.

In Fig. 11(a) the potentiometer used in Fig. 10(d) has been replaced by a switch
which periodically connects the integrator to the input voltage source for a time t_{1} and to earth for a time t_{2}. If the frequency of operation of the switch, $1 /\left(t_{1}+t_{2}\right)$, is greater than the effective upper limit of the spectrum of the input voltage V_{i}, then the input to the integrator may be taken to be the smoothed average $V_{i} t_{1} /\left(t_{1}+t_{2}\right)$. This is illustrated in Fig. 11 (b). Alternatively the
integrator ' T ' may be regarded as being $C R\left(t_{1}+t_{2}\right) / t_{1}$. By making the switching frequency sufficiently high the unwanted products of the sampling process can be made negligible at the filter output. However, in order to avoid possible intermodulation problems, it is advisable to restrict the bandwidth of the input signal (by means of an additional simple fixed tuned filter if necessary) so that no appreciable signal is present at the switching frequency. Fig. 11(c) shows an electronic version of the switch, driven by a squarewave generator. It is fairly easy to make such a generator have a waveform with its mark-to-period ratio directly proportional toa d.c. control voltage. Since the switching waveform is common to all integrators the tracking accuracy will be good as long as the transistor switching times are short relative to the minimum pulse width.

Since this method of tuning causes an effective reduction in zero-frequency gain, losses will increase as the funing decreases
the frequency. Dr Ford has shown how compensation can be applied in respect of applications using the two-integrator loop. This is provided by the network consisting of R_{1} and C_{1}, shown in Fig. 12, which progressively shunts the outer feedback loop as the frequency decreases. The design requires that the lag network should give nearly 90° of the phase shift at the lowest tuning frequency and that

$$
\begin{equation*}
C_{1} R_{1}^{2}=A R^{\prime} R C / 2 \tag{19}
\end{equation*}
$$

Over a 10 to 1 tuning range and using a nominal value of $q=20$, amplitude variations are reduced from 15% to 1% when $A=2.000$.

Using this technique the two-integrator loop can be used as a voltage controlled filter or oscillator, as indicated in Fig. 12, or as a self-tuning filter using the output from the frequency discriminator, Fig. 9, to control the variable mark/period oscillator (An integrator is shown notionally in the toop to reduce steady-state tracking errors.)

March Meetings

Tickets are required for some meetings: readers are advised, therefore, 10 communicate with the society concerned

LONDON

3rd. I.E.E./I.E.R.E-Discussion on "Indirect pressure measurement" at 17.30 at Savoy Pl., W.C.2. 4th. I.P.P.S./I.E.E.-Symposium on "Electrolu minescent solid state devices" at 10.00 at Savoy PI., W.C. 2

4th. I.E.R.E.-"The continuing education and development of professional electronic engineers" by Dr K. G. Stephens at 18.00 at 9 Bedford Sq., W.C.I. 4th S.E.R.T.-"Closed circuit educational television" by E. Wykes at 19.30 at the Educational TV Centre. Battersea.

5th. 1.E.E.-Appleton Lecture "Radar meteorol ogy" by Dr. E. Eastwood at 17.30 at Savoy Pl., w.C.2.

5th. I.E.R.E.- Direct digital control without a computer" by C. C. Lawson at 18.00 at 9 Bedford Sq., W.C. 1 .

9th. I.E.E.-"Training-a systems approach" by Capt. G. Huggett, R.N., at 17.30 at Savoy Pl., W.C. 2.

9th. 1.E.E.T.E.-"Problems of starting up colour television programmes" by F. H. Steele at 18.00 at the 1.E.E. Savoy PI., W.C.2.

10th. I.E.R.E.-"Management effectiveness for engineers" by H. Makepeace at 18.00 at 9 Bedford Sq., W.C.I.

Ilth. I.E.E.-"Electronics in cars" by L. G. Cripps at 17.30 at Savoy Pl., W.C.2.

16th. I.E.E.-"Sonar" by T. N. Reynolds at 17.30 at Savoy PI., W.C. 2.

16th. R.Inst.-"The Parliamentary and Scientific Committee" by R. Gresham Cooke at 17.30 at 21 Albemarle St. W.I.

18th. I.E.R.E.-Electronic engineering in the solution to harbour approach problems for large ships" by T. W. Welch at 18.00 at 9 Bedford Sq.. W.C.I.

19 h. R.Soc. - "Electronic aids to night vision" by P. Schagen at 16.30 at 6 Carlton House Terrace, S.W.I.

19th. I. Electronics.-"Flexible printed circuits" by P. B. Ryman at 18.30 at the London School of Hygiene \& Tropical Medicine. Keppel St, W.C.I.
20th. I.E.E.-Discussion on "Microwave filters" at 17.30 at Savoy PI., W.C.2.

20th. I.E.E.-"Technological forecasting and
corporate long-range planning" by Dr. B. C. Lindley at 17.30 at Savoy PI., W.C. 2.

25th. I.E.R.E./I.E.E.-Colloquium on "Peripheral development and intormation flows inside systems" at 14.30 at 9 Bedford Sq., W.C.I.

25th. I.E.E-Discussion on "Silicon imaging devices" at I4.30 at Savoy PI., W.C.2.

AYLESBURY

3rd. I.E.E.-"Pulse code modulation" by G. H. Bennett at 19.15 at Aylesbury College of Further Education.

BASILDON

Ilth. I.E.R.E.-"Electronic production in the $1970 s^{\prime \prime}$ by P. Newell at 19.30 at the Bull's Eye.

BATH

4th. I.E.R.E./I.E.E.-"Underwater acoustics and sonar" by Prof. D. G. Tucker at 19.00 at the Technical College.

BIRMINGHAM

18th. R.T.S.-"Colour film for colour television" by Dr. G. B. Townsend and C. B. Wood at 19.00 at ATV Network, Paradise Centre.

BOURNEMOUTH

5th. I.E.R.E.-"Computers for engineers" by T. Mathews at 19.00 at the College of Technology.

BRISTOL

18th. I.E.R.E./B.C.S.-"Computer typesetting" by R. Chapman at 19.00 at the University.

CAMBORNE

10th. I.E.R.E.-"Training technician engineers for the future" by Dr. H. L. Haslegrave at 19.00 at the College of Technology.

CARDIFF

12th. R.T.S.-"Modern video recorders" by W. Silvie at 19.00 at B.B.C.. Llandaff.

23rd. I.E.R.E./l.E.E.-"Digital filters" by R.C.V Macario at 18.30 at the University of Wales Inst. of Science and Technology.

CHELTENHAM

17th. I.E.R.E.-"Training of professional
engineters and technicians" by R. E. Stevenson at 19.00 at the Government Communications Headquarters, Oakley.

COVENTRY

12th. I.E.R.E./I.E.E.-"Integrated circuits" by D. Grant at 18.30 at the Lanchester Coilcge of Technology.
EDINBURGH
Ith. I.E.R.E./I.E.E.-"Inertial navigation" by J. T. Summers at 19.00 at Napier College of Science and Technology, Colinton Rd.

19th. I.E.E.-Faraday Lecture "People communications and engineering" by J. H. H. Merriman at 14.00 (students) and 19.00 (public) at Usher Hall: GLASGOW

12th. I.E.R.E/I.E.E.-"Inertial navigation" by J. T. Summers at 19.00 at the Institution of Engineers and Shipbuilders in Scotland, 183 Bath St., C2.

HORNCHURCH

24th. I.E.R.E.- ${ }^{-}$Automation in air traffic control" by A. Hartley-Smith at 18.30 at Havering Technical College, Ardleigh Green Rd.

HULL

19th. I.E.R.E./I.E.E.-"Doppler aims for berthing large tankers" by Dr. W. P. Williams at 18.30 at the Yorkshire Electricity Board Offices, Ferensway.

LEICESTER

IOth. R.T.S.-"The B.R.C. 3000 colour TV chassis" by C. R. West at 19.30 at Vaughan College, St. Nicholas Circle.

18 th I.E.E.T.E.-"Storage of sight and sound" by J. E. Shepherd at 18.30 at the Polytechnic, the Newark.

LIVERPOOL

18th. I.E.R.E-"The development and application of integrated circuits" by T. Urwin at 19.00 at the University's Dept. of Electrical Engineering.

MAIDSTONE

2nd. 1.E.E-"Stereophonic transmission" by Dr. G. J. Phillips at 19.00 at the Royal Star Hotel.

MANCHESTER

9th. 1.E.E.T.E.-"Electronics in industry" by K. Varley at 19.30 at the Education and Training Dept., GEC-AEI Ltd., Traftord Park.
17th. I.E.R.E./I.E.E. /R.T.S.-"Space communica tions" by J. M. Brown at 19.15 at the Renold Bldg, U.M.I.S.T.

NEWCASTLE-UPON-TYNE

Ilth. I.E.R.E.-"High speed data communications over telephone lines" by C. B. Stuttard at 18.00 at Rutherford College, the Polytechnic.

17th. I.E.E.-Faraday Lecture *People, communications and engineering" by J. H. H. Merriman at 14.15 (students) and 19.15 (public) at City Hatl.

NEWPORT, MON.

18th. 1.E.E.T.E.-"From the Albert Hall to the Festival Hall-the adventures of an electrical engincer in the realms of acoustics" by James Moir at 19.30 at the College of Technology, Allt-Yr-Yn Avenue.

PLYMOUTH

17th. I.E.R.E.-"Training technician engineers for the future" by Dr. H. L. Haslegrave at 19.00 at the College of Technology.

READING

19th. I.E.R.E.-"Laser applications in elec tronics" by Prof. W. A. Gambling at 19.30 at J. J. Thomson Laboratory, the University. White knights Park

RUGELEY

Sth. I.E.R.E.-"Satellite power supplies" by P. S Woodcock at 19.00 at the Shrewsbury Arms Hotel, Market St.

SWINDON

3rd. I.E.R.E./I.E.E.-"Sterco sound broadcast ing" by J. H. Brooks at 18.15 at the College.

Literature Received

ACTIVE DEVICES

A series of data sheets describing the new range of m.t.n.s. (metal-thick-oxide-nitride-silicon) medium scale integration devices is available from General Instrument Microelectronics, Stonefield Way, Ruislip, Middlesex, HA4 OJT. Called the "Giant" range, the devices have inputs and outputs compatible with d.t.I./t.t.l. and m.o.s. circuitry without any interface components. A single-phase d.t.l/t.t.l. clock line is all that is required. m.t.n.s. price list WW401
reliability aspect of low voltage nitrideWW402
RA-6-4803, 32-bit random access memory WW403
SS-6-8211, dual 16 -bit d.c. shift register WW404
SS-6-8212, dual 16-bit d.c. shift registerWW 405
SL-6-4025/32, quad $25 / 32$-bit static shift registerWW406
MU-6-2281, 10-channel multiplexer WW407
SL-6-2064, dual 64-bit static shift register WW408
SL-6-2050, dual 50 -bit static shift register WW4 409
SS-6-1032, 32-bit static shift registerWW4 10
SS-6-2004, dual 4-bit shift registerWW411
SS-6-2021, 21-bit static shift registerWW412
MU-6-8571, 16-way shift register controlled multiplexerWW413
AX-6-8591, presettable reversible b.c.d. counter, store, 10 -line
decode, display drive, with zero detect and display
blanking ...WW414 4
We have received two loose-leaf binders containing literature from Marconi-Elliott Microelectronics Ltd, Witham, Essex:

Digital and linear microcircuits, data
WW4 15
Application notes
WW4 16
The hybrid microcircuit facilities of Racal Research Ltd, Newtown, Tewkesbury, Glos., are described in a leaflet available from them

WW4 17
The 1970 edition of "Abridged Valve Data" may be obtained from English Electric Valve Co. Ltd, Chelmsford, Essex

WW4 18

The SG7520/25 series of high-speed sense amplifiers manufactured by Silicon General Inc., 7382 Bolsa Avenue, Westminster, California 92683, U.S.A., is described in an eight-page leaflet

WW421
Transitron Electronic Ltd, Gardner Rd, Maidenhead, Berks., give details of a 64-bit, word addressed, integrated circuit memory cell in a leaflet

WW422
Data is available on a $6 \mathrm{~A}, 1,400 \mathrm{~V}$, rectifier (type S 6) in a four-page booklet ($4450-50 /$ S6) from A.E.I. Semiconductors Ltd, Carholme Rd, Lincoln

WW423
The following literature has been produced by the National Semiconductor Corporation and is available from Athena Semiconductor Mktg. Co. Ltd, 140 High St, Egham, Surrey.
t.t.l. cross reference guide
t.t.l. series $54 / 74$ (NS) performance guide

WW424
WW425

PASSIVE COMPONENTS

"Electronic Components, Accessories and Materials" is the title of a directory and product guide published by the Radio and Electronic Component Manufacturers' Federation, Mappin House, 4 Winsley St, London WIN ODT. It lists details of 195 manufacturing firms and includes a product guide in English, French, German and Spanish. Copies
are available price $6 s$ each to U.K. residents or free of charge to overseas companies.

The 1970 "Constructors Catalogue" from Electroniques, Edinburgh Way, Harlow, Essex, unlike last year's catalogue, is devoted entirely to electronic components and equipment; it costs 10 s plus 3 s postage and packing.

Crystals, resistors, magnetic materials, infra-red filters and capacitors are listed in "Passive Components Summary" (6000/301) obtainable from ITT Components Group Europe, Standard Telephones and Cables Ltd, Edinburgh Way, Harlow, Essex
.WW426
Now obtainable is the "Microwave Associates Master Catalog" from Microwave Associates Ltd, Cradock Rd, Luton, Beds.
.WW427
Sub-miniature indicator lamps (3 mm) are the subject of a leaflet from Vitality Bulbs Ltd, Beetons Way, Bury St. Edmunds, Suffolk ..WW428

The Sprague range of "Tantalex" tantalum electrolytic capacitors is described in a booklet from WEL Components Ltd, 5 Loverock Rd, Reading, Berks

WW429
A leaflet produced by A. F. Bulgin and Co., Bye Pass Rd, Barking, Essex, describes some of their indication, connection and switching compoments WW430
The transformer design and production facilities of Gresham Transformers Ltd, Hanworth Trading Estate, Feltham, Middlesex, are detailed in a leaflet

WW431
If it's rotary switches you are interested in you will find the latest catalogue from Lorlin Electronic Co. Ltd, Billinghurst, Sussex, of value. WW432

An eight-page catalogue describing coaxial directional couplers is available from Radiall, 1 Rue Jacquard, 93-Rosny, S/Bois, France

WW433

EQUIPMENT

The "High-Fidelity and General Audio Equipment" catalogue from Henry's Radio Ltd, 303 Edgware Rd, London W.2, consists of 120 pages and costs 5 s plus postage and packing.

The 1970 edition of Lasky's "Audiotronics" catalogue is now available free of charge (1s 6 d required for postage and packing) from Lasky's Radio, 3-15 Cavell St, Tower Hamlets, London E.1.

The range of temperature control and measuring instruments, chart recorders and other industrial instrumentation manufactured by FAS Automazioni Strumenti of Italy is described in a catalogue. FAS Automazioni Strumenti, Via F. Koristka, 8/10., 120154 Milan, Italy. WW449

A full range of accessories for Philips oscilloscopes is described in an eight-page brochure available from Pye Unicam Ltd, York St, Cambridge

WW442

GENERAL INFORMATION

The "Miniflux Manual" is a 131 -page book devoted to the replay of tape recordings. The theory is discussed and a number of practical circuits are given including a stereo pre-amplifier using integrated circuits. Price 31s 6d from: Miniflux Electronics Ltd, 8 Hale Rd, London, N.W.7.

The B.B.C., Broadcasting House, London W1A IAA, has produced the following two information sheets:

2701(17) Television interference from distant transmitting stations.
$1102(5)$ V.H.F. radio receiving aerials.
The following publications are available from the British Standards Institution, 2 Park St, London W1Y 4AA:

BS 9110: Metric Units: Specification for fixed resistors of assessed quality: generic data and method of test price 16s.
BS 9111: Metric Units: Rules for the preparation of detail specifications for fixed non-wirewound resistors, film type (type 1) of assessed quality
price 12 s .
"Automation Matters" is the title of a booklet published by Sira for the U.K. Automation Council. The subject dealt with is "Cost reduction by thickness measurement and control". The booklet can be obtained from Sira, South Hill, Chislehurst, Kent, price lOs.

Test Your Knowledge

Series devised by L. Ibbotson, B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

22. Rectifier Circuits

Figures 1, 2 and 3 show three simple rectifier circuits, each supplied from the mains, and each feeding a resistive load R. Unless otherwise stated it is to be assumed that the components are ideal.

1. The current in each diode flows for half of an input cycle:
(a) in all three circuits
(b) in the circuit of Fig. 1 only
(c) in the circuit of Fig. 2 only
(d) in the circuit of Fig. 3 only.
2. In each circuit the direct voltage appearing across R will consist of a steady voltage with a ripple superimposed. The fundamental ripple frequency is 50 Hz :
(a) for the circuit of Fig. 1 only
(b) for the circuits of Figs. 1 and 3 but not Fig. 2
(c) for all three circuits
(d) for none of the circuits.
3. In the circuit of Fig. 1, if for a given load-resistor the value of the capacitor C is increased, the amplitude of the ripple will be reduced. In a practical circuit the maximum value of capacitor which may be used is determined by:
(a) the time constant $C R$ which must not exceed $1 / 50$ second
(b) the physical size of the capacitor
(c) the maximum rated instantaneous current for the diode
(d) the maximum rated diode reverse voltage.
4. In the circuit of Fig. 2, increasing the value of L will decrease the amplitude of the ripple. The limit to the size of inductor used in a practical circuit is determined by:
(a) the time constant L / R which must not exceed $1 / 100$ second
(b) the resistance of the inductor, which will be greater for larger values
(c) the maximum rated instantaneous diode current
(d) the maximum rated diode reverse voltage.
5. If in the three circuits similarly labelled components have the same values, the amplitude of the ripple voltage across the load:
(a) will be the same for all three circuits
(b) will be least for the circuit of Fig. 1
(c) will be least for the circuit of Fig. 2
(d) will be least for the circuit of Fig. 3.
6. Assuming that the component values in the three circuits are such that the ripple amplitude is small compared to the steady output voltage, the ripple waveform appearing across the load will be approximately saw-tooth:
(a) in all three circuits
(b) in the circuit of Fig. 1 only
(c) in the circuit of Fig. 2 only
(d) in the circuit of Fig. 3 only
7. Assuming small ripple amplitude, the magnitude of the steady output voltage will be:
(a) the same for all three circuits
(b) least for the circuit of Fig. 1
(c) least for the circuit of Fig. 2
(d) least for the circuit of Fig. 3.
8. The magnitude of the steady output voltage for the circuit of Fig. 2 will be:
(a) 340 volts
(b) $340 / \pi$ volts
(c) 680 volts
(d) $680 / \pi$ volts
9. Assuming that the ripple amplitude is

Fig. 1

Fig. 2

Fig. 3
small in each case, the maximum reverse voltage appearing across each diode is:
(a) the same in all three circuits
(b) least for the circuit of Fig. 1
(c) least for the circuit of Fig. 2
(d) least for the circuit of Fig. 3.
10. Assuming small ripple amplitude the value of the maximum reverse voltage appearing across the diode in Fig. 1 is approximately:
(a) 340 volts
(b) $340 / \pi$ volts
(c) 680 volts
(d) $680 / \pi$ volts
11. The simple inductor smoothing used in Fig. 2:
(a) could also be used in a half-wave rectifier or a bridge rectifier circuit
(b) could not be used in either a half-wave rectifier or a bridge rectifier circuit
(c) could be used in a half-wave rectifier circuit, but not in a bridge rectifier circuit
(d) could be used in a bridge rectifier circuit, but not in a half-wave rectifier circuit.
12. For three practical circuits, of the forms of Figs. 1, 2 and 3, designed to feed the same load, the voltage regulation over the working range will probably be:
(a) the same for all three
(b) best for the circuit of Fig. 1
(c) best for the circuit of Fig. 2
(d) best for the circuit of Fig. 3
13. In the circuit of Fig. 1 the current in the branch containing the capacitor:
(a) flows in the direction $a b$ at all times
(b) flows in the direction ba at all times
(c) flows in the direction $a b$ when the diode is conducting, in the direction ba when it is not
(d) flows in the direction $b a$ when the diode is conducting, in the direction $a b$ when it is not.
14. If in the circuits of Fig. 1 and 2 the load resistance R is increased in value, the amplitude of the ripple voltage across the load will:
(a) increase in both cases
(b) decrease in both cases
(c) increase for the circuit of Fig. 1, decrease for the circuit of Fig. 2.
(d) increase for the circuit of Fig. 2, decrease for the circuit of Fig. 1.
15. In the circuit of Fig. 3:
(a) the reactances of the inductor and of the capacitors should be as large as possible
(b) the reactances of the inductor and of the capacitors should be as small as possible
(c) the reactance of the inductor should be as large as possible; the reactances of the capacitors should be as small as possible
(d) the reactance of the inductor should be as small as possible; the reactances of the capacitors should be as large as possible.

New Products

Magnetic Cartridge

The American ADC 25 stereo pickup, available in the U.K. from K.E.F., is an induced magnetic cartridge with three interchangeable stylus assemblies. Two of the styli are elliptical $(0.0009 \times 0.0003 \mathrm{in}$, and $0.0007 \times 0.0003 \mathrm{in}$) and the third is spherical (0.0006 in). It is claimed that this choice allows the user to obtain the best reproduction from records having different groove characteristics. No harm can be done to any record with any of the styli in the recommended tracking pressure range of 0.5 to 1.25 g . Each stylus is predicted to last indefinitely 'with clean records and proper use'. Price $£ 8112$ s plus $£ 18$ 19s purchase tax. K.E.F. Electronics Ltd, Tovil, Maidstone, Kent.
WW 328 for further details

Universal Bridge

A new a.f. bridge from Wayne Kerr, model B224, measures components singly or in any combination, and provides four-figure readings of the real and imaginary terms simultaneously. Seven of the ten ranges are for two- or three-terminal connections, accuracy being 0.1% or better. The remaining three ranges provide four-terminal connections to ensure accurate (0.3%) measurements of all impedances below 10Ω. Operation can be at any frequency between 200 Hz and 20 kHz . The internal detector covers this range and an oscillator is built in for normal operation at 10^{4} radians $/ \mathrm{sec}(1592 \mathrm{~Hz}$). Simplicity of operation is assured by a functional layout of the controls and by the logarithmic amplitude response of the detector amplifier. This ensures rapid selection of the correct

range, easy determination of a first balance and automatic increase in sensitivity as the final balance point is approached. Operation is from 110 or 240 V a.c. or from the internal rechargeable battery. This latter facility simplifies connection of the bridge measurement leads to circuits where one terminal is grounded. Overall coverage is 200 attofarads $(0.0002 \mathrm{pF})$ to 5 farads, 2 picomhos to 50 kilomhos, 2 nanohenry's to 5 megahenrys and 2 micro-ohms to 500 gigohms. The B224 is 19 in wide, 12 in high and 6 in deep $(482 \times 311 \times 152 \mathrm{~mm})$. It weighs approximately 22 lb (10 kg) and will sell in the U.K. at $£ 340$. Wayne Kerr Co. Ltd., New Malden, Surrey.
WW 301 for further details

High-current Power Supply

The Lambda LK361 power supply can deliver 50 A at $0-36 \mathrm{~V}$ and is convection cooled. It has line and load regulation of 0.015%, ripple 500 mV r.m.s., is completely programmable, and can be used

in . the constant-voltage or constantcurrent mode with automatic crossover. The unit may be used for series or parallel operation and is guaranteed for five years. Lambda Electronics, 21 Aston Road, Waterlooville, Portsmouth, Hants. WW 306 for further details

Camera Tube

The XQ1071 is a sensitive, one-inch, Plumbicon tube from Mullard for use in cameras of industrial closed-circuit television systems. It will give acceptable pictures under normal lighting conditions, and has a rapid response, greatly reducing the smear obtained when the camera is focused on moving objects. The tube has a
resolution of 600 lines, and uses magnetic focusing and deflection. The maximum operating voltage is 1100 V , and the heater supply required is 6.3 V at 95 mA . The capacitance between the target and the other electrodes is only 4.5 pF . It is intended for use in monocrome television cameras: three other versions suitable for use with red, green and blue light are available; these are distinguished by the suffixes R, G and B after the type number XQ1071. Mullard Ltd, Mullard House, Torrington Place, London W.C. 1 .
WW 308 for further details

Electronic Multimeter

Electronic multimeter model 313 from Bach-Simpson has an input impedance of $11 \mathrm{M} \Omega$ on d.c. and $10 \mathrm{M} \Omega$ on a.c. ranges. It has a frequency response of $\pm 0.5 \mathrm{~dB}$ from 20 Hz to $100 \mathrm{kHz}(10 \mathrm{kHz}$ to 250 MHz with external probe) and seven resistance ranges which provide internal resistance measurements up to $1000 \mathrm{M} \Omega$. Other

special features include centre-zero facility, r.m.s. and peak-to-peak a.c. scales together with a dB scale. A 7 -in scale enables currents of $5 \mu \mathrm{~A}$ or less to be read. BachSimpson Ltd., 331 Uxbridge Road, Rickmansworth, Herts.
WW $\mathbf{3 0 5}$ for further details

U.H.F. Receiver

The Decca type RU.3911, receiver unit is fully transistorized and will demodulate u.h.f. 625-line PAL colour television signals in the range $470 / 860 \mathrm{MHz}$ received "off-air", or distributed on a channelselective or wideband closed circuit system, to provide a high-quality video and audio output signal at standard levels for immediate display, further processing, or remodulation. The standard unit is contained in a case measuring $19 \frac{1}{4} \times 4 \frac{3}{4} \times 13 \frac{3}{4}$ in but is also suitable for mounting on a

19-in rack, for which purpose a separate dust cover is provided. Manual tuning of the four pre-set channels, selected by push-buttons, is by means of a separate control, but an effective switchable automatic frequency-control circuit is also provided. There are six independent video outputs of 1 V into 75Ω, and one balanced audio output of 1 mW into 600Ω. A monitor loudspeaker is provided on the front panel. Price $£ 89$ 10s 8 d (including purchase tax). Decca Radio \& Television, Ingate Place, Queenstown Road, London, S.W.8.
WW 317 for further details

Aircraft 'Homer'

Burndept Electronics (E.R.) is marketing a homing instrument manufactured in West Germany for fixed or rotary wing aircraft which, when used with the company's personal and flotation beacons or similar equipment gives a ground/air range of 150 / 200 miles at $30,000 \mathrm{ft}$ ($60 / 80$ miles at $10,000 \mathrm{ft}$). It will pick up any radio distress signals on 121.5 or 243 MHz . A safety feature of the homing device (type BE 373) is its independence from the main aircraft communications system; only a connection to the usual 28 V d.c. supply is required. A pair of $\frac{1}{4}$-wave radio aerials with balanced $50-\Omega$ feeder cables is supplied, and an alternative version for vehicle or ship $12-\mathrm{V}$ operation is available. In normal

operation, the emergency channel is preset to the v.h.f. or u.h.f. international aviation distress frequency; an auxiliary channel can be used to within $\pm 2.5 \mathrm{MHz}$ (v.h.f.) or $\pm 5 \mathrm{MHz}$ (u.h.f.) for training and/or tactical purposes. The homer provides 'left/right' indications from the received signal. Audio outputs to the aircraft intercom system are provided. The unit costs under $£ 500$, plus installation. Burndept Electronics (E.R.) Ltd, St. Fidelis Road, Erith, Kent.
WW 322 for further details

V.H.F. A.M. Radiotelephone

A range of v.h.f. a.m. mobile radiotelephones (the Star AM7 series), has been introduced by S.T.C. The AM7 is available in low-, mid- and high-band versions, covering all the v.h.f. frequencies available for use in the U.K. Single-channel and four-channel models are available, employing 12.5 kHz channel spacing. The equipment, which is completely solid state, has no relays or

moving parts. The output power is 5-7 watts, and receiver sensitivity is $0.5 u \mathrm{~V}$ to open squelch. Audio output is 2.5 watts into 3Ω. Power requirements (from 12 V vehicle battery) is 1.9 A on transmit (full modulation) and 0.2A on standby. Standard Telephones and Cables Ltd, S.T.C. House, 190 Strand, London, W.C. 2.
WW 309 for further details

Modular Noise Source

The NS 110 A module provides 0.5 V r.m.s. of random noise in the range $500 \mathrm{~Hz}-$ $1 \mathrm{MHz}(\pm 1 \mathrm{~dB})$. In the range $50 \mathrm{~Hz}-5 \mathrm{MHz}$ the output is level to within $\pm 5 \mathrm{~dB}$. The module requires a supply of 9 V at 10 mA . Provision is made for an attenuator or filter to be inserted between the separate internal amplifiers. The output amplifier $\left(A_{2}\right)$ has a $600-\Omega$ short-circuit proof output terminal $\left(O P_{2}\right)$. The module is suitable for use as a broadband source for telephone-line noise simulation, intermodulation and crosstalk tests, frequency response measurements and noise interference tests. The noise level is sufficiently flat in the audio region to permit assessments to be made of loudspeaker response and room acoustics including sound attenuation and reverberation. ADM Electronics, P.O. Box 3, Merthyr Tydfil, Glam.
WW 307 for further details

50-MHz Oscilloscope

A 50 MHz dual-trace general-purpose oscilloscope from Pye Unicam, known as the Philips PM 3250, combines a 2 mV input sensitivity with a 50 MHz bandwidth, and $200_{\mu} \mathrm{V}$ when a 5 MHz bandwidth is used. It is capable of simultaneously displaying the differential signal (A-B) with one of the original signals. The Y -amplifier can be set from $2 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ using a thisteen-position calibrated control and $\times 10$ gain magnifier gives the $200 \mu \mathrm{~V} / \mathrm{cm}$ sensitivity at the reduced bandwidth of 5 MHz . Full overload protection is provided on both channels and at maximum input sensitivity 400 V can be applied to either input without damage. Sweep speeds pro-

vided on the main timebase cover the range $1 \mathrm{~s} / \mathrm{cm}$ to $50 \mathrm{~ns} / \mathrm{cm}$ in 23 calibrated ranges and a $\times 5$ magnifier permits a $10 \mathrm{~ns} /$ cm speed to be used. The timebase can operate in the triggered, automatic or singleshot modes, and triggering can be from either input channel or an external source. A delayed timebase provides sweep speeds of from $0.5 \mathrm{~s} / \mathrm{cm}$ to $50 \mathrm{~ns} / \mathrm{cm}$ in 22 calibrated steps and also employs a magnifier to give $10 \mathrm{~ns} / \mathrm{cm}$. This timebase can be triggered immediately after a delay by either the main sweep or the measuring signal. The instrument is mains powered and measures $22 \times 32 \times 48 \mathrm{~cm}$. Pye Unicam Ltd., York Street, Cambridge. WW 302 for further details

Beam Tetrode

The TT100 beam tetrode from The M-O Valve Co ., is primarily intended for use as a class AB power amplifier for s.s.b. transmitters in ships. It will give a p.e.p. output of 100 W with intermodulation products of -42 dB for an h.t. of only 600 V , while 200 W p.e.p. is available for anh.t. of 850 V . The stated output powers are maintained

up to at least 20 MHz , while at 30 MHz the output is greater than 85% of the low frequency value. (Anode dissipations significantly greater than these values are permissible for short periods). Class AB2 operation is recommended and is made possible by the very low grid interception of the valve. The M-O Valve Co. Ltd, Brook Green Works, London W.6.
WW 319 for further details

Cassette Tape Editing Kit

A cassette tape editing and joining kit from Multicore enables cassette tapes to be joined if they have been broken or edited because it is desired to remove unwanted sections which have been recorded. It may also be used, under certain circumstances, to add tape from one cassette to another. The kit comprises: Bib tape splicer with chromium plated clamps; two razor cutters (1 spare); splicing tape on dispenser, tape piercer, three tape extractor and winder
cards (two spare); and ten cassette and container labels (self adhesive). The main difference between editing $\frac{1}{4}$-in tape and $\frac{1}{8}$-in tape is that with a reel-to-reel machine the non-oxide side of the tape is available for marking with a chinagraph pencil. The tape in a cassette is wound the other way round, i.e. with the oxide side outwards. If the oxide side was marked with a chinagraph pencil the marking would not be visible when the tape was mounted in the channel on the splicer with the oxide side downwards. Obviously, the splicing tape must be applied to the non-oxide side of the tape. A method of marking simultaneously both sides of the tape has been devised. Although the joining and editing processes are relatively simple, a comprehensive 6 -page instruction leaflet is included in the kit. The price is 29 s . The Bib Division of Multicore Solders Ltd, Hemel Hempstead, Herts.
WW 323 for further details

A.M. Monitor

A solid-state a.m. monitor for transmissions in the frequency range 540 kHz to 30 MHz has been introduced by Gates Radio Company. The monitor is said to meet or exceed all requirements for measuring modulation percentages, and is suitable for proof-or-performance measurements. The monitor's solid-state circuits are not affected by ageing and measurement accuracy is said to be retained indefinitely. Correct positive or negative peak indications are given even on programme bursts as short as 40 to 90 milliseconds. The over-modulation flasher light also has the same accuracy as

the meter. For aural monitoring there is a $600-\Omega$ output. Three functional monitoring controls are located on the front panel: (1) carrier-level setting, (2) a range selector covering negative peak percentages, and (3) a modulation meter switch for chosing either negative or positive peaks. For obtaining modulation readings by meter and flasher at a distant location, there is an optional remote meterpanel available. Gates Radio Company, 123 Hampshire Street, Quincey, Illinois, U.S.A.
WW 327 for further details

Six-decade Resistance Box

A resistance range of 1Ω to $1 \mathrm{M} \Omega$ in $1-\Omega$ steps is provided by Resistance box type GE 6000, from Guest International. Very high precision is obtained through the use of 0.5% metal film resistors on the $10-\Omega 2$ decade and above. These resistors provide protection during overioad conditions and

have low self-inductance. The dimensions are $343 \times 63.5 \times 70 \mathrm{~mm}$, and the price is £22. Guest International Ltd, Nicholas House, Brigstock Road, Thornton Heath, Surrey.
WW 326 for further details

Voltage Triplers

A range of voltage triplers, announced by General Instrument (U.K.), employs matched silicon diodes and ceramic capacitors to provide e.h.t. for various applications. A typical unit in the new range is the TVM25 which converts 8.3 kV from the flyback transformer to 25 kV for a colourtube anode and provides a separate focusing voltage. The peak input voltage is 12 kV , output voltage is 30 kV , normal output current is $1.5 \mathrm{~mA} \mathrm{d.c}$. and the short circuit overload rating is 50 mA for 30 seconds. The operating temperature range is -50° to $+85^{\circ} \mathrm{C}$. Operating frequency is 15.750 Hz . Input capacitance is less than 30 pF for zero bias voltage. Individual capacitors used in the TVM25 are rated at $1,000 \mathrm{pF}$ at 10 kV with leakage current less than $1.0 \mu \mathrm{~A}$ at 10 kV working voltage and $85^{\circ} \mathrm{C}$ ambient temperature. The tripler is totally encapsulated in epoxy resin which is flame resistant and has negligible corona potential. General Instrument (U.K.) Ltd, Stonefield Way, Victoria Road, South Ruislip, Middx.
WW 312 for further details

Miniature Variable D.C. Power Supply

The TF 2150 power supply from Marconi Instruments provides continuous control of both current and voltage with a maximum output of 25 W . The range is $0-30 \mathrm{~V}$ and $0-1.25 \mathrm{~A}$. Regulation is better than 0.05%, and ripple less than $400 \mu \mathrm{~V}$. There is non-re-entrant current protection. The accuracy of full scale volts is $\pm 2 \%$. It may also be operated as a pulsed power source, linear d.c. power amplifier, threshold switch, or temperature regulator. It may be remotely programmed (external

resistor) and operated in series or parallel, grounded or ungrounded. The unit weighs 2.3 kg , measures $190 \times 80 \times 160 \mathrm{~mm}$, and costs $£ 39$ 10s. Marconi Instruments Ltd, Longacres, St. Albans, Herts.
WW 325 for further details

$\frac{1}{2}$-kW Power Supply

Robin Telephones have developed a lowripple high-efficiency stabilized power supply capable of delivering 10 A at 50 V . Stability is achieved by a variable inductance, which is controlled by a semiconductor circuit. The output is monitored by two meters which can be scaled to customers' requirements. The stability is such that at 1 A ripple is 7 mV (voltage 50.5 V) and at 10 A ripple is 92 mV (voltage 50.0 V). Supplies with other voltage and current ratings are available. Price $£ 58$. Robin Telephones Ltd., 5 \& 6 Wandsworth Place, London S.W.I8.
WW 304 for further details

Low-voltage Indicator Tube

Counting Instruments are marketing a miniature Itron (Japanese) low-voltage indicator tube. The display is green. Heater
requirement is 50 mA at 0.7 V , and the maximum d.c. level for the display segments is 25 V d.c. Counting Instruments Ltd, 5 Elstree Way, Boreham Wood, Herts.
WW 324 for further details

700V 6A Transistor

Available from GDS (Sales) Ltd is a power transistor with $700 \mathrm{~V} V_{\text {CES }}$ and $325 \mathrm{~V} V_{\text {CEO }}$ ratings, $1 . \mu \mathrm{s}$ maximum fall time and 2 V maximum saturation voltage, both measured at a collector current of 6 A . Supplied in the TO-3 package and rated at 125 W at $25^{\circ} \mathrm{C}$ case temperature, the Motorola MJ9000 is capable of carrying up to 10A continuous collector current. Also announced is the Motorola MJ8400 which is rated at $600 \mathrm{~V} V_{C E O}$ and $1400 \mathrm{~V} V_{C E S}$ and
has $1.1 \mu \mathrm{~s}$ maximum fall time at 3 A . Both transistors can be used in c.r.t. deflection systems. Cost of the MJ9000 is 72 s 4 d and the MJ8400, 86s 2d. GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
WW 314 for further details

Transistor Tester

Both field effect and bipolar transistors can be tested under small signal a.c. conditions at a nominal frequency of 1 kHz with the Bournlea Dynamic transistor tester. For depletion mode f.e.ts the measurement range of zero-bias transconductance (g_{mo}) is from 0.5 to 75 mmho . For bipolartransistors the measurement range of current gain (beta) is from 5 to 750 . Devices of either

polarity can be tested. Terminals on the side of the instrument enable any sensitive multirange meter to be used for a variety of additional tests on diodes and transistors, including f.e.t. zero bias drain current ($I_{D S S}$) and f.e.t. pinch-off voltage $\left(V_{p}\right)$. The Cardon Instrument Co., Earls Colne, Colchester, Essex.
WW 310 for further details

Encapsulated Single-phase Bridge

International Rectifier are producing lowcost, encapsulated single-phase bridge rectifier assemblies rated at 1.6 A . The series, designated BSB, whilst compact in size, displays high single-cycle surge and repetitive current ratings and offers an operating temperature range of -40° to $150^{\circ} \mathrm{C}$. It is available in the range of 75 to 600 V r.m.s. International Rectifier, Hurst Green, Oxted, Surrey.
WW 313 for further details

Direct Reading Attenuators

A range of fourteen simple direct reading attenuators has been introduced by Flann Microwave Instruments, for isolating poor s.w.rs. All models in the range are frequency insensitive and display an s.w.r. of less than 1.25 over their calibrated atten-

uation range of 30 dB . There are 13 calibrations ranging from attenuations of 0.1 to 30.0 dB . Calibration accuracy is 5% or 0.25 dB , whichever is the greater. Phase shift varies from under 3° to less than 5°, depending on model. Frequency range varies from $2.6-3.95 \mathrm{GHz}$ to $92-138 \mathrm{GHz}$, and power rating from 0.3 W to 8 W , depending on model. Flann Microwave Instruments Ltd, 9 Old Bridge Street, Kingston-uponThames, Surrey.

WW 334 for further details

Miniature Terminals

Specially designed for miniature circuitry, Vero Electronics have introduced a terminal (part no. MT/11081) which holds up to five leads using three possible directions. With a hand tool these terminals are easily inserted into 0.052 -in diameter holes, yet may be re-used if desired by simply pulling them out of the board. The miniature terminals are produced from beryllium copper sheet, and finished in tin. Staking is not essential but the terminal may be staked by flaring the bottom end using needle nose pliers. Vero Electronics Ltd, Chandler's Ford, Hampshire.
WW 320 for further details

Instrument Amplifier

Intended as an instrument pre-amplifier, the FE-251-GA from Fylde has a wide gain range, with internal damping and variable sensitivity for electrically damped galvanometers. Shift facilities are built in, and there is output sensitivity control. Gain is switched between 20 and 1000, and input impedance is greater than $2 \mathrm{M} \Omega$. Both input and output are protectdd against overload.

Output capability is $\pm 8 \mathrm{~V}$ at up to 1.5 mA and common mode rejection is greater than 100 dB . Full shift of the output is possible, and wideband noise is less than 10 mV pk-pk, referred to output. Bandwidth may be adjusted, from d.c. to between 100 Hz and 100 kHz . A monolithic input stage produces drift performance better than $5_{u} \mathrm{~V} /{ }^{\circ} \mathrm{C}$, referred to input. Fylde Electronic Laboratories Ltd, 6/16 Oakham Court, Preston, PR 1 3XP.
WW 329 for further details

Pulse Generating System

Two addition modules are available for Farnell's modular pulse-generating system.

The PO/V variable slope module is an alternative to the standard output module, for applications requiring variable rise and fall times or higher output voltages. Rise and fall times can be varied between $1 \mathrm{~ns} / \mathrm{V}$ and $10 \mathrm{~ms} / \mathrm{V}$ (minimum rise time approximately 10 ns) with maximum peak-to-peak amplitudes of 40 V into open circuit, 20 V into 50Ω. Separate controls enable the pulse level to be set between -3 V to +20 V (positive level) or +3 V to -20 V (negative level) into open circuit. Total perturbations 10%, overshoot and ringing 10% of maximum amplitude and output impedance $5052 \pm 5 \%$. Price: $£ 45$. The frequency divider module PF/D operates over the range $0-1 \mathrm{MHz}$ and divides the frequency obtained from the P.R.F. Generator Module PF/A by either 10 or 100 , thus enabling repetition rates as low as 0.01 Hz to be obtained. Price: $£ 28$. Farnell Instruments Ltd, Sandbeck Eay, Wetherby, LS22 4DH, Yorkshire.
WW 311 for further details

Flat-based Heat Sink

Jermyn Industries have added to their range of power heat sinks the type 'MF' which is a flat-based aluminium extrusion with nine equally spaced fins. This extrusion is $\frac{11}{16}$ in high, $3 \frac{1}{2}$ in wide, and has a base thickness of $\frac{3}{16} \mathrm{i}$. Type MF-25U is $2 \frac{1}{2} \mathrm{in}$ in length and has a

thermal impedance of $3.3^{\circ} \mathrm{C} / \mathrm{W}$. The other standard stock version, MF-56U is $5 \frac{5}{8} \mathrm{in}$ long and has a thermal impedance of $1.75^{\circ} \mathrm{C} / \mathrm{W}$. These two standard types are available black-anodized, but undrilled. Other lengths can be made available to special order. This range of heat sinks is suitable for mounting TO-66, TO-3 and many other sized devices on the flat face, and may be utilized to replace one side of a module's container due to its thin section and low weight. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW 316 for further details

Frequency-selective Microcircuit

A frequency sensitive switch, type FX-201, is now available from Consumer Microcircuits. Employing low-voltage m.o.s./ m.s.i. microcircuits in a TO-5 case the device operates as two independent frequency selective switches. It accepts sinewave and pulse input signals-the operating frequencies and bandwidths being determined by means of a few externally connected resistors and capacitors, and adjustable over a very wide working range. The band frequencies are adjustable

between 10 Hz and 30 kHz , bandwidths and separation between the two bands are adjustable from 1% to 50% and bandedge 'slope' is typically better than 0.1% (effective Q exceeds 1,000). The response time is approximately 1.8 milliseconds at 5 kHz . The device operates from input signals between 20 mV and 20 V pk-pk, requires only 2 mA of operating current from a nominal $9 / 12 \mathrm{~V}$ supply (excluding switched load currents), and is immune to random signal noise and harmonics. Consumer Microcircuits Ltd., 142/146 Old Street, London E.C.1.
WW 303 for further details

Frequency-period Meter

The 9520 frequency-period meter, from Racal, covering the frequency range 5 Hz to 10 MHz , can measure periods from $1 \mu \mathrm{~s}$ to 0.2 s and gives a four-digit in-line display. The gate times of $1 \mathrm{~ms}, 10 \mathrm{~ms}, 100 \mathrm{~ms}$ and 1 s

are selectable by push-buttons, as are the mode of operation, check position and power on-off switch. The U.K. price is £135. Racal Instruments Ltd, Duke Street, Windsor, Berks.
WW 318 for further details

Data Amplifiers

Two new data amplifiers have been intro duced by Data Device Corporation-the model VA- 21 video amplifier and the fast settling model FS-21. The VA-21 provides a slewing rate of $750 \mathrm{~V} / \mu \mathrm{s}$, with a 12 MHz frequency for full output. Its stable $6 \mathrm{~dB} /$ octave roll-off characteristic gives a useful gain-bandwidth product of 80 MHz minimum. Developed specifically for high frequency inverting applications, the VA- 21 can be employed in video summing and deflection control amplifiers, and in
high-speed data processing. Model FS-21 is a member of the same family, but optimized for fast settling. It is said to be suitable for digital to analogue conversion systems, sample-and-hold circuits, and pulse amplifiers. Both versions offer outputs of $\pm 20 \mathrm{~mA}$ at $\pm 10 \mathrm{~V}, 20_{\mu} \mathrm{V} /{ }^{\circ} \mathrm{C}$ voltage drift and $0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ current drift. The operating temperature range is 0 to $70^{\circ} \mathrm{C}$ with optimum performance from 10 to $50^{\circ} \mathrm{C}$. V-F Instruments Ltd, Gloucester Trading Estate, Hucclecote, Glos. GL3 4AA.
WW 321 for further details

Laboratory D.C. Power Supply

New from Tranchant Electronics Ltd, is the TZ 45, an all-silicon solid-state d.c. power supply unit delivering up to 40 V at 2 A in both constant-voltage and constantcurrent modes, both modes having coarse

and fine adjustment controls. Unit measures $4 \times 7 \times 11 \frac{1}{2}$ in. An over-voltage crowbar with operating time of less than $20 \mu \mathrm{~s}$, operating temperature range of $0-60^{\circ} \mathrm{C}$, ripple $300 \mu \mathrm{~V}$ r.m.s. and load and line regulation 1 part in 10,000 is available as an optional extra. Tranchant Electronics (U.K.) Ltd, 17 Charing Cross Road, London, W.C.2.
WW 312 for further details

T.T.L. Integrated Circuits

Monostable FJK 101, high speed, full adder FJH191, 5-bit shift register FJJ24I, single master-slave bistable element FJJ261 and two-bit adder FJH201 are five t.t.l. integrated circuits in dual-in-line encapsulations introduced by Mullard. The FJH191 has gated complementary inputs and is intended for use in parallel-add and serial-carry applications. The device provides a complementary sum output and an inverted carry output and it is claimed that one FJH 191 needs less power than a selection of other t.t.l. circuits arranged to perform the same functions. Supply voltage required is 4.75 to 5.25 V at 21 mA . Fan-out from a carry output and sum outputs is 5 and 10 , respectively. The FJJ241 has five R-S masterslave flip-flops connected to give parallel-to-serial or serial-to-parallel conversion of
binary data. Access to the inputs and out puts of each flip-flop allows either parallel in and parallel out or serial in and serial out modes of operation. Supply voltage required is 4.75 to 5.25 V at a typical supply current of 48 mA . The width of clock and clear pulses is not less than 35 ns and 30 ns respectively. Mullard Ltd, Mullard House, Torrington Place, London W.C.1. WW 331 for further details

Minimal Reactive Resistor

Although the claim for the FC 100 by Reliance Controls is that it is believed to be the first non-reactive fixed Cermet resistor available with dual-in-line configuration, the Cermet element does have some minimal inductance. The dual-in-line package allows complementary mounting with silicon integrated circuits. The substrate is 96% alumina, the case diallyl phthalate, the terminals are plated beryllium copper. The FC 100 is available with values from 100Ω to $1 \mathrm{M} \Omega$, and has a nominal weight of 1 g . Reliance Controls Ltd, Drakes Way, Swindon, Wiltshire.
WW 330 for further details

Low-cost Thyristors

Two ranges of thyristors the TAG 3 and TAG 6 with 5.0 and 7.5A capacity rated up to 600 V and 800 V respectively are available from Jermyn. The maximum gate drive is 15 mA at 2.0 V and 25 mA at 3.0 V respectively. The TO-66 encapsulation employed ensures low thermal impedance between junction and heatsink. The 400 V devices in each range are priced at 12 s 8 d and 16 s 4 d each respectively in quantities of 100-999. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW 337 for further details

Heat Sink Adaptors

The excellent thermal conducting and electrical insulating properties of aluminium oxide are used in the new A 1004AX (TO5) and A1005AX (TO18) heat sink adaptors, manufactured by Jermyn. A body of anodized aluminium is seated on an aluminium oxide ceramic base, giving a total thermal impedance from transistor to base of approximately $13^{\circ} \mathrm{C}$ per watt. Electrical characteristics include 500 V minimum breakdown

voltage (1000 V typical) and 1 pF (typical) capacitance from transistor to mounting surface. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW 315 for further details

Answers to "Test Your Knowledge"

Questions on page 141

1. (c) In the circuits of Figs 1 and 3 the capacitors charge up so that the potential across each diode only becomes positive for a small part of a cycle; the diode current only flows during this time. In the circuit of Fig. 2 the inductor keeps the current flowing; the diodes conduct for half-cycles in turn
2. (a) The circuits of Figs 2 and 3 both have a fundamental ripple frequency of 100 Hz .
3. (c) The charge which flows out of the capacitor through the load while the diode is not conducting must be replaced while the diode conducts. As the ripple decreases the diode-conduction time is reduced so that the peak current during this time increases.
4. (b) The inductor resistance lowers the value of the output voltage since some of the steady component of the rectified voltage is developed across it.
5. (d) The inductor and second capacitor, acting as a filter, will very much reduce the ripple output compared to that of the other two circuits.
6. (b) The indicator smoothing of Fig. 2 produces a ripple which is more nearly sinusoidal. The tilter circuit in Fig. 3 eliminates the higher frequencies in the ripple more efficiently than the fundamental, and thus leaves a residual ripple which is approximately sinusoidal.
7. (c) rigs 1 and 3 will give an output voltage which is not much less than the peak value of the supply
8. (d) The steady output voltage for this circuit is the mean value of a full-wave rectified sine wave i.e. $2 / \pi$ times the peak voltage.
9. (d) In the circuit of Fig. 3 the maximum reverse diode voltage is the peak value of the input voltage. In the circuit of Fig 2, and, approximately, in that of Fig. 1 it is twice this.
10. (c) Since the capacitor is charged to nearly peak positive input voltage, when the supply is peak negative the voltage across the diode is nearly twice the peak value.
11. (d) Inductor smoothing is only effective where flow of current through is continuous.
12. (c) Circuits in which an inductor is the first smoothing component have the better regulation.
13. (c) When the diode is conducting the capacitor is charging. When it is not conducting the capacitor is discharging through the load.
14. (d) In the circuit of Fig. 1 increasing R decreases the amount by which the capacitor discharges between charging pulses and thus reduces the ripple amplitude. In the circuit of Fig. 2 on the other hand, the smoothing effect of the inductor increases with increase of mean current (assuming that L does not change) and thus with decrease of R.
15. (c). The inductor and second capacitor can be thought of as forming a potential divider for the ripple voltage which appears across the first capacitor. It is also necessary that the reactance of the capacitors should be much less than the load resistance value (but the first capacitor must not overload the diodes).

B $\mathbf{U} \mathbf{L} \mid$

N NEW FUSES AND FUSEHOLDERS

*" 63 F.90, otc
4* $6.3 \mathrm{~mm} . \phi \times \|^{*} 15.9 \mathrm{~mm}$

$\left.\mathbf{f}^{n} 6.3 \mathrm{~mm} . \phi \times 1\right\}^{n} 31.8 \mathrm{~mm}$

-PAK DELAY fuses
$1 \neq 31.8 \mathrm{~mm} \times$ t゙ $^{2} 6.4 \mathrm{~mm} \phi$

MINIMUM PANELPROJECTION HOLDER

As with all Bulgin Fuseholders, one of the maln points taken into consideration with the basic design is the SAFETY FACTOR. The rear (live) contact cannot be reached by the B. S. Test Finger from front of panel and the slotted front cap avoids accidental removal of the Fuse Link. The front of the unit is almost flush firting with minimum panel projection. Connection Tags accept 187 series Push-on-Tabs.
F. 317 accepting $1^{\prime \prime} \times \mathbb{1}^{\prime \prime} \varnothing$ Fuses.
F. 318 accepting $1 \frac{1}{4} \times \frac{1}{4} \times$ Fuses.

SHROUDED MINIATUAE FUSEHOLDERS

A further version of the popular and well established F.296. F. 297 range of miniature Fuseholders but with added SAFETY FEATURES-a strong but elegant moulded shroud to protect the "key slot cap" which can only be removed with the aid of a screwdriver. When the cap is removed, the fuse link is withdrawn at the same tlme, thusbreaking the connection and speeding fuse replacement.

fuses

With improved manufacturing techniques incorporating the use of specially designed automatic equipment. we are pleased to announce EX-STOCK deliveries for all of our popular ranges of fuses.

OUR FULL RANGE IS LISTED IN FREE BROCHURE NO. 1532/C
A. F. BULGIN \& CO. LTD.
manufacturers of electrical and electronic components BYE-PASS ROAD • BARKING • ESSEX • ENGLAND
TEL: 01-594 5588 (12 LINES) Private Branch Exchange

Real \& Imaginary

by "Vector"

"Pipes and whistles in his sound"

"Local radio is likely to have audiences of millions instead of thousands as a result of a Government decision to allow the B.B.C. to use the medium wave as well as v.h.f. for local broadcasting." This newspaper summary caught my eye when speeding by British Rail towards London and Dorset House. On my arrival, and while waiting in the Editor's office, I began looking through the volumes of W.W. which grace the walls. These go back to 1911, almost to the dinosaurian era, but I had little difficulty in locating my immediate quarry, namely, the beginnings of v.h.f. (it was e.h.f. in those days) broadcasting in this country. Indeed, one could scarcely miss it, for the correspondence columns were so heated as to need asbestos paper. There were those who wanted v.h.f. /f.m.; there were those who wanted v.h.f. /a.m. and there were those who didn't want either at any price. Incidentally, among the lastmentioned I was intrigued to find our old friend Thomas Roddam putting in a plea for pulse modulation (p. 70, Feb. 1947). Given transistors and integrated circuits, how about it now, Mr. Roddam?

To press on, it seems that the end of World War II found the m.f. band in a chaotic state. Transmission technologies had improved tremendously and with them came increased output powers to blast propaganda across enemy frontiers. Nightfall brought a hideous cacophony, garnished with monkey-chatter and whistles; a situation which is still with us a quarter of a century later.

The B.B.C., with Government approval, decided to go to v.h.f. where sufficient channels to cover the British Isles were available. The vexed question of f.m. versus a.m. was settled by building a new station at Wrotham, Kent, to radiate both forms of modulation. After exhaustive tests, f.m. was chosen and stations were being built in quantity in 1954/55; all seemed set for the millenium.

For prospects were bright indeed. Here was a transmission system which provided speech and music of high quality, unimpaired by co-station interference or by natural or man-made static. With a network of f.m. stations covering the country, virtually everyone could have a choice of three programmes under almost flawless conditions. The m.f. stations
would gradually become redundant and could then be phased out, except, of course, for external broadcasting.

The serpent in this Garden of Eden was not discovered for some little time. An integral part of the system was the home receiver. This was the one item over which the B.B.C. had no control; they could issue specifications for top-quality transmitters and aerial systems; they could badger the G.P.O. into providing landlines which would preserve the audio waveforms, but they could have no voice in the design of the home installation.

No one was alarmed when v.h.f. made a slow start, for that was John Citizen's conservative way. But as time went by it became very apparent that, in spite of all the seductive advertising, John had no intention of investing in the new system.

Various factors contributed to this; the times were uncertain; the new type of receiver was more expensive, and John's definition of high-quality reproduction was a big bad wolf in the bass register and a complete cut-off of the higher frequencies. But over and above these were two circumstances that both the B.B.C. and the domestic receiver manufacturers failed to recognize, although any dealer could have told them about it (and probably did!).

One was that before the war, John (and, more particularly, Mrs. John) had become accustomed to listening to foreign commercial stations, such as Fécamp and Luxembourg, which featured broadcasts in English. Naturally, then, when buying a new set, one of the first questions would be "Will it get foreign stations?" and if the answer was a hesitant, "No, not really" then this put the v.h.f. receiver out of court.
The second circumstance also showed the influence of the distaff side. Mrs. John has always had an aversion to trailing wires which interfere with the ritual of cleaning and dusting. A completely self-contained receiver which could be lifted and replaced was to her an ideal which had the added merit that it could be carried from room to room; this enabled her to perform the domestic rites without missing a single syllable concerning the vagaries of her favourite soap-opera tearjerker of the day. For this facility she was prepared to put up with any amount of interference.

When it dawned on the radio manufacturers that v.h.f. was an also-ran with the general public they panicked toward the wrong conclusion, deciding that cheaper receivers would put matters to rights. As a result, cheese-pared circuitry which cut down on such frivolities as an efficient a.f.c. system and cheap-and-nasty loudspeakers became the order of the day, the whole being accommodated in a two-by-nothing plastic box. Thus the poor old dealer was lumbered with a receiver which (a) would get only three B.B.C. stations, (b) was difficult to tune, (c) did not stay tuned because of frequency drift and (d) was of no better quality than the average m.f. set (and when mistuned was a darned sight worse).
With hindsight, it is easy to see that the cardinal mistake was that no finite date for the closure of B.B.C. internal m.f. stations was given. On the assumption that a receiver's life is five years, a deadline of, say, seven years from a given date would have been realistic. Henceforth, from the publication of that date, the industry would have been able to concentrate on two main types of receiver. One, for the quality-seeking minority, a v.h.f./f.m. receiver of unstinted design, and the other, for the mass market, an a.m./f.m. set covering the m.f. and v.h.f. bands as a minimum requirement. At the end of the seven years all B.B.C. domestic m.f. transmissions would have ceased; this would have sensibly reduced co-station interference on the band, thus adding to the enjoyment of the foreign station enthusiast.

A friend of mine, who is a radio and television dealer, but is otherwise sound of mind, tells me that the trends of the 1950s are accentuated today. In the mass market the hefty mains receiver which requires an external aerial is virtually out, and very few are sold. The main sound radio market is the teenage group, the big sellers being the miniature cheap-and-nasty transistor portable (and its counterpart in record players), their main selling points being their undoubted ability to make a raucous noise. The larger mediocre-to-moderate quality portable is the main choice of the older age-groups.
Sound radio today (says my dealer friend) is very much a subsidiary to television. In cases where married couples both go out to work the radio is used as an early-morning time check and is then off for the rest of the day. The housewife uses it as a background to those domestic chores which demand flitting from room to room.

In view of the secondary role of sound radio, cannot we learn the lesson of the past? Let's stop fiddling around with the m.f. band; instead, appoint a date (say 1976) when the B.B.C. Charter expires to end m.f. transmissions.
I realize that in saying this I am facing a formidable opposition which includes the B.B.C., the Post Office, Mr. Hughie Green and, possibly, the Editor (see his November ' 69 leader page). If B.B.C. m.f. transmissions continue but 'Vector' does not, you will know the reason why.

SINCLAIR IC-10

MONOLITHIC

INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

A 13 transistor circuit measuring only one twentieth of an inch square by one hundredth of an inch thick!

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 w . peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs. servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

SPECIFICATIONS

Output:
10 Watts peak. 5 Watts R.M.S. continuous Frequency response: Total harmonic distortion: 5 Hz to 1% K $\mathrm{Kz} \pm 1 \mathrm{~dB}$
Less than 1% at full output. Load impedance:
Power gain:
Supply voltage: Size:
Sensitivity: Input impedance: $110 \mathrm{~dB}(100,000,000,000$ times) total. 8 to 18 volts. $1 \times 0.4 \times 0.2$ inches.

Adjustable externally up to 2.5 M ohmis.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR

Project 60 an exciting alternative

The buyer of an amplifier today has a remarkably wide variety to choose from. It is unlikely that a purchaser would have real difficulty in finding a unit that met all his requirements, although the price might not be as low as could be wished. The only snags are that one's needs can change and that the technically correct amplifier may be physically inconvenient. If you are confident that there is an amplifier available, of the right size and price, which will meet all your needs for the forseeable future, then that is your best buy. If not, however, we can offer you another possibility which we believe to be an exciting alternative approach. That alternative is Project 60.
Project 60 is a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare with it in overall performance.
The modules are: $\mathbf{1}$. The $\mathrm{Z}-30$ high gain power amplifier. which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The PZ. 5 and PZ. 6 power supplies. A complete system comprises two Z-30's, one Stereo-60 and a PZ-5 or $P Z-6$. The power supplies differ in that the $P Z-6$ is stabilised whilst the PZ-5 is not. This means that the former should be used where the highest possible
continuous sine wave rating is required. In a normal domestic application there will not be a significant difference between using either power unit unless loudspeakers of very low efficiency are being used.
All you need to assemble your system is a screwdriver and a soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly.

Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future. We shall shortly be introducing additional modules which will include a comprehensive fllter unit, a stereo F.M. tuner and an even more powerful amplifier for very large systems. These and all other modules we introduce will be compatible with those shown here and may be added to your system at any time.

Project 60 modules have been carefully designed to fit into virtually every known type of plinth or cabinet. Only holes have to be drilled into the wood of the plinth or cabinet to mount the Stereo 60 and any slight slips here will be covered completely by the aluminium front panel of the control unit. The Project 60 manual gives all the instructions you can possibly want clearly and concisely.

7-30 TWENTY WATT R.M.S. (40 WATT PEAK) POWER AMPLIFIER

The Z-30 is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors. Total harmonic distortion is incredibly low being only 0.02% at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification, no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The Z-30 is unique in that it will operate perfectly, without adjustment. from any power supply from 8 to $\mathbf{3 5}$ volts. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a $\mathbf{Z}-30$ to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the Z-30, are covered in the Project 60 manual.

SPECIFICATIONS

Power output- 15 watts R.M.S. (30 watts peak) into 8 ohms using a 35 volt supply: 20 watts R.M.S. (40 watts peak) into 3 ohms using a 30 volt supply. Output-Class AB.
Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Signal to noise ratio: better than 70 dB unweighted.
Distortion: $\quad 0.02 \%$ total harmonic distortion at full output into 8 ohms and at all lower output levels.
Size: $\quad 3 \frac{1}{2} \times 2 \neq \frac{1}{2}$ inches.
Input sensitivity: $\quad 250 \mathrm{mV}$ Into 100 Kohms Damping Factor: >500
Loudspeaker impedances 3 to 15 ohms.
Power requirements: 8 to 35 V.d.c.

APPLICATIONS

High fidelity amplifier: car radio amplifier; record player fed direct from pick-up: intercom: electronic music and instruments: P.A., laboratory work. etc. Full details of these and many other applications are given in the manual supplied with your Z.30.

Ready built, tested and guaranteed, with 2.30 manual.

STEREO SIXTY PREAMPLIFIER AND CONTROL UNIT

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

SPECIFICATIONS

- Input sensitivities-Radio-up to 3 mV : Magnetic Pickup-3mV Correct within + IdB on R.I.A A curve. Ceramic Pickup to 3 mV . Auxiliary Ceramic Pickup - Output-260 mV
- Signal-to-noise patio-berter than 70 dB .
- Channel matching-wlthin 1 dB .
- Tone Controls-TREBLE +15 to -15 dB at 10 KHz ; BASS +15 to -15 dB a 100 Hz .

Power consumption 5 mA .

- Power requirement-PZ.5 or PZ. 6.
- Finish-brushed aluminium front panel with black knobs
- Mounting-on cabinet front by spindle bushes and adjustable brackets.

STEREO SIXTY
$\begin{aligned} & \text { Resdy built, rested } \\ & \text { and guaranteed }\end{aligned} 9.195 .60$.

SINCLAIR POWER SUPPLY UNITS

P7-5 30 volts unstabilised-sufficient to drive two $\mathrm{Z}-30$'s and a Stereo 60 for the majority of domestic applications.

Price: f4. 19s. 6d.
PZ-6 35 volts stabilised-ideal for driving two $\mathrm{Z}-30$'s and a Stereo 60 when very low efficiency speakers are employed.

Price: f7. 19 s. 6d.

GUARANTEE

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we wifl service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the ever provided that it is returned to us within 2 years of he purchase

breakthrough in size,cost, precision and versatility

This FX-201 'Z TRIP' is unique-it is the only frequency sensitive switch in microcircuit form. It incorporates over 200 transistors on a single monolithic silicon chip, and is housed in a TO-5 style can. This 'Z TRIP' consists of two independent 'band accept' frequency selective switches, incorporating an input amplifier, analogue/digital frequency discriminating circuits and buffered bistable output switches. It operates from a single d.c. supply and is rated for industrial environments.
The FX-201 accepts sinewave and pulse input signals: when the input signal frequency falls within either of the two predetermined acceptence bands the corresponding output is switched. Completely immune to random signal noise and harmonics.

- Adjustable band frequencies 10 Hz to 30 kHz
- Adjustable band separation 1\% to 50\%
- Adjustable bandwidths 1% to 50%
- Band edge 'slope' typically 0.1%

■ Response time approx. 1.8 mSec @ 5 kHz
\square Signal amplitude range 20 mV to 20 V LOW COST

IMMEDIATE DELIVERY

Comprehensive data from
CONSUMER MICROCIRCUITS LTD 142/146 OLD STREET, LONDON, E.C. 1 Telephone: 01-253 5838/9

IF YOU'RE SENSITIVE TO SOUND

 you'll be receptive to ResloFamed for a wide range of bi-directional, cardioid and radio microphones, Reslo also produce amplifiers, loudspeakers, P.A. systems and accessories, all precision-engineered to the highest acoustical-performance standards. Sounds good? Sound's great - with Reslo. Clip the coupon and we'll tell you more. .

CLUBS \& LICENSED

 TRADE EXHIBITIONPrince's Exhibition Hall.
Birmingham
11-15 May
STAND
No. 42

Type UD1
Modern-style highoutput microphone, with internal 'anti-pop' filter.

Type RBT \& RBTS Type SL1
Miniature ribbon Omni-directional microphone, suitable for microphone for hand or sound reinforcement or stand use. recording.

Please send me NAMEyour free brochure
giving full details. ADDRESS
Rusto

RESLO MIKES

ROMFORD

ESSEX- $-1+\ldots$.

TF 2300 Modulation Meter: even more accurate, even wider frequency ranges

Added to such already well-known attributes as its low inherent noise, high rejection of a.m. on f.m., and wide demodulation bandwidth, these latest improvements put the TF 2300 into a special class among modulation measuring instruments.
It is suitable for use as an accurate monitor or precision demodulator with virtually all types of f.m and a.m. transmitter, including telemetry, stereo-multiplex, and fixed and mobile communications equipment.
The demodulated waveform is available - with switchable de-emphasis on f.m.-at panel terminals for further measurement. Provision for crystal-locking the local
oscillator (up to three crystals can be inserted) permits measurement of extremely low deviations, such as f.m. transmitter noise. The i.f output is available at a coaxial panel socket; and the instrument can be used with an external local oscillator if desired. Price $£ 575$ f.o.b. U.K.

Narrow Band Version TF 2300 S This special version of the Modulation Meter includes an additional deviation range of 1.5 kHz f.s. for measurements on narrow-band f.m. transmitters. Its carrier frequency range also extends down to 2 MHz for use with h.f. transmitters using narrow deviation. Price $£ 675$ f.o.b. U.K.

ARE COSTS OUTUEICHIIIC YOUR PROFITS?

Come and see what mechanisation can do.

High productivity and full order books are fine. But it margins are down, you've got to look for new ways of improving efficiency. You'll find them-in plenty-at London's International Mechanical Handling Exhibition. It will be the biggest collection of time-saving ideas ycu've ever seen-the world's largest display of mechanized handling aids. New systems and equipment tocut costs and ensuremaximum utilization of plant. The very latest in receiving techniques; storage inventory control ; in-processing ; packaging : transport ; distribution ; plus all that is new in ancillary services and equipment. Whether your business is large or small you can save money with modern handling methods.

Don't miss this important event. Make a note of the date . . . and mail the enquiry now.

Diminutive, sensitive, neat, tough. These are the adjectives that describe the S.E.I. Minitest. You will never de provoked
 into using any other for years. hence this pocket size. multi-range test set will be serving you accurately. The Minitest measures a.c. and d.c. voltages, d.c. current, and resistance over 20 ranges to a sensitivity of 20,000 and 2,000 ohms per volt d.c. and a.c. respectively. Readings are instantaneous and the minutest is clearly discernible. A steel case shields the movement from external magnetic fields and shocks. This has a robust, wipe-clean, melamine cover. All controls are handily disposed. High voltage probes are available to extend the range of the Minitest to 25 or 30 kV d.c. for testing electronic equipment with high source impedence. They can be used with any other meter of similar sensitivity. Wisdom suggests Minitest and S.E.I. probes together, right from the start. Act now: Send for the catalogue.
We manufacture a wide range of portable instruments write today for full information.

WW-082 FOR FURTHER DETAISS

Aevirate and diredt mersurement of spad without coupling to moving parts

 resonant reed TACHOMETERS

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m. Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

anders electranics limited

Anders means meters
48/56 Bayham Place, Bayham Sireet, London NW1. Tel: 01-3879092

DIFFERENTIAL D.C. AMPLIFIERS

For use with d.c. energised Transducers

150 strise
modular or cased versions
versatile, high performance instrumentation amplifiers for use with low or high level signals. Two outputs available to drive all U-V galvanometers, indicators, recorders and control devices.

FE-154-BD modular £69 FE-154-BD/C cased mains powered £99

Complementary units:-
Bridge Supplies and Conditioning Units, Sample and Hold and Bridge Amplifiers.

'WATTS' THE NAME FOR RECORD MAINTENANCE

Gramophone Record Maintenance and Stylus Cleaning Kit Designed for use on NEW records or records in new condition which are to be played with pick-ups requiring very low tracking pressures. The 30,000 finely pressures. The 0 .00 Hinely pointed tips of the Hi-Fi explore every detail in the record groove to provide the high degree of record cleanliness necessary when
 TO CECIL E. WATTS LTD. DARBY HSE, SUNBURY ON THAMES, MIDDX. I Please send (Post Free U.K. and Commonwealth)
Disc Preeners @ 6/9.................Hi-Fi Parastats @ $42 / 6$ plus $1 / 3$ P.T. Dust Bugs @18/9 plus 4/5 P.T................Manual Parastats @ $47 / 6$ 48 page Booklets@ 2/6................Stylus Cleaners @ $5 /-$ plus $1 / 3$ P.T. Spares as per attached list
Manual Parastat/Humid Mop @ 52/6
I enclose cheque/P.O. value $£$
(Do not send postage stamps)
Name
Address

JOHN SMITH LTD.
209 SPON LANE - WEST BROMWICH - STAFFS. TEL. O2I-553 2516 (3 LINES WOOD8 LANE•CRADLEY HEATH • WARLEY • WORC8. TEL. CR 69283 (3 LINES

WW-085 FOR FURTHER DETAILS

Jack Socket R 32307

Screened Jack Plug Jack Socket Screened R 32400 cJack Plug - 50 R 22401 R 22301

Presenting part of a wide range of components used throughout the world by the electronics engineer in search of quality and reliability.

Further information available.

RENDAR
INSTRUMENTS LTD BURGESS HILL, SUSSEX, ENGLAND TELEPHONES: BURGESS HILL 2642-3 cables: rendar, burgess hill

SOUND
 "Astronic" systems
 MANUFACTURERS OF A COMPLETE RANGE OF MODULAR UNITS FOR SOUND AMPLIFICATION
 OVER FIFTY STANDARD MODULES IN THE
 SERIES 1700 RANGE PLUS MANY SPECIALS
 COMPLETE MIXING DESKS TO YOUR SPECIFICATION
 COME AND SEE THESE AND OTHER PRODUCTS
 AT THE
 sound 70 international
 10th-12th MARCH STAND B3
 ASTRONIC LTD.
 DALSTON GARDENS, STANMORE, MIDDLESEX HA7 1BL Telephone: 01-204 2125

WW- 087 FOR FURTHER DETAILS

ww-088 FOR FURTHER DETAILS

VITALITY BULBS LIMITED

VITALITY are pleased to announce the appointment on 1st February 1970 of two main distributors to the electronics industry.

Combined Electronic Services Ltd., Queensway, Waddon Factory Estate, Croydon CR9 4DR
Phone: 01-688-3699. Telex: 262308
Farnell Electronic Components Ltd., Canal Road, Leeds LS12 2 TU Phorle: 636311. Telex: 55147

Comprehensive stocks will be maintained and orders for up to 500 lamps will be referred.
The small quantity user will benefit by improved delivery and wholesalers also, when unable to deliver small quantities from stock, can order from these two Companies.

Vitality Bulbs Ltd.,

Beetons Way, Bury St. Edmunds, Suffolk. Phone: 0284 2071. Telex: 81295

SOUND 70 International

CAMDEN TOWN HALL (opposite St. Pancras Station) LONDON MARCH 10-12 $1970 \bigcirc 10 \mathrm{am}-6 \mathrm{pm}$ DAILY (Final day $10 \mathrm{am}-5.30 \mathrm{pm}$)

The only exhibition in Europe exclusively featuring Public Address \& Allied Equipment

Sponsored by: THE ASSOCIATION OF PUBLIC ADDRESS ENGINEERS 394 Northolt Road, South Harrow, Middlesex.

Telephone: 01-422 4825
WW- 090 FOR FURTHER DETAIIS

Ballistics

Computers by Westinghouse. Nine servo amplifiers with associated motors and Power Packs. Brand new in sealed containers. Price on application.

Automatic Numbering Machine by Western Union. Four Uniselectors and 30 neons. Ideal basis for amateur computer. Application leaflet. £12.10s. post free.

PUNCHES, READERS, VERIFIERS AND TELEPRINTERS. NEW COMPUTER ENGINEERING SURPLUS MATERIALS, AT REALISTIC PRIGES. MOBILE SHOWROOM. CALLS ON REQUEST TO SUITABLE LOCATIONS.
Elliott 803 B computers 4 k store, 803 C 8K store, film handlers, two tape readers, iwo tape punches. ICL 1901 Central Processers 8 K store Lineprinter, 600 LPM . Elliott 903 8K store tape readers \& punch. Prices on application.

COMPUTER TRAINING PRODUCTS
2 Lordship Lane, LETCHWORTH, HERTS. Tel: 4536 0462/6

TRANSISTORISED FIELD STRENGTH METER TYPE MC16

BY PRESTEL

SPECIFICATION

Frequency bands: three in VHF- 40 to 60: 60 to $110: 110$ to $230 \mathrm{Mc} / \mathrm{s}$. one in UHF- 470 to $900 \mathrm{Mc} / \mathrm{s}$. Continuous separate UHF-VHF tuning with reduction gear (single control knob. 2-speed). Frequency accuracy: 2%. Intermediate frequency: $35 \mathrm{Mc} / \mathrm{s}$. Transistors: 16. Diodes: 7. UHF-VHF sensitivity: 2.5 uV . Measuring range: 2.5 uV to 100 mV . 4 measuring scales: 100 uV f.s. 1 mV f.s. 10 mV f.s. 100 mV f.s. and 1 volt full scale, with auxiliary attenuator 20 dB . Two asymetrical coaxial input terminals; 75 Ohms for UHF and VHF. Measuring accuracy: $\pm 6 \mathrm{~dB} ; \pm 2 \mathrm{uV}$ in UHF. $\pm 3 \mathrm{~dB}: \pm 2 \mathrm{uV}$ in VHF. Power supply by 71.5 volt batteries. supplied Stabilized voltage by Zener diode. Incorporated loud-speaker. Detection can be switched on FM or AM. Pointer reset control. Battery charge checking device. Impedance matching transformer UHF-VHF 300 Ohms. Attenuator 20 dB . Leather bag. Technical manual. Dimensions: $280 \times 100 \times 150 \mathrm{~mm}$. Weight: 3.5 Kg . Price: $£ 89$ Nett.

PETER SEYMOUR, LTD., 410 BEVERLEY ROAD, HULL, YORKSHIRE

WW-092 FOR FURTHER DETAILS

These VHF Signal Dividers offer an efficient and inexpensive method of dividing a signal between two outputs while maintaining optimum VSWR and insertion loss characteristics. Frequency range is d.c. to 1 GHz , through power 1 W maximum. Two impedances are available: Type 765/A 50 ohms; $765 / \mathrm{B} 75$ ohms. The Dividers are fitted with BNC connectors, and a four port model with a similar specification will be available shortly.

A range of low-loss passive couplers is also available. in both bridge and transformer types. Illustration shows Type N82, a 3-port coupler with BNC sockets.

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

WW-095 FOR FURTHER DETALLS

Keep those Contacts CLEAN
 by using a DIACROM SPATULA

The "Diacrom" is a metal spatula upon which diamond powder has been deposited by a special process. No deep scratches are possible because density is controlled and the pollshing of the contacts is achieved by a gentle brushing motion. With coloured nylon handle for complete insulation and easy size identification.

Manufactured in France British Patents applied for

> Grain size 200, thickness $55 / 100 \mathrm{~mm}$, both faces diamonded. For quick cleaning of industrial relays and switching equipment, etc. Grain size 300 , thickness $55 / 100 \mathrm{~mm}$, both faces diamonded. For smaller equipments, like telephone relays, computer relays, etc. Grain size 400 , thickness $25 / 100 \mathrm{~mm}$., one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned, because only one face of the spatula is abrasive. Sole Distributors for the United Kingdom

SPECIAL PRODUCTS (DISTRIBUTORS) LTD. 81 Piccadilly, London, W.1. Phone: 01-629 9556.
As aupplied to the WFar Ofhee, UK A.E.A., Etectrictly Generating Boards, Briliah Railmave and other As supplied the war ather,

WW-096 FOR FURTHER DETALS

TEOHNICAL TRAININE in radio television and electronics

Whether you are a newcomer to radio and electronics. or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful
NEW
SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio. T.V. and Electronics.

F.A.L.'PHASE 32'

You must hear this superb unit
$15+15$ WATT HIGH FIDELITY OUTPUT

SOLID STATE STEREO AMPLIFIER

$\underset{\substack{\text { Recommended } \\ \text { Retail } \\ \text { Price }}}{ }$ ONLY

36 gns.

\star Excellent performance

\star High grade components and transistors
\star Impressive technical specification
\star Attractive appearance
\star Modest cost
Housed in Teak veneered Cabinet,
Switched selection of Microphone,
Magnetic P.U., Ceramic P.U.,
Radio Tuner, Tape Recorder.
A vailable from your local Hi-Fi Dealer
SEND S.A.E. FOR FULLY oescriptive Leaflet Wholesale and Retail enquiries to Manufacturers FUTURISTIC AIDS LTD., 103 Henconner Lane, Leeds 13

WW-097 FOR FURTHER DETAILS

Firsi, measure it - on the Rank Studio Flutter Meter. The Type 1740 measures accurately the degree of Wow and Flutter on sound recorders and reproducers.
For more information write to:

${ }_{\text {Precision in in Sound }}$

This is the cartridge for the person who really cares about his equipment.
S.A.U.2.ONE OFTO DAYS MOST ADVINGED PICK-UP ARMS

A. R. SUGDEN \& Co. (Engineers) Ltd. Market Street, Brighouse, HD6 1DX, Yorkshire. Tel. 2142

WW- 098 FOR FURTHER DETALS

USEO THROUGHOUT THE WORLD, SANWA'S EXPERIENCE OF 30 YEARS ENSURES ACCURACY,
RELIABILITY. VERSATILITY. UNSURPASSED TESTER PERFORMANCE COMES WITH EVERY SANWA.
Model P48 Months' Guarantee. Excelient Repair Service

MODEL A-303TRD PLEASE WRITE FOR ILLUSTRATEO LEAFLETS OF THESE SANWA METERS
SOLE IMPORTERS IN U.K;
OUALIT ELEGTRONGS LTD.
47-49 HIGH STREET, KINGSTON-UPON-THAMES, SURREY. Tel:01-546 4585 WW-100 FOR FURTHER DETAILS

NEW SCIENTIFIC TITLES

An Introduction to the Chemistry of The Alkaloids

A. McKILLOP, BSc, PhD.

Alkaloid chemistry is presented both in terms of general principles and by means of detailed illustrative examples.
408524731212 pages illustrated Limp34s.
Principles of Pulse Code Modulation
K. W. CATERMOLE, BSc, CEng, MIEE

The principles and properties that are
essential to a full understanding of the mechanisms, and a quantitative appraisal of the performance of pulse code modulation. $592028348 \quad 442$ pages illustrated 95s.

Progress in Stereochemistry-4

Editor: B. J. AYLETT, MA. PhD and M. M. HARRIS, DSc, PhD
Explores new trends in the interplay between stereochemical thought and the advances in chemistry and biochemistry.
$408319100 \quad 448$ pages illustrated 150s.

XIth International Conference on Co-ordination Chemistry International Union of Pure and Applied Chemistry
Plenary Lectures from the Eleventh International Conference, held at Jerusalem and Haifa, Israel. 8-18 September, 1968. $408700084 \quad 131$ pages illustrated 60s.

Organosilicon Chemistry-2 International Union of Pure and Applied Chemistry
Plenary Lectures from the Second International Symposium on Organosilicon Chemistry, Bordeaux, France, 9-12 July 1968.
$408894717 \quad 538$ pages illustrated 90 s .

GAvailable from leading booksellers or:

THE BUTTERWORTH GROUP

88 KINGSWAY LONDON WC.2.

WW-104 FOR FURTHER DETAILS

[^7]

OXLEY ${ }^{\circledR}$ FRAME TRIMMER

The OXLEY Frame Trimmer has been designed to provide horizontal mounted adjustment. This has been achieved by eliminating the conventional ceramic base and substituting a bridge construction with twin plastic bearing assemblies incorporating P. T. F. E. bushes. The added advantages occurring from this assembly are:
is Twin bearings for stability
if Completely solderless construction
is Rotor and Stator of Monolithic design for improved rigidity
if Uniform torque
is Smooth adjustment
is Capacitance: 5pF, maximum 20pF.
Contact our Sales Department for further details

Telephone: Ulverston 2621 Telex 6541

The next full time 16 month College Diploma Course which gives athorough fundamental training for radio and television engineers, starts on 15th April 1970.

The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: ' O ' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. WW12), 34a Hereford Rd, London, W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME
ADDRESS

Fhwar for Components

LINEAR INTEGRATED CIRCUITS FOR

1 WATT AMPLIFIER MODULE TYPE PCM 1 This amplifier unit is a printed circuit module incorporating the popular and well tried
PAZ34 i.c. emplifier. The unit is a COMPLETE AUDIO AMPLIFIER and requires no external components. you simply connect an 18 volt power supply and a 15 or 16 ohm speaker or headphone. even the supply smoothing capacitor and the output capacitor are included The overall dimensions, including capacitors. are $2 \ddagger^{\prime \prime} \times 3^{\prime \prime} \times \mathbf{i}^{\prime \prime}$. The input for 1 watt output
at 1 kHz is typically 300 mV into 100 kohms at 1 kHz is typically 300 mV into 100 kohms.

CONVERTOR/BATTERY CHARGER. Input 240 v $50 \mathrm{c} / \mathrm{B}$, output 12 v 5 amp DC. Input 12v DC, output 240 v AC. 170 watt max. With fuse and indicator lamps. Size that will give many years' reliable service. Supplied with plug and lead. Onis E4/10/-. P. \&P. 15/- extra. As above-fully servical \mathbf{P}.

TRANSISTOR OSCILLATOR. Variable frerluency
 DC input. Size 11×1
new. Hoxed. $1 / / 6$ ea.
COUNTENAY TIMER Bub-chashls with 2-12AU7. transistor. relay etc. Requlring 12V. A.C. or D.C. to openite 22/6. 1.5 .10 or 15 minutes. State which. 25/- es. V.H.F. RECEIVER TYPE 715 by BOC. Complete tester and worklng (less crystal). 12v I).C. Input. Ideal conversion 2 and it metres. In coonl condition, Supplied
with conversion data. Only $£ 3 / 10 / \mathrm{P}$. \& $\mathbf{P} .7 / 6$ ea. with conversion data. Only $\mathbf{6 3 / 1 0 \% . P . ~ \& ~ P . ~} 7 / 6$ ea.
RECEIVER UNIT TYPE $1 / 4$. Firen. coveraige 124 .
 $156 \mathrm{mc} / \mathrm{s} 1 . \mathrm{F}$, out 9.72 nets. serice carton. complete
$32 / 6$ ea. P. de P. $5 /$. ea.
RELAYS
Omron/Schrack octal based pluk in relays. 2 pole c/o 5A. 6y only, Brand new. Boxed. 12/6 ear.
G.E.C. 4 pole c/o $8 / 12 v$ operation 180 ohms. Platinum contacta. Brand new. Boxed $12 / 6$ ea. $15 \mathrm{~K} / \mathrm{hm}$. Brand
Mla. VARLLY type VP4. 4 iole c/o 15 K Mew. 4/6 ea.
Min. SIEMENS. 4 pole c/o. 24 V opremtion. Brand new 8/- ea.
S.T.C. mealed 2 pole c/o $48 \mathrm{~V} .2,500$ ohm $48 \mathrm{v}, 3 / 6 \mathrm{ca}, 12 \mathrm{v}$
G.E.C. TC M $14084 \mathrm{pc} / \mathrm{o} 48 \mathrm{~V} 25010$ ohm. As new. $4 /-$ each. CARPENTERS polarised Bingle pole c/o 20 and 65 ohm coil as new, complete with base $1 / 6$ ea. $8 / 6$ ngle poie
c/o $680,1.110$ and 1.570 ohm coil. As new $6 / 6$ ea. Brand New. Single Pole c/o (tyje 5Az), 2×1200 ohms. 8/6 ea.

POTENTIOMETERS

COLVERN Brand new. 5: 10; 50; 100: 250; 500 hhms:1;2.5; $5: 10 ; 25: 50 \mathrm{k}$ all at $2 / 6$ ea. Special Brand
new MORGANITE 250 K in. gealed. Nornal price 9/-, our price $3 / 6$ ea.
INSTRUMENT 3' Colvern. 5: 25: 50: 100 ohms; 2.5. All at 7/-

TRIM POTS. Paignton-solder lugh 5, 10 \& 25 K at 5/- each: Pinh 10; 20; 50; 100; 200; 250; 500 ohma:
o.5: 25 and 50 K at $10 /-$ each DARSTAN-preset-sealed 1° dia. I high. $1: 2$ and 5 K I/6 HIGH RESOLUTION 25 K 80 turns. Complete with HIGH R
knob $6 / 6$
GENERAL CONTROLS. 100K Ten turn. 13rand new, Hoxed 25/-es.
ALMA precision resistors 100 K ; 400 K : and $908 \mathrm{~K}-0.1 \%$ 5/6 ea : $3.25 \mathrm{~K}-0.1 \%$ 4/- eas.
DALE heat sink resistors, non-inductive 50 watt. Brand
new. 15 ohins $6 / 6$ ea. $: 8.2 \mathrm{~K} 4 / 6$ eas. Excellent dummy new. 15 ohms $6 / 6$ ea. : $8.2 \mathrm{~K} 4 / 6$ eas. Excellent dummy load.

CAPACITORS

ERIE feed through ceramicons 1000 pf-9d. ea. $2 / 6$ ea. Sub-min. TRIMMER I square. 8, 5pf. Brand new
Concentric TRIMMER $9 / 30$ pf. Brand new $1 / 6$ ea. DUBILIER Electrolytic. 32 mfd 350 v D.C. Brand new 1/9 ea.
EHT 1000 nf 20 KV working, ldeal transtuitter blocking capacitors $6 / 6$ ea.
VISCONOL EHT, Brand new $0.000525 \mathrm{kV}, 16 /=$ en. E.H.T. $0.02 \mathrm{nifd} 8 \mathrm{BV}-6 /$ ean: 0.1 mfd 2.5 KV -nitrozel$4 / 6 \mathrm{en} ; 0.5 \mathrm{mfd} 5 \mathrm{KV}$
$0.5 \mathrm{mfd} 2.5 \mathrm{KV} 7 /$ ean
GEARED MOTORS $240 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$ synchronous. Geared down to 60 rpm . Brand new $30 / \mathrm{ma}$. P. \& P. $7 / 6$.
DIODES 1 N914. Brand new $1 / 3$ ea.: $12 /$ - doz.: $44-100$ $25-1.000$
PHOTOCELL equivalent OCP $712 / 6 \mathrm{ea}$
BURGESS Micro Switches V3 5930. Brand new $2 / 6$ ean. BULGIN panel mounting Lamp holders. Rerl. Brand Mew ${ }^{2 / 3}$ ea MINIATURE SPEAKERS/6 es.
Mrand new. $7 /$-es. P. d P. $2 / 6$
NUCLEONIC INSTRUMENTS
SCALER type 1009 by Dy Datron. Sultable Beta kamma coumts. Bullt in test signal. Calibrated adjust able discriminator. Read out 2 riecade neons and 4 dight counter. Suppled in as new condition at cs ea
Carr. 301 R
Few only
buit in EHT buit in EHT supply. Separate metering EHT and Count. EHT available for external equipment 0 to
3 ky As new £35. Carr. $30 / \mathrm{Kv}$. Stabllized by General
E.H.T. Power unit 0 to 5 Kv . E.H.T. Power unit 0 to 5 Kv . Stablizen by (ieneral
Radiological. As new E20. CMrr. $30 /$ HiT analvger type
 £25.C'Arr. 30/\% Digplay mit type NLS 223. $£ 20$. Carr. 30/ CIN Transistorsed Nucleonic scaler with

TEST GEAR

E.M.I.
 OSCILLOSCOPES
 E.M.I. WM 2 DC-13 me/s $£ 35$ SOLARTRON 718.2 D.B. DC-b Luc/s 660 SOLARTRON 643 IC- $15 \mathrm{mc} / \mathrm{s}$ NOW only 65. SOLARTRON 513/523 DC- $10 \mathrm{mc} / \mathrm{s} 635$ SOLARTRON 508 DC- $6 \mathrm{mc} / \mathrm{s}$ (I8 COSSOR
 HARTLE
 HARTLEY
 1035 DR. 620
 1049: 1049 Mk. 3. DB. C22.10 and 13A DB. $£ 18 / 10 /-$ MARCONI
 TF 956 (CT44) Audio Frea. Whttmeter (15 TF 886 Masnification Meter $£ 45$ Carr. $£ 1$
 TF 762 C UMF Generitor E 40 Carr. El
 TF 369 N. 5 Limpedance Bridge $£ 55$ Carr. $30 /$ TF 144G Slgnal Generator. Servicenble, Clean $£ 15$ TF 885 Video Osciliator Slie/square $£ 35$ Carr. $30 /$ TF 890 Millvolt meter Cart $10 /$ TF 196 M Slne wave oecillator $0 / 40 \mathrm{kc} / \mathrm{s}$ € 12 Cart.

 TF 791B Carrier Deviation Meter © 40 Carr. 30/. SOLARTRON

 Stabilised P.U. SRS 1514 E20 Carr. 30/- Stabiliged! P. SHS 152 £ 15 Carr. $30 /$.
 Stabilised P.U. AS 516 \& As 517 \&3, and $£ 6$ Cart. 10/-

 tronic Testmeter CT 38 . Complete $£ 18$ Carr. $\& 1$
 SPECIAL. Multimeter CTA71A. Buttery operated, fully transistorbsed, sensitivity 100 M ohni/V neasures a.c./d.c. voltaure (12 m . 1200 s.cales. $+/-$ vhf/hhf voltake with multiplier ($4 \mathrm{~V}-400 \mathrm{~V}$ gcales up to $50 \mathrm{MHz} ; 40 \mathrm{mV}-4 \mathrm{Y}$ up to 1000 MHz . Brand new $£ 75 \mathrm{Carr}$. $30 /$. 675 Carr. $30 /$. 671 B, as above by G. \& E. Bradley NOW ONLY E65. Cart. 30\%
 CINTEL
 Wide Range Capucitor Bridge $£ 25$ Carr. $15 /$. Sine and Pulae Generator type 1873 £25 Carr. 15/AIRMEC
 Valve Millivoltmeter typue 204, 3MV-1V $£ 20$ Carr. 21 Counter type 865. 6 decades. Bright Vertical display Klystron Power Sunply $698 B \mathbf{E 2 5}$ Carr. $£ 1$

OSCIlloscope Camera Consor type 1428. Brand new with standiard 4 in. fitting and spare cassets, $\mathbf{6 4 5}$, Also Shackman $25 f \mathrm{ft}$. Exp $\quad 270$ frames. Times from $1 / 250$ 4 in . ro blin. fittins. $£ 30$.
SIGNAL GENERATOR/WAVEMETER type 61. 90 to $160 \mathrm{nuc} / \mathrm{s}$. Buit in crystas markers. Calibrater piston. attenuator Stanhar
SIGNAL GENERATOR Type 69. $95-160 \mathrm{mc} / \mathrm{s}$ in one range. I mc / s and $10 \mathrm{mc} / \mathrm{s}$ internal crystal markers; provision for external crystal marker. Sine and square
wods: urecision attenuator. Complete with leads, wave mods, irecision altenuator. Carr. $30 /$.
SIGNAL GENERATOR tylve CT 478 by W. H. sanders. Fren. Tinge $1.3 \mathrm{kmac} / \mathrm{s}$, $4 \mathrm{~km} / \mathrm{m} / \mathrm{s}$. Output power callibrated dbb. New 840 , Carr. £2/10/
DENCO Travelling Wave Amplitier 640. Carr. 30/-
HEINZ GUNTHER AM/FM Generator $9-200 \mathrm{mc} / \mathrm{s}$. \&30 Carr. $£ 1$
SIGNAL Generator CT 53. Consplete with leads. Good
FREQUENCY Meter LM 14. Modulated version of
BC 221 with charta and covers. Brand new $£ 30$. Carr. 30/-. DIGITAL VOLTMETER type BIE 2114. I mV to MIC-O.VAC type 22 (CT54) Voits; Current; Ohms. D. Cto 200 m
P. \& P. 10%.

VIBRATING REED ELECTROMETER type N 572 by ECKO. Kanxe 10 to the 14 , Max mensitivity FSD for 1 of 0.03 Micro-microamps. $£ 20$ en. Cart. $£ 1$
RACAL FREQUENCY COUNTERS
SA 204 decarles $100 \mathrm{kc} / \mathrm{s} £ 20$ ea.
SA 21 if decades $10 \mathrm{mc} / \mathrm{s} £ 45 \mathrm{ea}$.
SA 28 as SA 21 with convertor extending range to $30 \mathrm{mc} / \mathrm{s} \mathrm{f} 65 \mathrm{c}$ ea.
DISTRIB UTED AMPLIFIER type $2 C / 350 \mathrm{c} / \mathrm{s} 100 \mathrm{mc} / \mathrm{s}$ Gain 300. 630 each.
Ty je $2 C 50 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{mc} / \mathrm{s} £ 16$ each.
DAWE Wide Range oecllator type 400 A .20 cs to $20 \mathrm{kc} / \mathrm{s}$ Sine wave
Carr. $30 /$.

GENERAL RADIO Prectsion Capacitor type 722. 50 pf (0 290 15. 675 Model 2 2e2F ist 655
Miniature SCOPE type 1200 B . Ideal TV servicing etc.
Checked and tested $\& 10 \mathrm{P}$. \& P. sl
ADVANCE SLKnal Generator type D1. $2 \mathrm{nc} / \mathrm{s}$ to 190 me/s. Sine and square mod. With oriminal charts Excel ent condition $\mathbf{E 1 2 / 1 0 / 0 ~ P . ~ \& ~ P . ~ \& ~}$
SERVOMEX. Stabllized D.C. Power unit. Type 38. Bench mounting. 0.15 vol
TRANSISTOR Stabilised Power Unlt. 48 v , 4 amp . Manufactured by E.M.I. Open chamais. Brund new Highest quality. Size 10$\} \times 5 \neq 6 \mathrm{ln}$. hish. 66 ea.
RACAL stabilizer unit 24 V . raw DC in 20 volts lamp Rab and 12 V . 5 MA Rener stabout. Brand new condition. Size $5 \times 3 \times 6 \mathrm{ln}$. Complete with circuit diagrim. $35 /-\mathrm{en}$. HOLGATE B channel Event recorder. 1 in . or 101 in . nches
E20.
HE
HEWLETT PACKARD Recorder and Decoder type 20610. As new. Write or phone for further detalis. deep. 19in. Rack Mounting CABINETS Bit. high zild deep. and wheels. $\mathrm{E} 12 / 10 / 0$ Carriage at cost.
MULLARD Transistorised Analozue to Distital ConSUNVIC DC chopper Amplifler type DCA 1. Superb onndition. $622 / 10 / 0$ ean. Carr. 20/*
PROCESS TIMERS 8 individinal timer circuits, each with 0-100 sec calibrated dials. Ideal diaplays. processea, etc. Standaril mains input E25 Cart. 25/. ISOLATING TRANSFORMERS 240V in 240 V 7
KVA out. As new. $\mathbf{E} 25$ ea. Carr. £2/10/. DESK Telephones. Current type. Standaril diad. 3 wire red. kreen, white. Ideal extenalons etc. As new 63 each DIECAST ALLOY hoxes. Size $4 \times 2 \pm \times 11 \mathrm{in}$. Drilled euts for Belling Coax socket. 3 compartmenta link holes between. 6/6 each. P. \& P, 2/..

METERS

ELLIOTT I'ortable Retlecting Volmeter. 6° dial acaled 0 to 12.5 Hances $12.5-25-37.5$ Frequency range $D C$ to $2.5 \mathrm{kc} / \mathrm{s}$. Accuraci 0.5 fel . Adjustable feet. built in level, magnetic shleld. novernent loc
wood case. As new. $£ 20$. 1 . \& P. $15 / \%$.
EHT ELECTROSTATIC Erıest Turner, etc., 0-1.5kV, KAYE4/5/0 ex
TAYLOR 100-0.100 Micro amp gcaled size $4 \times 2^{\text {a }}$ with hernal lamp scaled 6-0-6 1/10/0 ea
GRIFFIN \& GEORGE $8^{\prime \prime}$ round in sloped open ended cl ease with terininals 2 types $0 / 20: 0 / 100$. All $50 \mathrm{c} / \mathrm{s}$

4 DIGIT RESETTABLECOUNTERS. 1.000 oht coll. Size $11 \times: \times 44 \mathrm{ln}$. As new, by Sodero of Geneva. $£ 2 / 100$ each.

TRANSFORMERS. All standard Laputs.
STEP DOWN ISOLATING trans. Standard 240 v AC to 120 y tapped $60-0-601$
As above but 600 W
$6410 / 0$.
75 WATT Constant voltage transformer. 195 to 255 volta 240 v out. $30 /=$ each. P. \&. P. $5 / /$. MODULATION trans. PP-6 BW6. 30/ each. P. \& P. 5/.

Transformer $0.215-250120 \mathrm{MA} ; 6.3 \mathrm{~V} \not \pm \mathrm{A} C T \times 2: 2 \times 6.3 \mathrm{v}$ 0.5 A and separate $\mathrm{MNv}^{2} 100 \mathrm{MA} 25 /=$ each P . \&e P . $4 /$ 3 kV 4.5 mA . $4 \mathrm{y} 0.5 \mathrm{amp} \times 2,4 \mathrm{y} 1 \cdot 1 \mathrm{gmp}$. $63 / 10 /-\mathrm{ea}$
 Gardners 6.3v $2 \mathrm{~A}: 6.3 \mathrm{~V} 1.5 \mathrm{~A}: 6.8 \mathrm{v} 0-1 \mathrm{~A}$. Size $3 \times 1 \mathrm{i} \times 4 \mathrm{in}$.

Gardnens. Potter. Multi 0.3 's combine to glve 48 v at 4 amps or 8.3 at 45 s . With $350-0-350$ at 50 mA . £2 $10 /=$ ea.
 separste winding $215-0215$
0.75 A : 5 v 3 A . As new. 63 ea
Gardwers $400 \cdot 350-0 \cdot 350-400$ at $250 \mathrm{MA} ; 0 / 4 / 6-3 \mathrm{~V} 4 \mathrm{amp} \times$ 2; $0 / 4 / 3 \cdot 32$ amp: 0/4/5 3.5A. In oricinal boxes. c4/10/ inc. post. Gardiners 2 kV 10MA. as new. E4/ich. postake postare.
Parmeko 65v 1 amp. Separate 0-18-24vat $0-5$ amp. 30/-aa.
Gard/Parm/Part. $450-400-0.400-450.180 \mathrm{MA} .2 \times 6.3 \mathrm{v}$. 63 ea.
ADVANCE Constant Voltuge Trans. 6 volts 50 watt. As new $£ 3$ P. \& P. 10
Gardners 5 v 30amp. Brand new $\mathbf{t 1 / I O}$ each incl. poatare CHOKES, $511: 10 \mathrm{H}: 15 \mathrm{H}$; up to $120 \mathrm{~ms}, 8 / 6$ ea. Up Brand new. HADDON 10 H 160 ma . $12 / 6 \mathrm{ea}$
Large atantliy LT. HT. EHT transformers. Your requirements, please
Pamel switches DPDT ex eq. $1 / 6$ en.: DPST Brand new $3 / 6$ ea.; DPDT twice, brand new $6 /-:$ heavy duty DPAT brand new 6/- ea.
SPECIAL. 813 valves. Brand new, boxed $£ 2 / 10 / 0$. PRECISION continually rotarable stud switches.
Slingle pole. 80 way, can be stacked if required. \&3 PRECISION rotary stud switches 2 pole 12 W size 2° Pq.. \ddagger " shaft. $£ 2 / 10 / 0 \mathrm{ea}$
Min. SEALED 4 pole 3 way and 3 pole 4 way rotary switches. $t^{\prime \prime}$ shat t dia. x in $10 /=$ ea.
solartron Storake. Osclioscope type QiD 910 . MUST CO. Solartron Storake. Oacllioecope type QD 010. MUST (HO.

FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

CHILTMEAD LTD.
 22 SUN STREET • READING • BERKS

Off Cumberland Road (Cemetery Junction)
Tel. No. Reading 65916 (9 a.m. to 10 n.m.)

Wilkins
ind

EQUIPMENT WIRE P.V.C. covered 80/- Der 1000
yds 7 $7.0076,1 / .024,14 / .0048$ sype 1 and 2 , all colours. yds, $71.0076,1 / .024,14 / .0048$ type 1 and 2 , all colours.
$14 / .0076$ eype 11 Red and Natural El5 per 1,000 yds. MINIATURE SILVER ZINC ACCUMULATOR. 1.5 volt, 1.5 ampere. Size $2 \times 1.13 \times 0.63 \mathrm{in}$. Weight $1 / \mathrm{oz}$
1 oreal for model work, $12 / 6$ each. $120 /=$ doz., post $1 / 6$. STROBOSCOPE FORK. 125 cycles. P.O. No. 5, 30/- ea LEDEX ROTARY SOLENOIOS ANO CIRCUIT SELECTORS. SIZE 5 s. 4 pole, 11 way and off $110 \%-, 4$ pole,
12 way $110 /=, 24$ pole, 11 way and off $210 /=.54$ pole 0 il CERAMIC CERAMIC AND PAXOLIN WAFER SWITCHES Double Pole Pax Wafer Switches $12 / 6$ each, pose $2 / 6$. P.O. STANDARD E QUIPMENT RACKS 6 Gt. U channol.
sides drilled for 19in. panels heavy angle base, 150%, cge $20 /$. sides drilled for $19 i \mathrm{~m}$. panels heavy angle base, $150 / \%$, cge $20 / \mathrm{m}$
Desk Units for Racks $30 / \%$, cse $7 / 6$.
 Type 106 cge 20
Mc/s
AlR BLOWERS. $200 / 250$ volt. A.C. cylindrical 7in. 7in. suitable for intake or extra
$1 / 15$ th h.p. Ell. I/loth h.p. El4. ELCOM STUD SWITCHES. 12 pole 2 way or 3 way GEAREO MOTORS. I r.D.m. or 3 r.p.m. 4 watts very powerful, reversible 24 v . A. C . $35 / \mathrm{F}$ pose $2 / 6$, can be oper-
ated from 230 v . with our $20 /$ Transformer. Post $5 /$. VACUUM GA UGES. 2 in . scaled. 0/30 inches of mercury. PRESSURE GAUGES. $21 \mathrm{in} .60,250,400$ or 600 p.s.i. $25 /$ e each. 4 in , flange $30,60,300$ p.s.i., $37 / 6,100$ D.s.i.
$0 / 30 \mathrm{ins} . v a c ., 37 / 6$. DOst $/ 6.6$ STANDARD LEVER
 deal for model work, $12 / 6$ each. 120/- doz.. post $1 / 6$.

FOR

 RELAYS P.O. TYPE 3000 AND 600 BUILT TO YOUR REQUIREMENTS - QUICK DELIVERY COMPETITIVE PRICES - VARIOUS CONTACTS DUST COVERS - QUOTATIONS BY RETURN LARGE STOCKS HELD OF G.E.C. MINIATURE SEALED RELAYS9 in . square case. Ideal spotlighe $70 /$. each, Dose $10 /$. BATTERY CHARGERS at special price made by West-
inghouse, worth E35. Input $200 / 250 \mathrm{v}$. A.C. output 6 V . 15 amps D.C. with ammeter, fuses; regulated by a 4 -position

MINIATURE DIGITAL DISPLAY SERIES 661
Counting Jnsts. Led., an assembly of five units each unit
displaying II messages in numbers with decimal poins.
and letters $\mathbf{E 2 0}$ complete, send for details.

HIGH SPEED COUNTERS $34 \times$ lin.. 10
counts ${ }^{2}$ er
second with 4 second with 4
igures. The figures. The
following D.C.
voltages are avaliable, 50 v . or 24 v . 100 v .

SUB-MINIATURE Microswith Honeywell S.P.D.T eype If SMI TN 13 size gin. \times lin
mounced In fives for $22 / 6$ pose free.
JACK PLUGS. 2 Point with
 screw-on cover, 2/6, post 9 d .
PO 201 on headphone cord $3 /$, pose $1 / 6$.
PLUG-IN RELAYS. Londex 4 change-over HD contacts
$28 \mathrm{v} . \mathrm{D} . \mathrm{C}$. or 240 v . A.C. with base and cover, $35 / 0$. 28 v . D.C. or 240 V . A.C. with base and cover, $35 /=$ each.
RELAYS, 24 vole D.C., 4 make, 4 break heavy duty contacts
with duse cover, $12 / 6$ each. quantities avallable. UNISELECTORS. New British made 8 bank, 25 way, non bridging full wipers, 67.10 each.
VARLEY Miniature Relays. 700 ohms $4 \mathrm{CO}, 15 / \mathrm{ea}$.
ROOM THERMOSTAT. Adj, between 45 and 75 des. Far.,
250 v . 10 amp. A.C. Ideal for greenhouses, $35 /$., Pose $4 / 6$.

MINIATURE BUZZERS. 12 volss with tone
adiuster, $7 / 6$ each as illustrated. Special rates for quantities. FOR MANUFACTURERS, LOW PRICE SEMICONDUC MULLARO ASZ20, 3,000 available $6 / 6^{\circ} \mathrm{ea}$. MULLARDGE M75, 1,000 available $6 /$ e ea, Send for Complete Sta MAGNETIC COUNTERS. Veeder Root with 800 counts per minute, counting to 999,999 , 110 or 120 volti
A.C. or 110 volts D.C. $65 /=$ each. post $3 / /$,
 2 zin . $X 1$ tin. X lin. with push butson zero reset. 3 divits. 12 Volts D.C., 25 Mmp/sec. $50 / \mathrm{FE}$. Complote lise available.
METERS GUARANTEED.
MiCroamps $0 / 500$ 2in MC
 Microamps $0 / 500$ 2in. MC....25/ Microamps 0/500 2tin. MC Millamps $0 / 50033$ in. MC Ampe 50-0-50 2 in . MC Ampe $0 / 52 \mathrm{in}$. MC. Volss 5/0/5 $21 \mathrm{in} . \mathrm{MC}$ Voles O/202in.MC. Voles 0-40 2 in . MC Volte $0 / 10$ A.C. 31 in MCA PORTABLE VOLTMETERS $0 / 250$ Moving Iron A.C. $70 / \mathrm{C}$

ONE HOLE FIXING SWITCHES DOUBLE POLE ON/OFF
\qquad
MEGGERS, SERIES 2.500 volts, range $0 / 100$ ity. Metal case. Complete with test leads in leather case wish "VIVASCONOLECATHOORAY" CONDENSERS, DI

 reading Absolute, D. C. volts $075,3,30,150,300$ and
$750(5 S O(20 \mathrm{~mA})$ and Absolute $0 . C$ amps $1.5,15,150$ and $600(75 \mathrm{mV}$) on 5 in. Mirror s.ale. Wood case, with
shunts in fisted compartment, $\mathbf{6 2 5}$, cse 15%.

 Grams: WILCO CROYDON

PRONOUNCED R-TEZ
SEMICONDUCTORS

Write now for catalogue
ATES ELECTRONICS LTD., MERCURY HOUSE, PARK ROYAL, LONDON W5
TEL: 01.9986171 TELEX:ATES LONDON 262401
WW-106 FOR FURTHER DETAILS

A NEW HI FI prase F.M. TUNER M•70

- I4 SI TRANSISTORS. 4 Si NO COILSI NO ALIGN.
- TUNING METER AUDIO O/P-300mV
- DISTORTION-LESS THAN FREQUENCYRESPONSE
- SUITABLE FOR STEREO
- SIGNAL/NOISE GOdb $88-108 \mathrm{Mc} / \mathrm{s}$
- 25c/s-15ke/s OF LIMITING
- SSTAGES OF LIMITING
- ULTRA HIGH SENSITIVITY 11° by $5^{\prime \prime}$ printed clrcult board for $12 V$ AT 25 mA with by printed circuit board for above tuner with fitted tuning gang, together $75 /=$ (approx. cont of remalning components-4)

Printed circuit accommodates all components, you just ingert each one-uf you can read and use a soldering lron- $i 5$ mins.
The shopplng list consists of two prepared orders which are sufficient for you to obtain all the components required. imprese you as well as your friends. an excellent tuner is a must; a tuner that will Mail Orders to: DEPT. WW, MULTEL
3 BAKER STREET UONDON
W. 1

WW-107 FOR FURTHER DETAILS

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER E_{4}

TRY OUR X PACKS FOR UNEQUALLED VALUE

XA PAK
Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72, 81, etc.

PRICE ES PER 1000
POST \& PACKING 4/6 U.K.

XB PAK

silicon TO-18 CAN type transistors NPN/PNP mixed lots; with equivalents to OC200-1, 2N706a, BSY27/29, BSY95A.

PRICE E4-5 PER 500
PRICE \&8 PER 1000
POST \& PACKING $2 / 6$ U.K.
XC PAK
Silicon diodes miniature slass types, finished black with' polarity marked, equivalents to OA200, OA202, BAY31-39 and DK10, etc.

PRICE E4-10 PER 1000
POST \& PACKING 2/6 U.K.
ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMICONDUCTORS, FREE PACKS SUSPENDED WITH THESE ORDERS, ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.

LOOK! TRANSISTORS ONLY 1/- EACH

TYPE A
PNP SILICON ALLOY TO-5 CAN
Spec:-- ICER AT VCE $=20$ 1 mA MAX. HFE, 15-100
These are of the 2 S 300 type which is a direct equivalem to the OC200/205 range.

TYPE B
PNP SILICON
PLASTIC ENCAPSULATION
Spec:- ICER AT VCE $=10 \mathrm{v}$
1 mA MAX.
HFE, 10-200
These are of the 2 N3702/3 and 2N4059/62 range.

TYPE C NPN SILICON TO-18 CAN
Spec:-
ICER AT VCE $=20 \mathrm{v}$ 1 mA MAX. HFE. 50-900
These are similar to the BC108/109 types.

NEW TESTED \& GUARANTEED PAKS

| B2 4 | PHOTO CELLS. SUN BATTERIES | $10 /$ to |
| :--- | :--- | :--- | :--- |

08110 | REED SWITCHES MIXED |
| :--- |
| TYPES LARGE \& SMALL | $10 /-$

589	5 SP5 LIGHT SENSITIVE CELLS
LIGHT RES. 400Ω DARK $1 \mathrm{M} \Omega$	10/-

8918 | NKT163/164 PNP GERM. TO |
| :--- | :--- | :--- |
| EQUIVALENT TO OC44, OC45 |$\quad 10 /-$

B93 5 | GET113 TRANS. EQUIV. TO |
| :--- |
| ACY17-21 PNP GERM. |

| | 5 | 2N3136 PNP SIL. TRANS. TO-18 |
| :--- | :--- | :--- | :--- | :--- |
| B96 | HPE $100-300 ~ i C . ~$ | |

XB112 \& XB102 EQUIV. TO AC126
$39810 \begin{gathered}\text { AC1 } \\ \text { ETC }\end{gathered}$
CAPACITORS, ELECTROLYTICS.
B99 200 PAPER, SILVER MICA. ETC.
-

40 WIREWOUND RESISTORS MIXED
Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components. approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN. and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors

Please ask for Pak P.1. Only 10/-
2/- P \& P on this Pak.
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter into a perfectly linear and accurate rev.
counter for any car.

FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/-post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

P.O. RELAYS

VARIOUS CONTACTS AND COIL RESISTANCES.
NO INDIVIDUAL SELECTION.
POST \& PACKING 5/-

8 for
20/-

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

KING OF THE PAKS Unequalled Value and Quality
SUPER PAKS SEMICONDUCTORS

Code Nos. mentloned above are given as a gulde to the trpe of device in

BFDII SENICOVIUCTDRS

	46 Eqve. 2Natish. T. TIS43 BNN 30005 $935-100$ up 4/- e
P.E.T:的 To-18 case. FE19. Bqut 2N 3819 , MPF105. etc. $7 / 6$ ench. Data supplised.	
1.5W (Top-Hat) … $3 / 6$ ea. 10W (80-10 8tud).. $5 /$ - en.All fuly teated5%tol and	
niarked. state voltage required.	
BRAND NEW TEXAS GERM. TRANSISTORS Coded and Guaranteed	
Coded and Guaranteed Pak No. EQVT	
	203744
	$8{ }^{8} \mathrm{mos} 3+4 \mathrm{~A}$ OC44
	2 C 345 A
	2011 - 117
All $10 /$ each PaK	
2N2060 NPN SIL. DUALTRANS, CODE DEAGD1699	
AnSISTOR.	
TED ${ }^{4071}$	

$1 \begin{gathered}\mathrm{SI} \\ \mathrm{P} 1 \\ 1\end{gathered}$

QUALITY-TESTED PAKS

Red Spot AF Trans. PNP

5 sillco 8 Rect RF 3 Tralis. PNP
a
10
OC1 140 Truas NPN Switahing
sil Trans. 28303 PN P

3 Zener Diodea $1 \mathbf{3} 33 V 5 \%$ Tol. Power Transtatoran 1 OC22 1 OC38
Sulcon Rects. 400 PIV 250 mA OC75 Transiutors
Power Tram. Oc20 100 V
 Bil. Trans.
OAs Diodes.
OC72
OC77 Tranaistors
Transintora

 1N914 Bu. Diodes 75 PIV 73mA..... ${ }_{\mathrm{O}}^{\mathrm{ACC} 130} \mathrm{O}$ Power Trana. Germ
OC25 Power Tran. Germ.....
AC128 Trans. PNP High Gin

${ }_{3}$ COAKH Germ. Diodes Eqtit. OA

A Al17 Tran.
7 occ1 Type Trans.
3 OC17 Tras,
2N2926 sul. Epory Tran.
${ }^{\text {OC71 The Trans. }} 2$

Oc2200 8il. Trans.
sul. Power Rects. BYzz

8il. Power Rects. BYZ13
Power Tran.
TK201A.
${ }^{2 N} 1132$ PNP Epllas lat Planar sil. 2N697 Eptaslal Planar Trana.
4

G

 CiSt

ADDRESS YOUR ORDERS TO: L.S.T L.S.I , ᄂTD. 7 COPFFOLD ROAD, BRENTMOOD, ESSEX DIRECT LINES TO SALES DEPT: BRENTWDOD (ESSEX) $226470 / 1$
 Prices quoted are current at time of
subject to variation without notice. Semiconductors offered in this advertisement bear the relevant replacement guarantee if not co published specifications pecification offer
Please enclose a stamped self-addressed envelope with any query Quantity prices on application: many more eypes in stock Export enquiries particularly welcome. Cable Address: Lestroco Brentwood.
RRMS OF BUSINESS: Retail orders; cash with order please RADE: Please furnish references if credit account required
 LOWEST I.C. PRICES VEI!
$}$

IC10
PA230 20/- IC Preamplifier
PA234 20/- I watt audio amp.
PA237 $32 / 6 \quad 2$ watt audio amp.
$\begin{array}{lll}\text { PA246 } & 52 / 6 & 5 \text { watt audio amp. } \\ \text { PA424 } & 43 /- & \text { Zat }\end{array}$
$\begin{array}{lll}\text { PA424 } & 43 /- & \text { Zero voltage switch } \\ \text { SL } 403 \mathrm{~A} & 49 / 6 & 3\end{array}$
$\begin{array}{llll}\text { SL } 403 \mathrm{~A} & \text { 49/6 } & 3 \text { watt Plessey amp. } \\ \text { TAA263 } & \text { 15/- Mullard linear amp. }\end{array}$
TADI00 45/- IC receiver
TAA293 20/- Mullard gen. purp. amp.
TAA310 30/- Record/Playback preamp. TAA320 13/- MOS LF amplifier
UL702C 29/6 Plessey linear amplifier
Data sheets available on request I/-per copy.
PLEASE NOTE: Only new-full specification integrated circuits, no below-specification types.
FAIRCHILD MICRO-LOGIC
$\begin{array}{cccc} & 1-6 & 7-11 & 12+ \\ u 1900 & 9 / 9 & 9 /- & 8 /- \\ u 1914 & 9 / 9 & 9 /- & 8 /- \\ u 1923 & 12 / 6 & 11 / 9 & 11 /-\end{array}$
Prices for $100+$ and $1,000+$ on application. 5 page data and circuits article-2/6. Plastic spreaders- $1 / 6$ each.

$\text { SC41D } \text { ge friac }$	
BT102/500R 12/6	

IRC 20 20 $8 / 6$	
BY 127	2N2926

Mullard Plastlc HV rectifier 800 piv 1 amp (similar $25+3 / 3100+3 /-$ NPN Planar transistors $25+1 / 8 \quad 100+1 / 6$

INFRA-RED DEVICES
56 CAY 29/6
AD161/2 10/-

Gallium arsenide emitter
MGA 100 35/-
Gallium arsenide emitter
$31 F 2 \quad 28 / 6$
Infra-red detector diode

Siemens/Telefunken
NPN/PNP output pair
$25+9 /-100+8 /-$

FREE NOW!

16.PAGE TEST EQUIP. MENT CATALOGUE. ALL ASPECTS OF LOW COST TEUR, PROFESSIONAL AND EDUCATIONAL DETAILED.
\&MULTIMETERS
*Valve voltmeters \star AF, RF MILLIVOLTMETERS *PANEL. FS METERS *VARIABLE TRANSFORMERS \star SCOPE, DECADES \star POWER SUPPLIES *audio. rf generators \star TESTERS, CHECKERS

* sine/square wave AUDID GENERATOR Provides audio out-
put on 4 bands. Sine
Wave kc / s, output
$7 V$ oup to
square
to

* 50,000 OHMS PER VOLT MULTIMETER

 $600 / 1200 \mathrm{~V}$ d.c. (50k $\{2 / \mathrm{V}$).
$0 / 6 / 30 / 120.300 / 5001200 \mathrm{~V}$
a.c. $1(10 \mathrm{~K}$
 Merer movement 20 UA
Moter
polarivy reversing switch
Complete with leads and instrutions.
E.
A.10.0.

TRANSISTOPISED RF MILLIVOLTMETER

 higher and lower riequencies.
Filly stabilised size
Sit Fulty stabilised. Size: $150 \times$
$240 \times 114 \mathrm{~mm}$. Complese with
hasd
 FSO 20
and
VMSV
M

* PORTABLE OSCILLOSCOPE

NOMBREX TRANSISTORISED Test Equipment

* 20,000 OHMS PER VOLT MOpul
Pophar
wizh Popular model bus
wizh extras cale range.
20,000 ohms per volz

 ance $0-6 k \Omega$ and $6 M \Omega$.
Also 8 dB scales or capacieance:
Model 200 H
(

* RF SIGNAL GENERATOR

 5colMc/s on 6 bands. Directly
calibrated. Variable RF. attenyator. audio output. Xtal
socket for calibratio. sock. A.C. Brand new with
Instructions. Size 140×215 $\times 170 \mathrm{~mm}$. RICE
 E200

Price
\qquad

* dC STABILISED POWER SUPPLY Swizched OC Stabil-
ised Outputs UP TO 1 AMP $3-6 .{ }^{3}{ }^{3} 12$ lamp Tor each volt-
ase Fully fused.
Mains
Ne Neglizibie rlpple.
Requation
SEIOIA
E8.I 15.0

HI-FI equipment to suit EYERYPOKKTT

Hovam		

* discotheque and public address - a speciality

Complete range always in stock with special low prices for complete systems
and individual units. Two Demonstration Rooms, HP and Credit Sale facilities and plenty of free advice. New 120 page Catalogue covers every aspect, $12 / 6$ single extra discount voucher Order as catalogue " B ' SEND TODAY.

38 SERIES
Face Size $42 \times 42 \mathrm{~mm}$. DC typ
100
200
500
50
10
50

5
50
50
100
50
50
100
200
500
$50-0-50$
$100-0-100$
$500-0-500$
1
5
10
50
100
500
1
5
10
20
50
300
500
S^{\prime} Meter
65 SERIES
ace Size $86 \times 78 \mathrm{~mm}$. DC typ
100
200
500
$50-0.5$
$100-0-10$
$500-0.50$
500-0-50 \qquad
5
10
100
500
10
20
50
\qquad
"Meter Im
ace Size $120 \times 110 \mathrm{~mm}$. DC eypes
50 \&A
100
500
$100-0-100$
100

ELECTRONIC COMPONENTS
Vast range of tranaistors, diodes,
valves. tubes, IC's in stock. Free Valves. tubes, IC's in stock, Free

- Complete range of components in
to get components.
If you are at all interested in Elec
tronics then you are mlssing out
without a copy of 'Henry's' 320 -pare
Catalorue 'A.' Price $7 / 6$ p.p. $2 /-$ with
10/-value discount vauchers.
FREE
To all
companies interestedos etc, and all compames incereled
UK's largest stockists of Electronics
for overy use. Over 6500 lines in

ELECTRONIC ORGANS

*MODERN ALL BRITISH TRANSISTORISED DESIGNS AVAILABLE AS KITS OR READ BUILT
tVENEERED CABINETS FOR ALL MODELS + 49 NOTE, 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO MANUAL 49 NOTE
-KITS AVAILABLE IN SECTIONS AS REQUIRED tHP and CREDIT SALE FACILITIES

FREF! FREE! 16 PaGE ORGAN RROCHURE COVERRING ORGANSIN KIT FORM AND READY BUILTWRITE OR PHO
PETER ELVINS.

Complete system comprising Control Unit headphones, etc., 12 V D.C. operation. The ideal system for mabile power output. meetings, sports days, factories, garden over hundreds of yards. Also has effectively facilisy. Guaranteed Brand New in sealed

STC CRYSTAL FILTER $\pm 7.5 \mathrm{~K} / \mathrm{cs}$ BAND WIDTH

PORTABLE GEIGER COUNTERS

HIGH CAPACITY

ELECTROLYTICS

1010
$12 / 6$ a Discounts for quantities
E.A.C. DIGIVISOR mk. II At a fraction of normal pr
MMovin CCio or 9 Display.
One inch character size Moving Coil 0 to 9 Display.
One inch character size.
Lishe beam lens operased Cherer. Movement $500 \mu \mathrm{~A}$.
Character lamp 6,3 volts.
Also lamp for decimal poine. Overall size: it

STC TIME DELAY MOOUL

Nivirdinul

 ON DEMONSTRATION

* henelec 'IC stereo'

Three dual-channel integrated circultz are used in this new desiEn by
Henry's Radio, which has the Unusual facility of doubling as a hleh Henry's Radio, which has the unusual facility of doubling as a hlgh aualizy headphone amplifier. inputs are provided tor masnetic, crystal
and ceramic pickups and microphones, radio tuners. equalised tape siznals, etc. Wide range tone controls and switched high and low pass filsers are incorporated. and the unit has lts own power supply. The

* HENELEC STEREO 25-25

Comprises two PA25 amplifiers and MU442 in matching teak Cabinee for
direct use with above IC Stereo.

* henelec 'Pa25' power amplifier

This silicon desizn uses complementary transissors in the symmetrical
Oucput staze, direce coupled to a loud speaker of B ohms impedance or
 into 15 ohms. over 2 frequency range of $15 \mathrm{Hzz-25Hz} 3 \mathrm{db}$ Cool running
is assured by the use of penerously dimensioned black anodised heatinks.

* HENELEC ‘PA50’ POWER AMPLIFIER

Basically similar to the 'PA25', the 'PASO' will deliver 50 wates RMS 20 asicaly ohm load. Exera power is handled by complementary triplet

* HENELEC MU442 POWER SUPPLY

Designed to run one or Ewo 'PA25"s' or one 'PASO" the MU442 connects to the amplifiers by means of plugeon harnesses. No soder ing is required
to connect up the system. Audio input pluz and speaker plug zo
Eo the panel of the MU442.

* Mk.1 100 watts RMS with seabilised power suply overcurrent trip

THE FINEST SOLID STATE UNITS ALL SILICON BRITISH EQUIPMENT

* SEND FOR FREE BROCHURES

TO BUILD YOURSELF ALL TRANSISTOR DESIGNS

- PW Șereo Decoder (Reprine no.: 45A 1/6)
- or with optional power supply Unit

PE Spring Line Reverberation
(Reprint no: $46 \mathrm{~A} 1 / 6$)

- Reprint no. 15 wazt Inversor Kit
- Repanco 40 watt Invertor Kit
- HWry's MW/LN Radio Tuner
${ }_{67} 150 \begin{aligned} & 15 \\ & 7\end{aligned}$
11590 p.0. 616

| 44 | |
| :--- | :--- | :--- |
| 4 | 17 |

03176 p.o. 3/6
TIONS AND CIRCUITS ARE AVAILABLE. COMPLETE LIST No. $36 A$ WITH.

TRANSISTORS

FROM STOCK THE LARGEST RANGE AVAILABLE. COVERING ALL TYPES OF TRANSISTOR, INTEGRATED CIRCUITS, DIODES, RECTITYPES ON REQUEST.

trade and industrial enauiries invited

ALSO IN STOCK. TRANSDUCERS $\angle S .18 .0$ PAIR WITH CIRCUITS. LARGE RANGE OF NUMICATOR TUBES AND INDICATORS, CATALOGUE "A".

B UILD THIS VHF FM TUNEA PRINTED CIRCUIT HIGH FIDELITY/5 BANDWIDTH. MONO AND STEREO. A POpular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about li- VHF FM gives the REAL sound. ALL PARTS SOLD SEPARATELY. TOTAL COST E6.19.6

DECODER E5.19.6 ASK FOR BROCHURE No. 3 (FOR STEREO)

BUILD A QUALITY 4 TRACK TAPE RECORDER

 To get che besc out of your MAGNAVOX DECK, you need a MARTIN RECORDAKIT. This comprises amplifier which comes co you assembled on its printed circuit board-in fact everything for making a superb Tape Recorder. You need no experience or technical skill to bring this about. THE INSTRUCTIONS MANUAL MAKES BUILDING EASY, AND SUCCESS IS ASSURED. Kit comprises Deck, Amplifier, Cabinet and speaker, with microphone, $7^{\prime \prime} 1,200 \mathrm{fe}$. tape, and spare spool. PRICE 39 gns. P. \& p. 22/6 NOTHING ELSE TO BUY

HENELEC 5-5 STEREO AMPLIFIER
Excellent low-priced British designed Scereo Amplifier for use with Record Decks, Tuners.
16 transistor mains operated. Output $5+5$ wates for $8-15 \mathrm{ohm}$ speakers. Black, siver \times II 10 wood finish, (Leaflet on requese.)
 Complete Stereo System 5-5.
Garrard 2025TC stereo, 5-5 Amplifier. Plinth/Cover. Two 10 watt speakers with weeters in polished cabinets, size 18 in . X Ilin. $X 7 \mathrm{in}$. Usual price (49.10.0. OUR PRICE E39.10.0, p.p. 20/-. ASK FOR BROCHURE 13 . OTHER SYSTEMS ASK FOR
systems, covering all price ranges.
RECORD DECKS THARRAD BM ABR GOLDING.

- 3000 LM Mag. cart.

A70 mk. II
"AT60 mk. II 9TAHC Diam

AT60 mk. 11 l/C
AP7
AP75 Diam.
Ap75 With AT2l

$\begin{array}{lll}\text { GL75P } \\ \text { GL69P } & \text { L/C with P/C } \\ \text { with P/C }\end{array}$

AUDIO EQUIPMENT

Mono or Stereo Audio equipment developed from Dinsdale Mk. II each unis or system
will compare favourably wish ocher profeswill compare favourably with other profes-
sionalequipment selling at much higher prices. sional equipment selling at much Migher prices.
COMPLETE SYSTEMS AND MIXERS from Cll.12.6 to $\mathbf{E 3 8 . 1 7 . 6}$ (all units available Separakely). FROM 25 SYSTEMS
CHOOSE
THE FINEST VALUE IN LOW-COST HIGH FIDELITY CHOOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE YOURSELF
POUNDS. Amplifiers 7 , 12 and 25 wates, POUNDS. Amplifiers 7. 12 and 25 wates, Preamps and Mixer Modules.
*SEND FOR BROCHURES No. 12/14 and 21

INTEGRATED MICRO CIRCUITS

9 AND 12 VOLT
STABILISED SUPPLIES
Size approx. $3 \mathrm{in} . \times 2 \mathrm{in} . \times 1$ inn. Outpur 100 mA . Transistorised and Zener stabilised. Also unstzb. output. UK made on
meral chassis.
PS 900
PS 1200
12
volts. $45 /-$ p.p. $2 /-$
SINCLAIR EQUIPMENT
IN STOCK
Z30 89/6, Stereo 60 E9.19.6.
PZ5 99/6. Q16 E8. 10.0, IC 10 59/6,
Micro 6 Kit 49/6. System 2000
stock and on demonstration.

HENRY'S RADIO COMPONENT/EQUIPMENT illustrated catalogue Continually revised and enlarged. Over 300 pages of all eqpes of components and equipment for every
use. Complete with 5 2/Discouns Vouchers for purchases.

```
Purchases.
Price 1 as Catalogue ' \(A\)
```

Why not send roday! 9th edition
Why nor send
6th impres.

Order Depp. Electronic Components and
Eyupmert, and ERectronic Oigan Depl.
3O3 EDGWAR ROAD, LONDON W2.
Telephone: 01-723 1008/9

AMPEX TAPE

$2,400 \mathrm{ft}$. on IBM spool. Supplied in excellent condition, complete with transparent plastic spool case. Ideal for video and audio. 40/- per spool, p. \& p. 5/6d. As above but lubricated, 50/- per spool, p. \& p. $5 / 6 \mathrm{~d}$. Large discounts on quantity.

MIXED COMPONENT
 PACKS

250 mixed resistors, $\frac{1}{4} \& \frac{1}{2}$ watt. 150 mixed Hi Stabs, $\frac{1}{1}, \frac{1}{2} \& 1$ watt. 5 or better. Size 0 Jiffy Bag full of mixed capacitors. Size 0 Jiffy Bag full of mixed components. All same price: 12/6d. per pack, p. \& p. l/6d.

EX-COMPUTER POWER SUPPLIES

Reconditioned, fully tested and guaranteed. These very compact units are fully smoothed with a ripple better than 10 mv . and regulation better than 1%. Over voltage protection on all except 24 v . units.
We offer the following types:
6 v .8 a. £10. 20 v .15 a . £15.
6 v .15 a . £14. 30 v . 7a. £12. 12v. 20a. £16. 24v. 4a. £14. Carr. 15/- per unit

ISOLATING/STEP DOWN TRANSFORMER

Primary 0, 240 v ., Sec. 0, 115, 240 v . 10a. Ideal for workshop supply, only $6^{\prime \prime} \times 7^{\prime \prime} \times 7^{\prime \prime}$. £8, carr. 20/-

RELAY OFFER

Single pole changeover. $2^{\prime \prime}$ $\times 0.6^{\prime \prime} \times 0.75^{\prime \prime} .50 \mathrm{v}$. $2.5 \mathrm{~K} \Omega$ coil, operates well on 24 v .8 for £1.
5,000 available. P. \& p. 1/6d.

1,750 COMPONENTS

 FOR 65/- ? ?YES, QUITE TRUE, READ ON
BUMPER BARGAIN PARCEL We guarantee that this parce contains at least 1,750 compo. nents. Short-leaded on panels, including a minimum of 350 transistors (mainly NPN 350 PNP germanium, audio and switching types-data supplied). The rest of the parcel is made The rest of the parcel is made up with: Resistors 5% or better
(including some 1%) mainly (including some 1%) mainly
metal oxide, carbon film, and composition types. Mainly $\frac{1}{8} \&$ t watt . .. diodes, miniature silicon types OA90, OA91, OA95, IS 130 etc. . . . capacitors including tantalum, electro lytics, ceramics \& polyesters. inductors, a selection of values also the odd transformer, trimpot, etc., etc. . . . These are all, miniature, up to date professional, top quality compronessts. Don't miss this, one of our best offers yet!! Price, 65/- post paid U.K. New Zealand $20 /$ - post \& packing Limited stocks only

$750 \mu \mathrm{H}$ inductors $5 / \mathrm{doz}$. THERMOSTATS. I $\times \ddagger^{\circ} \times 1 \downarrow^{\circ}$. O.C. alove $120^{\circ} \mathrm{F} .11 \mathrm{a} .250 \mathrm{v} .5 / \mathrm{ea}$.

REED SWITCHES
Glass encased, switches operated by external mag.
net-gold welded contacts.
Miniature pproximately 1 in . long diameter. Will make and break up to 1 A . up to 300 volts. Price $2 / 8$ each. $24 /$ - dozen

MINIATURE GLASS NEONS I2/6 doz.

TRIM POTS on $2^{n} \times 4^{4 n}$ bds. ${ }^{+}$Ta, raps, and other components. $100 \mathrm{a}, 500 \mathrm{a} .15 \mathrm{~K}$. 20 K . Ple
state requirements. 5 for $10 /-+2 / \mathrm{p}$. \& p .

9 OA5, 3 OA10, 3 Pot Cores, 26 Resistors. 14 Capacitors, 3 GET 872, 3 GET 872B, 1 GET 875. All long leaded on panels $13^{*} \times 4^{*} .2$ for 10/-p. \& p. 1/6d. 4 for $20 /$ - P. \& P. $5 /$

12v. 4a, POWER SUPPLY Brand new, weighs 11 lb . Constant voltage transformer, input 0 - 112.5 - 123.5 - 195. $220-235 \mathrm{v}$., produces 12 v , 4 a . capacitor smoothed output. c9.10.0. plua 10/- carr.

LARGE CAPACITY

 ELECTROLYTICS. 4ìin. 2in. diam. Screw terminals. Top quality German manu facture. Will withstand short circult discharge.$4.000 \mu \mathrm{~F}$ 72V d.c. $W \mathrm{~kg}$. $7 / 6$ $16.000 \mu \mathrm{~F}$ 12V d.c. whg. $6 /$
LONG ARM TOGGLE

SIPST $13 / 6 \mathrm{~d} . \mathrm{PER}$ DOZ. P. \& P.
DPST $15 / 6 \mathrm{~d}$ PER DOZ.

GIANT PANELS $5^{53^{\circ}} \times 4^{*}$ min. $\frac{90}{2}$ transistors $9 \times 56 \mu \mathrm{H}$. Inductors. $2 /$ p. did. As above. only. 21 transistors. 70
dioodes. 62 min. $1 / 10$ thW resistors.
3 for $25 /$.. p. \& p . $2 /$.

BULK COMPONENTS 0.1
nifd
240 V
200V Sprague, plastic. 0.22
Sprague,
polyester.
Both types 15 per 1.000 . 2.2 mfd 50 V Sprasue, tantalum. E2

Send s.a.e. for samples.

DIODES EX EQPT. SILICON 150 PIV 10 Amp .4 for 10 ${ }_{400}$ PIV 35 Amp, 4 for $45 /-$

KEYTRONICS,

52 Earis Court Rd., London, W. 8 Tel. 01-478 8499
MAIL ORDER ONLY. Retall and Trade supplied. Export enquirles arly weleome.
S.A.E. FOR LIST

(Burndept B.E.352) 60 watt model. Supplled Brand New complete with stainiess steet tank $9 \frac{1}{4} \times 6 \frac{1}{6} \times 4 \frac{1}{1} \mathrm{in}$. f60. Carr. 20/-
2. FAST NEUTRON MONITORS (Burndept 1407C) meV. $£ 100$.
3. Radiation Monitors (Burndept BN 110 MK . V) $0-5 / 50 / 500 / 5$ k. c.p.s. Brand new. E100. Alpha and Beta Gamma probes available at extra cost.
4. PORTABLE RADIATION MONITORS (BUINdept BN 132) $0-5 / 50 / 500 / 5 k$ c.p.s. With built-in Gamma probe. Brand new. $£ 50$ complete with carrying harness.
S.A.E. for literature. 10% discount for Educational Authoritios

SPEAKERS
"E.M.I." $19 \times 14 \mathrm{in} .50$ watts, 8 ohm (14A/600A.) Four Iweaters mounted across main axis. Separate "X-over" unit balances both bass and h.f. sections. 20 Hz to 20.000

£25. P.P. 50/-. 10 watts. $3 / 8 / 15$ ohm models. With

 E.M.I." 13×8 in. 10 watts. $3 / 8 / 15$ ohm. models. With "E.M.I." 13×8 in. 10 watt $3 / 8 / 15$ ohm. models less Iweelers. 45/- P.P 5/P.P. $2 / 6$."FANE' 12 in. 20 watt. 15 ohm. (122/10A.) With integral tweeter. E_{6} ea. P.P. 7/6.
SAR RADIO SPEAKERS. $3 \mathrm{ohm} .7 \times 4 \mathrm{in} .14 /-.8 \times 5 \mathrm{in}$
16/-. P.P. $2 / 6$
SPEAKER SYSTEM ($20 \times 10 \times 10 \mathrm{in}$.) Made to Spec. from ? in. board. Finished in black leathercloth. 13×8 in
speaker with twin tweeters complete with $50 \mathrm{~Hz} .1020,000 \mathrm{~Hz}$. £7 10s. P.P. $10 /$ SPEAKER CABINET KIT. Above mentioned cabinet only, In kit form which you may assemble and cover to your own choice. 40/\%. P.P. 5/-.
EXTRACTOR FANS/BLOWERS
"AIRMAX"; $7 \frac{1}{2}$ In. FAN. In aluminlum diecast housing (9 in.). 240 v . Brand new. E410s. P.P. $10 /$
 housing. 240 v . Brand new. £6. P.P. 10/
SOLARTRON TANGENTIAL BLOWERS. Overall size $16 \times 5 \frac{3}{2} \times 3 \frac{1}{2} \mathrm{in}$. Air outlet $12 \times 1 \frac{1}{1} \mathrm{in}$. 240v. Brand new.

HIGH SPEED MAGNETIC COUNTERS ($4 \times 1 \times 1 \mathrm{ln}$.) 4 digit 6/12v. 24/48v. (state which), 6/6 a. P.P. 1/-. \rightarrow

LEVEL METERS (1 $\frac{1}{3}$

Gefmany. $15 /-$ each.
PHOTOMULTIPLIERS 6262 and 6262b. £15 ea RELAYSH.O. 2 pole 3 way 10 amp. contacts. $12 \mathrm{v} . \mathrm{w} .7 / 6$ ea. LIGHTWEIGHT RELAYS (with dust-proof covers) SIGNAL GENERATOR (TYDO BO1A). SIGNAL GENERATOR (TYDe 801A). $10-300 \mathrm{Mc} / \mathrm{s}$. In 4 bands Ext. $50 \mathrm{c} / \mathrm{s} .-10 \mathrm{kc} / \mathrm{s}$. Output $200 \mathrm{~m} / \mathrm{v}$. $\mathbf{\mathrm { E } 5 0} \mathrm{ee}$. PRECISIO
RRECISION CAPACITANCE JIGS. Beautifully made 1.220 pf E10 ea. Type $29.5 \mathrm{pf}-11.5 \mathrm{pf}$. £6 ea. POT CORES TYPE LA 3. $10 /-$ ea.
11 WAY PLUG \& SOCKET (Painton Series 159) Gold plated contacts with hood \& retainlng clips. 30/-pair. 50 WAY PLUG \& SOCKET (U.C.L. miniature). Gold plated contacts $20 /$ - pair. 34 way version $15 /$ - pair. LOGIC BOARDS with 31 ACY40s- 38 diodes etc 20/-e日. PP, $2 / 6$.
CO-AX
CO-AX RELAYS (magnetic devicas) 1 change-over $12 \mathrm{v} . \mathrm{w}$
20/- ea. P.C. boards built to computer standards. Each board is a complete 4 octave divider ($4 \frac{1}{2} \times 3$ in.). All connection data suppled. 30/- each. Set of 13 (gives 5 octaves to keyboard) E16.
DIODE LOGIC BOARDS contains 10 diode gating circuits which convert any one of 10 inputs into an equivalent binary code, 10/- each

TRANSFORMERS

L.T. TRANSFORMERS (shrouded). Pilm. 200/250v Sec. 20/40/60v. 2 amp. 52/6. P.P. $7 / 6$.
L.T. TRANSFORMERS. Prim. $200 / 250 \mathrm{v}$. Sec. 20/40v. $1.5 \mathrm{amp} .30 / \%$. P.P. $5 /-$
"ADVANCE:" CONSTANT VOLTAGE. Prim. 190/250. $\pm 15 \%$. Sec. 115 V . 2,250 watts. E15 ea. P.P. $50 /-$ L.T. TRANSFORMER 60 v .8 amp. ES. P.P. $15 /-$ L.T. TRANSFORMER $20 \mathrm{v} .1 .5 \mathrm{amp} .15 / \mathrm{-}$. P.P. $2 / 6$ L.T. TRANSFORMER Prim. 200/250v. Sec. O/25/35v 30 amp . €7.10. P.P. 20/-
STEP-DOWN TRANSFORMERS Prim. 200/250v. Sec. 115 v .1 .25 amps , 25/- ea. P.P. 5/-.
L.T. TRANSFORMERS Prim. 240v. Sec. $8 / 12 / 20 / 25 \mathrm{v}$. 3.5 amp models 20/-; 5 amp model 25/-. P.P. 5/6. L.T. TRANSFORMERS Prim. 240v. Sec 14 v .1 amp 10/a

COPPER LAMINATE PRINTED CIRCUIT BOARD ($8 \frac{1}{2} \times 5 \frac{1}{2} \times \frac{1}{9}$ in.), $2 / 6$ sheet. 5 for $10 /-$ Also 11×9 in., 4/- ea., 3 for 10/

ELECTRIC SLOTMETERS (1/-) 25 amp. L.R. 240 v . A.C. 85/- ea. P.P. 5/
QUARTERLY ELECTRIC CHECK METERS, 40 amp 240V A.C., 20/- ea P.P. 5/-. LONG LIFE" ELECTROLYTICS (screw terminal) 25,000 u.f. 40 v . ($4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$.). 20/- ea. P.P. $2 / 6$. 3.150 u.f. 40 v . ($4 \frac{1}{4} \times 1 \frac{1}{1} \mathrm{Im}$.). $15 / \mathrm{F}$ ea. P.P.P. $2 / 6$.

EXECUTIVE "SIXTY" AMPLIFIER. (60 w. r.m.s. into 8 ohm.) Britsh designed and buill. True hi-fl performance. Bult-in filters to protect speakers. Three independently mixed inputs. High-Low impedance. Mic. Crystal-CeramicMagnetic Cartridge, or aux. equipment. E55. P.P. 50/S.a.e. literature.

TELEPHONE DIALS (New) 20/-ea.

 RELAYS (G.P.O. 3000'). All types. Brand ew fom $7 / 6$ each. 10 up quotelions only EXTENSION TELEPHONE (Typo 706) lack of 2 tone Grey 65/-. P.P 5/UNISELECTORS (Brand new) 25-way 75 ohm. 8 bank $\frac{1}{2}$ wipe $65 /-, 10$ bank REED RELAYS 4 make $9 / 12 \mathrm{v}$. (1.000 ohm.) $12 / 6$ ea,2 make $7 / 6$ ea. 1 make $5 /-$ Ra. Reed Switches (1 in.) $2 / \%$ ea. $£ 1$ per doz.
SUB-MINIATURE REED RELAYS ($1 / \mathrm{n} . \times \frac{1}{2}$ in.). Weigh toz. Type 1. $960 \mathrm{ohm}, 3 / 9 \mathrm{v}, 1$ make. 12/6 ea. Type 2. 1800 ohm, $3 / 12 \mathrm{v}$. 1 make. $15 /-\mathrm{ea}$.

SILICON BRIDGES. 100 P.I.V. 1 amp. $\left(\begin{array}{l} \\ x\end{array} x^{2}\right.$ in.).

COMPUTER BOARDS containing 4 thyristors (C.106B1) 200° P.I.V. 6 amp . 1-2N3705, and numerous other ultra modern diodes, resistors, capacitors. 10/- ea.

2ђkW FAN HEATER
Three position witching to sule tor full heater ($(2, \mathrm{k} W)$, wwitch down
to for hali heat (1ikW), switch central blows oold for summer conling-
thermostat acts ns auto cut-out. thernostat acts Rs auto cut-out.
Complete kit $£ 3.15 .0$. Pont and ins.
$7 / 8$, or similur $2 \pm \mathrm{KW}$ made up heater $7 / 6$, or aimilar $2 t \mathrm{KW}$ made
£4.5.0. Pomt and ins. $7 /(6$.

	FLUORESCENT CONTROL K
Each kit comprieas aeven ltems-Choke. 2 tube enda. starter, starter holder and 2 tube ellps, with wiring Inistructlons. Sultable for nommal fluoreecent tubes or the new "Grolux" tubes for tish tanks ind indoor plants. Chokes are super-allent. mostly reain flled. Kit A-$15-20$ w. 18/6. KHt R-30-40 w. 19/6. Kilt C-80w. 23/6. K1t E-65w. 18/6. KIt MFi is for $61 \mathrm{I} ., 9 \mathrm{in}$. and 12in. miniature tubee, 18/6. Pontage on Kils A and B 4/6 for one or two kits then $4 / 6$ for each two kita ordered. Kit. C, I) and E $4 / 6$ on first kit then $3 / 6$ for each kit ordered. Kit MPI $3 / 6$ on flrut kit then $3 / 6$ on each two kita ordered.	

BLANKET SWITCH

Double pole with neon let into nide no luminotis In dark. Ideal for dark roont light or care. 5/6 each. 3 heat model $7 / 8$

BLANKET SIMMERSTAT

 Athough looking like, and fitted as, an ordinaryblanket wuitch, this is in fact a device for switching blanket sultch, this is in fact a device for switching
the blanket on for warying time periods. thus giving a complete control from of to full heat. Also suitable for controlling the temperature of any. Ather appliances uning up to 1 amp. Lated at 2 ž/6 earh, we offer
these whille our witocky lant at only $12 / 6$ each.

REED SWITCHES Qlase encaned, switches onerated by external maxnet-gole welded contactu. We can now offer 3 typel: diameter. will Miniature. Jin. long x approximately iln. diameter. Will
make and break up Lo iA up to 300 volts. Price $2 / 6$ each. 24-- dozen. 2 in lonig $8 / 116 \mathrm{in}$. dlameter. This will break 18/- per dozen. 2 ln , long, Just over $1 / 16 \mathrm{in}$. thlck, approx mately iln. Fide. The Standard Type Hattened out, no that it can be fitted into a manalier space or a larger quantity may
 Ina each. 18/- dozeth.

TELESCOPIC
AERIAL
For portable, car radio o
nsmitter. Chrome-plated six sections extends from 7it to 47 in
Hole in bottom for 6 BA screw.

3 amp 250 v . with SHxing ring. 1

MINIATURE EAR PIECE
As used with imported pocket radios. 1/6 each 15/- doz.

ISOLATION SWITCH 20 Amp D.P. 250 Volts. Ideal to control indicator mhom.
 B
 Ahornon 15/20 AMP CONNECTORS Polythene Insulated 12-way strip. $2 / 6$ each 24i- doz.

13 AMP FUSED SWITCH

 Made by G.E.C. For connecting water type $3 / 6$ ench $30 /$ - doz. Metal boxes for surface mounting $1 / 6$ each $15 /=$ doz.
MICRO SWITCH

MICRO SWITCH
$18 /=$ doz. 15 anp model $2 /$-ea. or $21 /$ - doz.

SUPPRESSOR CONDENSER TCC

1 mid. 250 v . A.C. working metal cased
with fixing lug. $1 / 8$ each $18 / \mathrm{d}$ doz. HEAT \& LIGHT LAMP
276 W. Internally mirrored bibl plus $4 / 6$ post and innurance. TUBULAR HEAT \& LIGHT LAMP philips boow, $28 / 6$ plue $4 / 6$ post and insurance.
750 MICRO AMP MOVING COIL METER tin. Hush mounwing, ex-W.D. $18 / 6$ each plas THERMOSTATS
Trpe "A" 15 amp, for controlling roorm heaters, green-
hooses, airing cupbontd. Has spindle for pointer knobs. Qulckly adjustuble from $30-80^{\circ} \mathrm{F}, 8 / 6$ plua $1 / \mathrm{p}$ post. suit.
 Internal serew atiers the nettings so this could be adjuntable

 post and insurance. Type "D". We call thla
the Iec-stat ns it cuts
In and out at around reveeting poitit. $2 / 3$ ntmps. loft plpen from freesing. if a leasth of our blanket wlre (16yd. $10 /-16$ Is wound round the plpee. 7/6. Poat and packing $1 / \theta$.
Type " E . This is standard refrigerator thesmostat. spindie
 plus " $1 /$ "post. particularly thone in glans tanks, NBts or sinks-thermontat is held (tuaif submerged) oy rebber sucker or wire cllpall typer. Adjumable over range 50° to $150^{\circ} \mathrm{F}$. Price $18 /-$ -

24 HOUR TIME SWITCH

Mains operated. Adjustable Contacta give on/off per 24 hours. Contacts rated 15 amps. repeablnk mechaniem so deal for shop window
control, or to swich hall lighte (anh-burglar precaution) while you are on holiday. Made by the famoue Smithe Company. This month are on hols complate with perapex cover, new and usused, plus $3 / 6$
only $38 / 6$
postage and insurance, a real snip which shouhil not be miseed.

THIS MONTHS SNIPl

Bee In the dark INFRA RED MONOSCOPE

This equipment is complete and portabie. Basleally it
consiats of an infra red image converter tuhe with optical consigts of an infra red image converter tube with optical
lensen for focuang the image and a Zamblal plle to provide
the neceasary E.H. The monoscope is housed in a hide the neceasary E.H.T. The monoscope is housed in a bide
case aize 9×6.8 tin. approx.
 etc. this equipment has thang relentinc and practica gealed cartoa. Price £9.18.6. Notr. Although unused in fact stlul in orighal araled cartons. The equipment it apprax. ${ }^{25}$ years old ant
consequenty the Esmbin! pile may need drying nut a better ldea might be to replace ft with a battery operated

WATT AMPLIFIER \& PRE-AMP

 s tramalstors-highly efficient made for use with tapeLimited quantitytapa/B. Ful circult diag. ailmo show.
tape controia $5 /-$.

VARYLITE

WIII dim lncandeacent lighting up to 600 watt from full brilliance to out. ted on M.K. Mush plate, rame nize and ning as hisndard wall suitch a may be fitted in piace of this. or mount
plastic buI with control knob $£ 3 \cdot 18.8$.

HI FI BARGAIN
FULL F1 12 inch LOUDSPEAKER. Thin is undoubledly one of the finest loudspeakera that we have ever offered. produced by one of the country"s mont famous makers. It has a dle-cast metal frame
and is strongly recommended for $\mathbf{B i}$ i. Fi load and Rhythm Gultar and public addreess. Flux Denaty $11, n 00$ ganas-Total Flux 44000 Maxwelln-Power $\begin{array}{ll}\text { Hundling }{ }^{15} & \text { withs R.M.S.-Cone Moulded fibre-Freq. reaponse } \\ 30-10,000 & \text { c.p. }\end{array}$
 Diam.- Mount ing holpa t, holeo-t in. diam. on pitch circie, 11 tin.
diam. Overall helght Efin. A EE speaker ofered for only $£ 3.19 .6$ plus $7 / 6 \mathrm{p} . \& \mathrm{p}$. Don't nilas thil offer. 15 in . 25 watt $£ 7.18 .6$.
18 in .100 watt $£ 19.10$.
3kW TANGENTIAL HEATER UNIT
 This heater unit is the very latest type, most
efficient, and qulet running. Is an lited in Hoover and efficient, and quilet running. In an fitted in inover and
blower heat cracting 15 and more. We have a few onty. Comprices motor, impeller, 2 kW . element
and $\mathrm{i} W$. element allowing switching 1,2 and 3 kW . and 1 kW . element allowing switching 1,2 and 3 kW .
and with Chermal kafety cuttout. Can be fited
into any metal line case or cabinet. Only need control into any metal line case or cabinet. Only need control
switch. 79/6. Postage and insurance $6 / 6$. Don't
mies this.

PROTECT VALUABLE DEVICES
FROM THERMAL RUNAWAY OR OVERHEATING Thyristors, rectifiers, tramsiators, etc., which use heat sinks can easily be protected. Simply maie the coutact thernostat part of the heat-sink. Motora and equipment generally, cat also be adequately protected by having
thernostats to strategio spots on the casing. Our thermostats in strategic spots on the casing. Our contact thermostat has a calibrated dial or seting range setting is between 80 to 800 deg . F. Price 10/-

ELECTRONICS (CROYDON) LTD
Dept. Ww, 266 London Road, Croydon CRO-27'H Also 102/3 Tamworth Road, Croydon

ELEOTROALUE

EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS

BARGAINS IN NEW TRANSISTORS

ALL POWER TYPES SUPPLIED WITH FREE INSULATING SETS
2N696
2N 697
2N 106
2 N 1132
2 N 1302
2 N 1303
$2 \mathrm{~N} \mid 303$
2 N 1304
2 N 1304
2 N 1305
2 N 1305
2 N 1306
$2 \mathrm{~N} \mid 306$
$2 \mathrm{~N} \mid 307$
2Ni308
$2 \mathrm{~N} \mid 308$
$2 \mathrm{~N} \mid 309$
2 N 1309
2 N 1613
2 N 1711
2 N 2218
2 N 2147
2 N 2369
2N2646A
2 N 2924
2N2925R
2N2926O
2N2926Y
2N2926G
2N3053
2N3054
2N3055
${ }^{2 N} 33702$
$2 \mathrm{~N}_{3} 3703$
2N3704
2N3705

RESISTORS

| Code | Power | Tolerance | Range | Values
 avallable | 1209 | 10 to 99 | 100 up |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (see note below). | | | | | | | |

Codes: $C=$ carbon film, high stability, low noise. Prices are in pence each for quantities of one $W W=$ metal oxide, Electrosil TR5, ultra low noise. ohmic value and power rating. (Ignore frac-

Values:
E12 denotes series: $1,1 \cdot 2,1 \cdot 5,1 \cdot 8,2 \cdot 2,2 \cdot 7,3 \cdot 3$, $3 \cdot 9,4 \cdot 7,5 \cdot 6,6 \cdot 8,8.2$ and their decades 24 denotes series: 25 E12 plus $1 \cdot 1,1.3,1 \cdot 6,2$, $24.3,3 \cdot 6,4 \cdot 3,5 \cdot 1,6 \cdot 2,7 \cdot 5,9 \cdot 1$ and their decades.

NEW PLESSEY INTEGRATED CIRCUIT POWER AMPLIFIER TYPE SL403A. Only $48 / 6$ NET. Operates with 18 V power supply Supplied complete with application Data on orders for 2 or more.
PE NOV. 69 STEREO AMPLIFIER KIT less metalwork .. $611 / 18 /-$ NET complete

CARBON SKELETON PRE-SETS
5 mall high quality, type PR: Linear only: 100Ω, 220Ω. 470Ω, $1 \mathrm{~K} \Omega .2 \mathrm{~K} 2,4 \mathrm{K7}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}$, $100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K} . \mathrm{IM}^{2} \mathrm{M} .2 \mathrm{M} 2,5 \mathrm{M}$. $10 \mathrm{M} \Omega$ vertical or horizontal mounting
S-DECs PUT AN END TO "BIRDSNESTING". Components just plug in. Saves valuable time. Use components again and sgain.

Only $30 / 6$ post free
Compact T-DeC, increased capacity, may be temperature-cycled.
only 50/- post f́ree

WAVECHANGE SWITCHES

IP 12W; 2P 6W; 3P 4W; 4P 3W-long spindies
SLIDER SWITCHES
Double pole, double throw
cor order. MULLARD SUB-MIN ELECTROLYTICS
C426 RANGE Axial leads values \quad RFIV:: Price $1 / 3$ each Axial leads. Values ($1 / \mathrm{F} / \mathrm{V}$): $0.64 / 64 ; 1 / 40$; $6.4 / 25 ; 8 / 4 ; 8 / 40 \cdot 10 / 2.5$; $10 / 16 ; 10 / 64 ; 6.4 / 6 \cdot 4 ;$ $16 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6 \cdot 4 ; 25 / 25$; $32 / 4 ; 32 / 10$; 32/40; 32/64; 40/16; 40/2.5; $50 / 6 \cdot 4 ; 50 / 25 ; 50 / 40 ;$ $64 / 4 ; 64 / 10 ; 80 / 2.5 ; 80 / 16 ; 80 / 25 ; 100 / 6 \cdot 4 ; 125 / 4 ;$ 125/10; 125/16; 160/2.5; 200/6-4; 200/10; 250/4; $320 / 2 \cdot 5 ; 320 / 6 \cdot 4 ; 400 / 4 ; 500 / 2 \cdot 5$.
LARGE CAPACITORS. ALL NEW STOCK High ripple current types: $2000 \mu \mathrm{~F}$ 25V 7/4: $50 \mathrm{~V} 21 / 11 ; 1000 \mu \mathrm{~F} 100 \mathrm{~V} 16 / 3$. $2000 \mu \mathrm{~F} 100 \mathrm{~V} 28 / 9$ $5000 \mu \mathrm{~F} 70 \mathrm{~V} 36 / \mathrm{F}, 5000 \mu \mathrm{~F}$ 100V $58 / 3$; $1000 \mu \mathrm{~F}$ $50 \mathrm{~V} 8 / 2 ; 2500 \mu \mathrm{~F} ; 64 \mathrm{~V} \quad 15 / 5 ; 2500 \mu \mathrm{~F} 70 \mathrm{~V} \quad 19 / 6$.
MEDIUM RANGE ELECTROLYTICS Axial leads. Values ($\mu \mathrm{F} / \mathrm{V}$): 50/50 2/-; $100 / 25$ 3/9: 1000/10 3/: $500 / 50$ /1 1000/25 $/ 1000 / 50$ 6/-: $2000 / 25 \mathrm{~s} / \mathrm{/i}$.

SMALL ELECTROLYTICS

Axial leads: $5 / 10,10 / 10,25 / 10,50 / 10 \quad 1 /-$ each $25 / 25,47 / 25,100 / 10,220 / 10 . . \quad 1 / 3$ each
COMPONENT DISCOUNTS
10% on orders for components for $\mathbf{5}$ or more. 15% on orders for components for $\& 15$ or more. (No discount on net items)
POSTAGE AND PACKING
Free on orders over $\mathrm{E2}$.
Please add $1 / 6$ if order is under $£ 2$.
Overseas orders welcome: carriage charged at
cost cose.

PEAK SOUND AMPLIFIER KITS
The new Englefield Kits

Brilliant new styling and available in two forms: STEREO 15 WATTS PER CHANNEL Supplied In klt form with complete amplifier and pre-amplifier modules and power supply components. Output per channel into 15Ω - 13 watts R.M.S. Price $\mathbf{3 8 . 9 . 0}$ Net

STEREO 25 WATTS PER CHANNEL

Supplied in kit form with complete amplifier pre-amplifier and regulated power supply modules. Output per channel into i 5Ω -28 watts R.M.S.

Price $\mathbf{6 5 8 . 1 5 . 0} \mathrm{Net}$
Specifications on these amplifiers in accordance with the Specifications in Guarantee published in Peak Sound advertisements.
Inputs:
Magnetic, RIAA 3.5 mV
Ceramic $\quad 35 \mathrm{mV}$
Tape $\quad 100 \mathrm{mV}$
Radio 100 mV
Signal to noise ratios: Better than 60 dB all inputs.
ENGLEFIELD CABINET to house either above assemblies (as illustrated) $\mathbf{6 6 . 0 . 0}$. Net Other Peak Sound Products as advertised.

COLVERN 3 WATT WIRE-WOUND POTENTIO. METERS: $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega .500 \Omega$ Price $1 \cdot 5 \mathrm{~K} \Omega, 2.5 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega, 10 \mathrm{~K} \Omega, 15 \mathrm{~K} \Omega, 25 \mathrm{~K} \Omega, 50 \mathrm{~K} \Omega$ CARBON TRACK POTENTIOMETERS
Double wiper ensures minimum noise level. Long plastic spindles. Single gang linear .. 220 $, 470 \Omega, 1 \mathrm{~K}$, etc. to $2 \cdot 2 \mathrm{M} \Omega \quad 2 / 6$ Single gang log. .. 4K7, 10K, 22K, etc to $2 \cdot 2 \mathrm{M} \Omega$.. $2 / 6$ Dual gang linear .. $4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}$, etc. to $1 \mathrm{M} \Omega$.. $8 / 6$ Dual gang log. .. 4K7, 10K, 22K, etc. so $2 \mathrm{M} 2 \Omega$.. $8 / 6$ Log/Anti-log. .. 10K. $47 \mathrm{~K}, \mathrm{IM} \Omega$ only Dual anti-log .. IOK only 8/6 lok only 8/6 Any type with $\frac{1}{2}$ amp double pole mains switch
extra $2 / 3$
FETS n-channel
Low cost general purpose $2 \mathrm{~N} 5163,25$ volt .. only 5/- each Audio/r.f. Texas 2 N 3819 Motorola 2NS459 (MPFIO5)

8/6 each
30 WATT BAILEY AMPLIFIER COMPONENTS:
Transistors for one channel $\quad \square / 5 / 6$ list, with
Transistors for two channels $\mathbf{f} 14 / 11 / /-$ list,
with 15% discount
only $46 / 11 /-$

Capacitors and resistors for one channel, list $\mathbf{E} 2$.
Printed circuit board free with each transistor set
Complete unregulated power supply kit $4 / 17 / 6$ mono or stereo, subject to discount.
Complete regulated power supply kit $\mathbf{6 9 / 5 / - \text { subject to discount. }}$ Further details on application.

MAIN LINE AMPLIFIER KITS, AS ADVERTISED PRICES NET AUTHORISED DEALER SINCLAIR IC. 10 INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMPLIFIER
This remarkable monolithic integrated circuit amplifier and pre-amplifier is now available for despateh from stock. It is the equivalent of 13 transistor/ 18 resistor circuif plus 3 diodes and the first of its kind ever. It is d.c. coupled and applicable to manual providde with it manual provided with it.
$59 / 6$ NET

RADIO \& TV COMPONENTS (Acton) LTD 21 a High Street, Acton, London, W.3.
also 323 Edgware Road, London, W 2.
Goods not dispatched outside U.K. Terms C.W.O. All enquiries S.A.E.

Complete stereo system-£29 10s.

The new Ouo general-purpose 2 -way speaker systam is beautifully finished in polished teab. veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally,
Type 1 SPECIFICATION
Impedance 10 ohms It incorporates Goodmans high flux 6". $\mathbf{4}^{\text {M }}$ speaker
and 2: "tweeter Teak finish $12^{\prime \prime}=6 . " 53^{3 \prime}, 4$ guineas each. 7/6d. p. Gp. Type 2 as type 1. Size $17 \frac{1^{\prime \prime}}{3}, 10 \frac{z}{4}^{\circ} \quad 6 \frac{t^{*}}{4}$. Incorporating $10 \frac{1}{4}^{\circ} \therefore 6 \frac{1}{4}$ bass unit and $2 t^{\circ}$ iweeter. 3 ohms mpedance $5 \frac{1}{2}$ guineas plus :
$15 /-p .8 \mathrm{p}$.
Garrard Changers from $[7.19 .6 \mathrm{~d}$. p. Ep p. $7 / 6 \mathrm{~d}$.
Garrard Changers rom ting Teak Inish Plinth 44.15 . Cd. $7 / 6 \mathrm{~d} . \mathrm{p} . \mathrm{g} \mathrm{p}$
Wocede integrated Transistor Stereo Amplifier
£9 10s.
plus 7/6d. p. 6 p.
The Duetto is a good quality amplifier, attractively styled and finished. It gives superb reproduction previously associared with amplifiers costing far more.
SPECIFICATION
R.M.S. power output 3 watts per channel into 10 ohms speakers

INPUT SENSITIVITY: Suitable tor medrum or high output crystal cartridges and tuners. Cross - talk better than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$
CONTROLS: 4-position selector swith (2 pos mono and 2 pos. stereo) dual ganged volume contuol
dual ganged volume control.
TONE CONTROL. Treble lift and cui Separate on off swith. A preset bakance control.

These 5 items can be purchased together for $£ 2910 \mathrm{~s}+£ 110 \mathrm{sp}$. \& p .

THE RELIANT MK.II
Solid State
General Purpose Amplifier In teak-finished case
£6 16s.
$+7 / 6$ p. \& p

Yhe\%manemt integrated high FIDELITY TRANSISTOR STEREO AMPLIFIER $\mathbf{f 1 4 5 s} .+7 / 6$ p. \& p. Buil
SPECIFICATION
OUTPUT 10 watts per channel into 3 to 4 ohms speakers 120 wats) monorat: INPUT: 8-position rotary selector switch (3 pos, mono and 3 pos stereol. P.U. Tuner. Tape and Tape Rec. out Sensitivities: All Inputs 100 mV into 1.8 M ohm.
TONE CONTROLS: Separate bass and treble controls. TREBLE 13 dB lith and cut (at 15 KHz BASS: 15 dB lith and 25 dB cut (at 50 Hz).
VOLUME CONTROLS: Separate for each channel. AC MAINS INPUT: $200-240 \mathrm{~V}, 50-60 \mathrm{~Hz}$ Viscount Mark II for use with magnetic pick ups specification as above. Fully equalised for magnetlc pick ups. Suitable for cartridges with minimum output of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$. at 1 kc . Input impedance 47k. $£ 15$ 15z. plus $7 / 6 \mathrm{p}$. \& p.

SPECIFICATION
OUTPUT: 10 watts into a 3 ohms speaker. INPUTS: (1) for mike (10 m.v.). Input (2) for gram. radio 1250 TRAN.) Indivdual bass and treble control. TRANSISTORS: 4 silicone and three germanium.

PAINS INPUT: $\mathbf{2 2 0 / 2 5 0}$ volts.
SIZE: $10 \frac{1}{4} \times 4 \frac{4}{4} \times 2 \frac{1}{2}$
Mk. 1 C5 15e. $+7 / 6 \mathrm{~d}$. P. \& p. less Teak-finished case

THE DORSET

(600 mW Output)
£5.5.0
plus $7 / 6 p$ a p.
Circuit 2/6. FR
Circuit 2/6. FREE WITM PARTS MAINS POWER PACK KIT: 9/6 entre.

7-transistor fully tunable M.W.-L.W. superinst portablewith baby alaim facility. Set of parts. The latest modulized and pre-alignment techniques makes this simple to build. Sizes: $12 \times 8 \times 3$.

NEW COMPLETE HI-FI

STEREO SYSTEM £39
comprising Sp25 Garrard Mkll with diamond stereo speakers. plinth and cover. $\quad £ 39_{\text {plus } £ 2.10 \text { s. p. \& p. }}$

ELEGANT SEVEN MK. III
(350 mW Output) £5.5.0 plus $7 / 6$ p. 8 p.
Circulh 2/6. FRE WITH PARTS MAINS POWER PACK KIT: 9/6 extra.

7-transistor tully tunable M.W.-L.W. euparhet portable. Sot of parts. Complete with all components. including ready Set of parts. Complete with all components. ancluding ready foolproof corstruction. Inputs- 6 posimon rolary swuch 13 position mono. 3 position stereol. Tuner 150 mv cortuidges witt minimising ourput of 4 mV icmisec Load 47h. Ceramic phckup 150 mV into 680 k Sensitmites taken for 200 mV oulpur. Controis-soparale volume contiofor for each channat Twin ounged basa. 12 dB lift and 15 dB an at B0dz Twn gengud trebie. 10 dB lith and 150 B cut at 10kfe Votrage cequired 23.30 V DC a 3 mA Sire $125^{\circ} \times 33^{-} \times 27^{\circ} \mathrm{In}$ teak firished case. complete wilth

X101 10w. SOLID-STATE HI-FI AMP With Integral Pre-amp. Spectications: Powne Outpul finto 3 ohms apeaker) 0 watis Sensitwiy 5 watts 0.35% A1 rated output 1.5% fisoum Responss: Minus 3 d 8 points 20 Hz and 40 KHz Speaker: 3 -4 ohme (3-15 ohms may be usad). Supph whape: 24y OC. et 800 mA le.24y may be usad.

69/6 plua 2/6p of
COMTROL ASSEMBLY: Fincluding masistors and apacitors). 1. Yolumb: Priey 5. 2. Treble: Price 5/. 3. Comprehenaiva bess and trobie: Price 10/: The above 3

50 WATT AMPLIFIER

An extremely reliable general purpose valve Amplifierwith six electronically mixed inputs. Suitable for use with: | mics. ouitars. gram. tuner. orgen. etc. Separate bass and |
| :--- |
| treble controis. Output impedance |

SPECIAL OFFER

Complete stareo systems comprising B'ALFOUR 4 spead auto player with stereo head 2 DUO speaker systems size $12 \times 6 \frac{1}{x} \times$ All above items
 Al above items

SUPER-BARGAIN STOCKTAKING SALE!!

Use form below for your order. CONDENSERS MUST BE ORDERED BY STOCK NUMBER ONLY. If any sale item is 'sold-out' when order received we shall substitute items of equal value.
ELECTROLYTIC CAPACITORS

RESISTORS. EXCELLENT QUALITY. MAINLY 5\%. 7/6d. per 100 of any one value.
2/-per dozen of any one value. Smaller quantities 3 d . each.

the values							
13 ohms	560 ohms	3.3 k ohm	10 k ohm	39 k ohm	91 k ohm	1.2 meg ohm	8.2 meg ohm
22 ohms	750 ohms	3.6 k ohm	16 k ohm	43 k ohm	130 k ohm	1.5 meg ohm	9.1 meg ohm
36 ohms	1 k ohm	4.3 k ohm	18 k ohm	47 k ohm	360 k ohm	1.8 meg ohm	10 meg ohm
47 ohms	1.5 k ohm	4.7 k ohm	22 k ohm	51 k ohm	430 k ohm	3.6 meg ohm	10 meg ohm
91 ohms	1.8 k ohm	5.6 k ohm	24 k ohm	62 k ohm	470 k ohm	5.1 meg ohm	
220 ohms	2.2 k ohm	6.8 k ohm	27 k ohm	75 k ohm	560 k ohm	6.2 meg ohm	
470 ohms	2.4 k ohm	7.5 k ohm	30 k ohm	82 k ohm	620 k ohm	7.5 meg ohm	

SLILER MICA/CERAMIC/POLYSTYRENE CONDENSERS. 10/- per 100 of any one value. 3/- per dozen of any one value. Smaller quantities 6 d . each. As available. In following values. Tick those required.

2 pf	5 pf	12 pf	25 pf	50 pf	80 pf	135 pf	180 pf	250 pf	680 pf	,000 pf	2,500 pf
3.9 pf	6 pf	15 pf	27 pf	58 pf	82 pf	140 pf	190 pf	330 pf	800 pf	1,100 pf	2,700 pf
4 pf	8 pf	18 pf	30 pf	62 pf	100 pf	158 pf	200 pf	450 pf	820 pf	1,500 pf	3,000 pf
4.7 pf	10 pf	22 pf	39 pf	72 pf	125 pf	170 pf	240 pf	600 pf	900 pf	2,200 pf	6,200 pf

COMPARE THESE PRICES!!

MULLARD POLYESTER CONDENSERS

25% discount lots of 100 per type.
TRANSISTOR BARGAIN! THEY CAN'T GET ANY CHEAPER! ! ! ! !
P.N.P. Audio. Untested, unmarked. MAINLYO.K.
N.P.N. Silicon. R.F. types unmarked ALL USEABLE

10/-per 100 POER OUTPUT (SImilar OC35) ALL TESTED .. 4/- each $£ 2$ dozen

SHORTS. Gain of $20 / 506 \mathrm{~d}$, each. $50 / 100$ 9d
SHT SEVSITIVE TRA NSISTORS 2/
LIGHT SENSITIVE TRANSISTORS, 2/- each.
LIGHT SENSITIVE DIODES
Can be used to control any transistorised device, $1 /=$ each.
THYRISTORS. 400 volt BTY 79 7/6d. each. SCR 51 (10 amp) il each.
RECTIFIERS. Latest type. All marked. 800 volt peak, 1 amp mean current type 1N4006. $2 / 6$ each, $24 /-$ dozen, $£ 7 / 10 /=100$. S.T.C. $3 / 4$ (400 volr) 2/6 each, 24/-dozen, £7/10/-100. BYZ 13 or 19 (6 amp) 2/6 each, 24/- dozen, 87/10/= 100 .
 QUALITY!
5 "Standard
Standard
"Oddends" Minimum 150 12/-
5** Long-play
Long-play
12/3
MAINS DROPPER TYPE RESISTORS. Hundreds of types from .7 ohm upwards. 1 watt to 50 watts. A large percentage of these are Multi-tapped droppers for radio/television. Owing to the huge variety these can only be per dozen.
GIANT SELENIUM SOLAR CELLS. Last few to clear at half price!
These prices cannot be repeated. Order now. Don't forget to add your name and address! Please include suitable amount to cover post and packing. Minimum 2'-.
G. F. MILWARD, DRAYTON BASSETT, near TAMWORTH, STAFFS. Phone: TAMWORTH 2321

ELECTRONIC BROKERS

MEASURING INSTRUMENTS AND RECORDERS

NEW

6 Pen Event Recorder, 6 in. Chart width. Available in wide range of chart speeds. Rack mounted $£ 79 / 10 / 0$. Case to suit extra.

NEW AMERICAN
5" CHART RECORDER

$$
\begin{aligned}
& \text { PORTABLE AC/DC } \\
& \text { PEN RECORDER }
\end{aligned}
$$

 and/or
Range:
Reaist
 G00 B Impediance $\bar{\delta} \mathrm{dB}$ tato in.fhr. Chari width: 3$\}$ in 230V BO Hz driving 8ynchronous Motor.
Price: 852.10 .0 . Postage and parking el 5a. Od STRIP-CHART
INDICATING INDICATIN

Bpeet

NEW PORTABLE RECORDING

 $5400 \mathrm{~mm} / \mathrm{hr}$. Dimensions: $180 \mathrm{t} \times 163 \mathrm{w} \times 245 \mathrm{~mm}$ Weikht: 5.5 kg . List price E 65 . Our price E 35 .
PEN RECORDER

Portable 1, 2 and thannel pen recondera by Kelvin tustantancous and permannent recordia of pienomena torsion-etrip gurpenslon of the moving-coll rendera the instrument immune to the effects of vibration six accelerstion.
Sixx poasible chart apeed, chart width 55 mm .
leanth 150 ft., hinearity 8 r . at 3 m . A . response D . to $100 \mathrm{c} / \mathrm{s}$. Single pen with stuplifer £99; 2 pen
 s pen recorder complete with amplifiers, specification
as sbove but housed in cablnet $£ 225$. P. \& P. extra.

POWER SUPPLIES

ADVANCE TRANSISTORISED DC POWER UNITS

DIGITAL VOLTMETERS
DM.2u22 digltal voltmeter and ratiometer, accurite
to 0.0025% offering exceptional linearity. Reading rate of 50 per second. Outpult: Paralle]
B.C.D. Scale 3999 . Sputs: 25000 MO CM R 1641 B B.C.D. Rexig 39999 . inputs: 25000 MQ CMR 16 udB to obtain such an inntrument at sucb a low price of
e350. Curriage free. DM2006. Ap all wilid state D.V.M. having a wide pilication. Scale 9999 . D.C. accuracy 0.017.a. range 10000. . . C.M... 15 ddB . Outputs parallel B.C.D. D.M2023. Thie D.V.M. is eultable for data-logring due othe high C.M.R. 17 fdB . It has six openiting modec.
 \&460. Carriage free.
Dighe above vitits have been callbrited. 1 KV . 4 Lights. 2135. Digit range 10 microv. $\mu \cdot 2 \mathrm{KV}$. Output BCD
 20064 Digit. D.C. range 10 microv.- 1 KV. Isolated
output. Paraliel BCD. $£ 285$.
in dia mounting A. O . voltmeter 0.800 v . C E1.15.0. Carriage $6 /-1_{0}$. casse. 82.15 .0.
Precision A.C. As Diage
D. W. Watmmeter. Model S.67
 INDICATING MEASURING
AMPLIFIER PR 7410
Suitable for flbation and frequency analyele
Prequency reaponse $\mathbf{1 0 - 1 , 0 0 0 ~ H a . ~} \mathbf{E 4 5}$. Carr. $40 /$
BRAND NEW S.E. LABORATORIES TRANSDUCER

Prequency D.C. -60 c.p.e.

Avaliable in the following ranges
SE150. BE50 or $\operatorname{SE165A}$.

Learn p.s.L. 0 - 3000 p.s.s.
Aloo arsuluble dinerential typea ± 10 p.at.
-3000 p.s. 1.

10 p.s.t.

COMPUTER AND PERIPHERAL EQUIPMENT

\section*{ Made by well known manufacturers

in certifled 2.400 ft . 800 b.p.p.
 In . metal 10 j in. dia. spool and cans
Li. N.A.B. centres $10 \&$ in. spool only.

TAPE PUNCH MODEL 257 HOLE A multjwire tape punch desigued for general application
Covolvlug the conversion of parallel wire electrical impuise into puncted papertape at 33 chatacters per second. Unt
completely self-contained reguiring only motor power and corapletely self
ignal supplies.

7 HOLE NON PARITY TAPE PUNCH

New condition.

LOW SPEED 7 HOLE TAPE PUNCH
characters per second by well-known manufacturer
TELETYPE 8 HOLE PAPER PUNCH
MU27
Also avallable B hole punch BRPE2 as above. This model
interchangeable heads. Complete with apooler. Price $\mathbf{E 3 5}$.
HIGH SPEED 5/7 HOLE OPTICAL READER
CARD READERS
$\left.\begin{array}{l}80 \text { column } 1500 / 80 \text { model, punch } \\ 80 \text { column } 1400 / 80 \text { model verlfer. }\end{array}\right\}$ \&325 $\begin{aligned} & \text { Excelient } \\ & \text { condlition }\end{aligned}$
HOLLERITH 80 COLUMN CARD PUNCH TYPE HO29 \& VERIFIER AVAILABLE

MULTI-RANGE TRANSISTORISED VOLT METER 1063
Employing elificon planar P.E.T., thle Instrument givea logg* term stability and negligible dritt over a *ide termperature
ranke. Wide frequency band $0-300 \mathrm{MHz}$. using HPV 1063 . Vanse. Wide frequency band $0-300 \mathrm{MHz}$. using HPV 1063 . tial circuit application. Input resistance 1 M.ohm/Volt on all DC ranges. Accuracy $\pm 3 \%$ F.B.D. Meter scale sho with IM different colour for diferent rcales.
Bpectal price $£ 42 / 10 / 0$ each. Carriage $£ 1 / 10 / 0$.

TRANSFER CASE

For aending data by permonal carrier, Suitable for degratching tape 20/a

FLEXIWRITERS FPCB Both Punch and Read Type A alilable. Any code can be made to suit cus.
tomera requirements. Price on

LOW COST ELECTRONIC AND SCIENTIFIC EQUIPMENT AND COMPONENTS

5 DIGIT COUNTER
Minerymm operational voltage 5 v . Cotinting apeed 13 ermath per sec. Rultable for continuous countling with queney meter $35 /-\quad$ p. \& p. $5 /-$ VEEDER ROOT 6 DIGIT COUNTER
 sultable for counting all
kinde of production rums, business machine operatun. Mechafically driven Type
Ka1337. Reset manual KA1337. Rest Manus
lnob, Ex equipment but
new condlition. Bpecial price 25/- plus $5 /-$ p. \& p.

MINIATURE SOUARE COUNTER by Veeder Root. Rotary
ratchet type, add rechet type, adde 1 count
tor each 36° movement of
ohaft $8 / 6+2 / 6 \mathrm{p}$. \& p .

HI-SPEED QUICK RESET
MAGNETIC COUNTERS
 watts. 20 counts per
second. Size $3.875 \times$
2.625 it. Punell mountIng.
price $58 / 6$.

6 DIGIT ELECTRICAL IMPULSE

 COUNTER With electrical andmechunloal reset. Counter driven by a
$110 \cdot \mathrm{D} . \mathrm{C} .400$ ohnis coil. Aret 110 D.C.
got ohm coll. Housed The usits cai be
Thiterlocked with each
 other to give vertical or horizontal diaplays. Price
$79 / 8$ p. p. REPEAT CYCLE TIMERS
These timers repeat a set cycle of uwitching operaan the motor te energivel.
Bingle Caw RB 21
in 2 min.,

 $115 /:$. All + p. $\&$ p. $\delta /$.

UNISELECTOR

8 mad 4 hank. 25 oontact per bank, 2 nets of wipers
2 in. radius. Complete with surge capacitor. $25 /-$ and 45/- respectively.

miniature

DIGITAL
DISPLAY
Operatea on an
rear projection
6.3 pilot Lanpp
The lamp proe
jects the corren-
pondling dyit on
the condenting
ponalig condenalng
the chen through a
lene
lens through
on to the plewiug acreen it the front of the unth
itha width. 3 , 3 oz. Character sizo it in. high, 0.9 with 8 right hand deelmal point and degree. Avallable to specia artwork or platel. Let price 6 gus. Our price 48/6
LOW OHM SAFETY METER 12 milli-amps s ohmm. suitable for coring circulte
where currents must be lizalted $£ 12 / 10 /-$ p. p. 17/6.
MOTORS Incor

HIGH TORQUE INDUCTION

 MOTOR. s-30 ozfinch. Avalinble In the followingspeeds onily 240 V 50 Hz t r.p.m.. $1 \mathrm{r} . \mathrm{p} . \mathrm{m} ., 2$ r.p.m.

HYSTERESIS CLUTCH MOTOR With integral clutch allowling the motor to drop
out of engagement with the gear train, therely faclitialing easy resetting when used in timers of

HIGH PRECISION MAINS MOTOR $230 \mathrm{~V} 50 \mathrm{~Hz} 1 / 8 \mathrm{~h} . \mathrm{p}$. contlnuouely rated. $3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Made by Croydon Eingineering Model KA 60 JFB.
Suitable for capalan motor. ©ize 8 in. long. it in. Suituble for capstan motor. $81 z e 8$ in. hong. 41 in .
diameter with 8 in . dimmeter fange and $\&$ fixing holes. E4.10.0 each. \&1.5.0 porlage and packing.

SYNCHRONOUS MOTORS

 50 Hz . New Coudition Ex. Equipment. 30/-p. \& p.3/,

oscilloscopes

 Bolarton AD 513.2 L. Li,
\& Eervos \& CD 5238.2
Long Pernist Long Persistent Tube. Furchill 0.100 . 225. Airmec 249.225. Solartron AD
Radar Fide Pulse
8.55. Philipa 3230.185. $\begin{array}{ll}\text { Botartron Portable CD } 1014 & £ 80 .\end{array}$ DOUBLE FADERS

1000 \& 800 dimmer, ideal for resistive dirnmer ls adfustable and ladependent of eash other. Ex. equipment but in an almoat new
conditon, Price $£ 3.19 .6$. Postage is phekting $7 / 6$. ALL ORDERS ACCEPTED SUBJECT TO OUR TRADING CONDITIONS A
COPY OF WHICH MAY BE INSPECTED AT OUR PREMISES DURING TRADING HOURS OR WILL BE SENT ON APPLICATION THROUGH THE POST

\begin{abstract}

GENERATORS

SIGNAL GENERATOR
T.F. 801A Gine Wave, square Wave Output Voltage (maximuin) 200 milll-voths $\pm 2 \mathrm{db}$. Output impedance 78 ohms. Mark/8pace Ratio $50 / 50$ on aquare wa
Price E120. Packlng and carriage E2. SIGNAL GENERATOR T.F. S17F/ Bine Wave, square Wave Generntor. Prequency Range: 120-son
M. C/s. Auxuliary 18-58 Meg. c/m. Output Voltage 0.2 Volts. Output limpedance 75 ohrns. 285.
MARCONI T.F. I44G
Frequency Range $85 \mathrm{k} . \mathrm{c} / \mathrm{A} .25 \mathrm{Mc} / \mathrm{L}$
Output voltage 1 microvolt to 1 vole
 volt. 10 ohune. 100 mllil voits to 1 volt 52.6 ohmas. $\mathrm{E}^{75}+{ }^{2} 2$ carriage.

PULSE GENERATORS
Model 101 Reperition rate 10 Ex-10MHz. Model 101 Reperition rate $10 \mathrm{Ez}-10 \mathrm{MHz}$,
Delay $30 \mathrm{~m} \cdot 10 \mathrm{~m}$. secs. Output 10V. Into 50 ohms. 295.
GENERATOR
Prequencles: 1 M . $100 \mathrm{kc} / \mathrm{m} 10 \mathrm{kc} / \mathrm{s} 50 \mathrm{c} / \mathrm{s}$ Land trupediance 75 ohms.
Out put Voltage 10 V . 75 ohme
Output Voltage 10 V . 75 h ohm
$0-18$ volts into 2000 oline.
 at 1 meg. Cycle. 865 .
MARCONI VALVE MARCONI VALVE
VOLTMETER TF $4288 / 1$
Frequency response on probe $10 \mathrm{Kc} / \mathrm{s} / 3-$
$100 \mathrm{Mc} / \mathrm{g}$. Five separate Voltage Kanges. $100 \mathrm{Mc} / \mathrm{g}$. Five sepsrate Voltage Kanges.
Overlogd Protection $100-250$ A.C.I.P.

VOLSTAT

THREE TURN 780° ROTATION

 FIFTEEN TURN 5400° ROTATION
 TWENTY TURN 7200° ROTATION 250 ohms. .General Controle...PXM130
1 Meg.General Controle. .PXMI 50K Reliance.
156 TURN 56, 160° ROTATION FIVE TURN 1800° ROTATION 500 ohrus....Colvern CLR 2505
U1.5KColveraCLR 2605 SINE COSINE
 CLR 4602-Cam Corrected 235 K ${ }_{8 \mathrm{BCP}}$. 32 KK
PRECISION BECKMAN 40 TURN

14,400 ROTATION

Advence
CV500/27. Input 05-130v. 00 Hz . Output 85v. R.M.8. land 4 ampa
P.B.I.

 Carriage extra $25 /$.

RIGHT ANGLED GEAR BOXES

BRAND NEW LABORATORY TEST EQUIPMENT at less than half price

HIGH VALUE RESISTANCE BOX TYPE R.7003

precification. Range: 0.01-111 Meg. in 0.01 Megohm divislons, Accuracy: 0.05%. Maxtmum finished utove enawel.
List price $\mathbf{2 6 0}$ Our price $£ 2 / \mathbf{1 0 / -}$

PORTABLE WHEATSTONE

Specificatlon. Type: M in Coll Galranometer. Raviges: 1. 0.05 to 5 ohms. 2. 0.5 to 50 ohms. 3. 6 to
ohms. 4. 50 to 8,000 ohirgs. 5.500 to 60,000 ohme Scailes: Switched. Sludewire: 0.8 to 50 . Galvanometer Bcale: 10-0.10. Cane: Moulded plactic.
Interual Source: $4 \mathbf{V}$. Dry battery. Dtmensions:

Note: By using the intermediate taps many other

 voltages can be obtained.Example: No. 1 .. 7-8-10-15-17-25-33-40-50v. No. $2 \cdots$ 4-8-12-16-20-24-32v.

AUTO TRANSFORMERS Two-pin American Sockets or terminal Please state which type required

Type	Watts	Approx. Weight	Price		Carr.
1	80	$2 \frac{1}{17} \mathrm{~b}$	¢ 19	6	5/6
2	150	4 lb	f2 12	6	6/6
3	300	63 lb	4312	6	$6 / 6$
4	500	$8 \frac{1}{2} \mathrm{lb}$	652	6	$8 / 6$
5	1000	15 lb	672	6	$9 / 6$
6*	1500	25 lb	6915	0	$10 / 6$
7*	1750	28 lb	61415	0	12/6
8*	2250	30 lb	61717	6	15/-

- Completely enclosed in beautifully finished metal case fitted with two 2 -pin American sockers, neon indicator, on/off switeh, and carrying handle.

9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-785।

01-262-5125
AMERICAN HIGHLY STABILISED POWER SUPPLY UNIT

Regulation between $7-15$ volts D.C. at 20 amps. Fitted 0-30 D.C. ammeter, 0-15 D.C. voltmeter and overload protection switch. Built to a very high specification. Bench or
rack mounting. Size $19 \times 8 \times 17$ ins. A.C. input IlOv. 50 cycles. Ex equipment but guaranteed in perfect condition. Maker's price in excess of $\mathrm{C200}$. Our price $\mathrm{E2910.0}$. Carr. $30 \% .240 / 110$ vole, 400 wates, Mains Transformer avallable if required. $[3$ extra

ISOLATION TRANSFORMERS
Built into metal case, size $8 \times 7 \times 7$ ins., with on/off switch, neon indicator. 13A 3 -pin socket outlet. Pri. 220-240r. Sec. $220-240 \mathrm{v}$. 1000 watts $£ 16.10 .0$. Carr. $15 /-750$
watts $£ 14.10 .0$. Carr. $12 / 6$.

OPEN-FRAME TYPE TERMINAL BLOCK Pri 240 v . Sec eaped 110 ETIONS
Pri 240 v , Sec tapped $110,240 \mathrm{v}$. $2 \frac{1}{\mathrm{kva}}$. cont. rating.

HEAVY DUTY AUTO TRANSFORMERS 240-110v, 5 kva open-frame type terminal block nections. Size $9 \times 8 \times 8$ ins. Weight 65 lbs. $629,10,0$ ex warehouse.

DUBILIER DUCONOL 40 MFD CAPACITORS 275V, wkg. A.C., 45/-, P. \& P. 8/6. current 19 m., 440 V ., 3PH. delta connection, 1.6 amps line current. 59/-, P. \& P, 8/6.

RADIO SPARES H.T. TRANSFORMERS Pri. $200-250 \mathrm{v}$. Sec. $350-0-350 \mathrm{~V}$. 150M/A. 6.3v.. 3A CT, $6 \cdot 3 \mathrm{v} .2 \cdot 5 \mathrm{~A} \mathrm{CT}, 5 \mathrm{v} .3 \cdot 5 \mathrm{~A}$. Half shrouded. Flying leads. 59/6. Carr. 8/6

PARMEKO POTTED TRANSFORMERS $\mathrm{Sec} .6 \cdot 3 \mathrm{y}$. Sec. $2-0-2 \mathrm{v} .4 \mathrm{~A} 5 \mathrm{kv}$. Wkg. " C " core potted type. 17/6. P. \& P. $3 / 6$.

PARMEKO CHOKES-NEPTONE SERIES 10 H . $180 \mathrm{M} / \mathrm{A} ., 25 /-$, P. \& P, $5 /-10 \mathrm{H}$. $120 \mathrm{M} / \mathrm{A} ., 12 / 6$, $5 \mathrm{H} / 20 \mathrm{M} / \mathrm{A} .5 \mathrm{H} 60 \mathrm{M} / \mathrm{A} .50 \mathrm{H} .25 \mathrm{M} / \mathrm{A}$. all eypes, $8 / 6$ each, P. \& P 3/6. $0.7 \mathrm{H}, 450 \mathrm{M} / \mathrm{A} .12 / 6$, P. \& P. 4/6. IH. $300 \mathrm{M} / \mathrm{A}$ $10 / 6$, P. \& P \&/6. SH 150M/A., i7/6. 34H. $60 \mathrm{M} / \mathrm{A} .-70 \mathrm{H} .35 \mathrm{M} / \mathrm{A} ., 2.8 \mathrm{kv} ., \mathrm{D} . \mathrm{C}$. Wkg., 25/-P. \& P. $6 /-$

PARTRIDGE TOTALLY ENCLOSED CHOKES 5H. $250 \mathrm{M} / \mathrm{A} ., 19 / 6$, P. \& P. 6/-. GRESHAM SEALED OIL-FILLED CHOKES: $12 \mathrm{H} .200 \mathrm{M} / \mathrm{A} ., 29 / 6, P_{\dot{P}} \& \mathrm{P}^{2}$. 7/6. HADDONS: $12 \mathrm{H} .60 \mathrm{M} / \mathrm{A}$. . $10 / 6$, P. \& P. $5 /-$ L.T. SMOOTHING CHOKE: 16M/H. 8 amps., $35 /-$ P. \& P. 5/- GRESHAM SWINGING CHOKE: 20H. $100 \mathrm{M} / \mathrm{A} .10 \mathrm{H} .450 \mathrm{M} / \mathrm{A} .49 / 6 \mathrm{P}$. \& P. $7 / 6$.

PARMEKO L.T. TRANSFORMERS

GARDNERS H.T. TRANSFORMERS
C core Pri $200-240 \mathrm{v}$. Sec $300-0-300 \mathrm{v} .60 \mathrm{M} / \mathrm{A} ., 6.3 \mathrm{v} .4 \mathrm{amps}$ Size $3 \frac{1}{2} \times 3 \times 3$ ins. $17 / 6$, P. \& P. $4 / 6$.

DANFOSS PRESSOSTATS TYPE RTI Range 25 ins., HG 40 p.s.i. Differential 8-42 p.s.i, Connection for $\frac{1}{4} \mathrm{in}$. copper tubing. 37/6, P. \& P, 5/-

ZENITH DOUBLE-WOUND VARIABLE

 TRANSFORMERSInpur 240v., output $0-80 \mathrm{v}$., 15 amps or $0-40 \mathrm{v} .30 \mathrm{amps}$. Open-type slider control. Size: length $2 \mathrm{ft} .8 \mathrm{ins} . \times 8$ ins. x 7 ins. $£ 27,10,0$, ex warehouse.

NEWMARK SYNCHRONOUS MOTORS
 $220-240 \mathrm{v} .50$ cycles, 3 wares 8 r.p.m

 Overall size $2 \times 2 \times 2$ ins. $10 / 6$ P. $\&$ P. $1 / 6$.
A.C. 220-240v. SHADED POLE 500 MOTORS
1.500 r.p.m. Double spindle. Length 0.9 ins. and 0.6 ins. Overall size $3 x$ $3 \frac{1}{2} \times 2$ ins. New and Boxed. $12 / 6$.
P. \& P. $3 / 6$.

LATEST RELEASE OF

RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance $2.5-600$ ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price $£ 87 / 10 /-$ each, carr. $£ 2$.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, carr. $£ 2$.
"SET OF VALVES: new, £3/10/- a set, post 7/6; SPEAKERS: new, $£ 3$ each, post $10 /$. *HEADPHONES: new, $£ 1 / 5 /-$ a pair, 600 ohms impedance. Post 5/-.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; $17 \& 18 ; 23 \& 24$; and 27 and 28. Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$. and M.980344, $3 \times 0.01 \mathrm{mfd} ., 3$ for $10 /-$ post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of $3,10 /-$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd} ., 600 \mathrm{v}$., E_{2} each, $4 /$ - post. Output transformers $901666-50127 / 6$ each,
4/- Avaitable with Receiver only.
S.A.E. for all enquiries. If wishing to call at Stores, please telephone for appointment.

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CWW, and MCW, reception crystal filter, with phasing control AVC and signal sirength meter. Complete HRO 5 T SET (Receiver Set of 5 Coils $\&$ Power Unit) for $£ 27 / 10 /-$, carr. $30 /-$,
COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$., as ncw, price $£ 5 / 10 /$ - each posi 5/-
COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approx. 25 W output, directly calibrated. Valves 2×1625 PA; 1×1626 osc.; 1×1629 Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition- $£ 3 / 10 /-$ each, $10 /-$
post. R. C. Evenson and O. R. Beach.)

AIRCRAFT RECEIVER ARR. 2: Valve line-up $7 \times 9001 ; 3 \times 6$ AK5; and $1 \times 12 \mathrm{~A} 6$. Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only $£ 3$ each, $7 / 6$ post; or Rec. with 24 v . power unit and mounting tray $\mathrm{x} 3 / 10 /-$ each, $10 /$ - post.
RECEIVERS: Type BC-348, operates from 24 v D.C., freq. range 200-500 Kc / s, $1.5-18 \mathrm{Mc} / \mathrm{s}$. (New) $\mathbf{3 5 . 0 . 0}$ each; (second hand) $£ 20.0 .0$ each, good condition, carr. 15/- both types.
MARCONI RECEIVER 1475 type $88: 1.5-20 \mathrm{Mc} /$ s, second-hand condition £10.0.0 each. New condition £25.0.0 each, carr. 15/-

RACAL EQUIPMENT: Frequency Meter type SA20: $\mathbf{\Sigma 3 5}$ each, carr. £1. Frequency Counter type SA21: £65 each, carr. $30 /-$ Converter Frequency
Electronic VHF Type S.A. 80 (for use with the SA. 20): $25 \mathrm{Mc} / \mathrm{s}-160 \mathrm{Mc} / \mathrm{s}, ~ \& 40$ Electronic VHF Type S.A. 80 (for use with the SA. 20): $25 \mathrm{Mc} / \mathrm{s}-160 \mathrm{Mc} / \mathrm{s}, £ 40$ each, carr. 11.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C.@ 1.8 amps , $400 \mathrm{c} / \mathrm{s} 3$ phase, $£ 6 / 10 / \mathrm{c}$ cach, $8 /-$ post. 24 v D.C. input, 175 v D.C. @ 40 mA output, 25)- each, post $2 /-$.
CONDENSERS: $150 \mathrm{mfd}, 300$ v A.C., $£ 7 / 10 /-$ each, carr. $15 /$-. $40 \mathrm{mfd}, 440$ A.C. wkg., $\mathbb{L} 5$ each, $10 /-$ poss. $30 \mathrm{mfd}, 600 \mathrm{v}$ wkg. D.C. $£ 3 / 10 /-$ each, post $10 /-$ $15 \mathrm{mfd}, 330 \mathrm{v}$ A.C. wikg., $15 /-$ each, post $5 /-10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6$ each, post $2 / 6$ $10 \mathrm{mfd} 600 \mathrm{v}, 8 / 6$ each, post $5 /-8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6$ each, post $3 /-8 \mathrm{mfd}, 600 \mathrm{v}$ 8/6 each, post $2 / 6.4$ mfd, 3000 v wkg., £3 each, post $7 / 6.2 \mathrm{mfd}, 3000 \mathrm{v}$ wkg, £2 each, post 5 . Post $2 / 6$. Capacitor: $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$ wkg. $\mathbf{~} 3.15 .0$ each, $10 / \mathrm{F}$ post

OSCILLOSCOPE Type 13A, 100/250 v. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. OSCILLOSCOPE Type $13 \mathrm{~A}, 100 / 250$ v. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-7.0 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to
COSSOR 1035 OSCILLOSCOPE, $£ 30$ each, $30 /$ - carr.
COSSOR 1049 Mk . 111 , $\mathbf{£ 4 5}$ each, $30 /$ - carr.

RELAYS: GPO Type 600,10 relays (a) 300 ohms with 2 M and 10 relays (a) 50 ohms with 1 M., $\mathbf{\varepsilon 2}$ each, $6 /-$ post
12 Small American Relays, mixed types £2, post 4/-.
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach; etc. Prices and further details on request 6 d .

GEARED MOTORS: 24 v . D.C., current 150 mA , output 1 r.p.m., $30 /$ - each, 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., $£ 2$ each, $5 /-$ post.
SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6 d .

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post 5/-.
SOLENOID UNIT: 230 v . A.C. input, 2 pole, 15 amp contacts, $\mathbf{£ 2 / 1 0 / - ~ e a c h ~}$ post 6/-.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps., $£ 2 / 10 /-$ each, carr. $12 / 6$
OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{\mathrm{amps}}$; or 2.6 ohms at 4 amps . Price (either type) $£ 2$ each, $4 / 6$ post each

TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with filament transformer 230 v . A.C. Mounted in 19in. panel, $\mathbf{£ 4 / 1 0 / - \text { each, } 1 5 / - \text { carr }}$

POWER SUPPLY UNIT PN-12A: 230 V a.c. input $50-60 \mathrm{c} / \mathrm{s}$. 513 V and 1025 V @ 420 mA outpur. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mid 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type 573. $2 \times 5 \mathrm{~V}$ windings a 3 Amps each, and 5 V @ 6 Amp and 4 V (@ 0.25 Amp. Mounted on steel base $19{ }^{\circ} \mathrm{W} \times 11^{\prime \prime} \mathrm{H}$
£6.10.0. each, Carr. $£ 1$.
AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts. mounted in a strong steel case $5^{\circ} \times 6 \frac{1}{}^{\prime \prime} \times 7^{*} \times$ Bitumin impregnated. $£ 5$ each, Carr, $12 / 6.230-115 \mathrm{~V}$ $50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\circ} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Mounted in steel ventilated case. $£ 3$ each Carr. 10/-

POWER UNIT: 110 v . or 230 v . input switched; 28 v . (a) 45 amps . D.C. output Wt. approx. 100 lbs ., $\mathbf{~} 17 / 10 /$ - each, $30 /$-carr. SMOOTHING UNITS suitable for above $£ 7 / 101$ - cach, I5/- carr.

DE-ICER CONTROLLER MK. III: Contains 10 relays D.P. changeover heavy duty contacts, 1 relay $4 \mathrm{P}, \mathrm{C} / \mathrm{O}$. (235 ohms coil). Stud switch 30 -way relay operated one five-way ditto, D.C. timing motor with Chronometric governor 20-30 V., relay etc., sealed in steel case ($4 \times 5 \times 7$ ins.) $\mathbf{~} 3$ each, post 7/6.

MODULATOR UNIT: 50 watt, part of BC-640, complete with $2 \times 81 I$ valves, microphone and modulator transformers etc. E7/10/- each, 15/- carr.

NIFE BATTERIES: $4 \mathrm{v}, 160 \mathrm{mps}$, new, in cascs, $\mathfrak{£} 20$ each, $\mathfrak{£ 1} 10 /$ carr.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in . diameter case. Price 30/- each, postage 5 /-

FREQUENCY METERS: BC-221, meter only $£ 30$ each, BC-22l complete with stabilised power supply $£ 35$ each, carr. $15 /-$ LM13, $125-20,000 \mathrm{Kc} / \mathrm{s} ., \pm 25$ each, carr. 15/-. TS.175/U, © $\mathbf{8 7}$ each, carr. \&1. FR-67/U: This instrument is direct reading and the results are presented directly in digital form. Counting rate: $20-100,000$ events per sec. Time Base Crystal Freq. $: 100 \mathrm{Kc} / \mathrm{s}$. per sec. Power supply: $115 \mathrm{v} ., 50 / 60 \mathrm{c} / \mathrm{s}$., $£ 100 \mathrm{cach}$, carr. £1.

CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range $450 \mathrm{c} / \mathrm{s}-$ $22 \mathrm{Kc} / \mathrm{s}$., directly calibrated. Power supply 1.5 v.-22 v. D.C. £12/10/- each, carr. 15/-.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathbf{\Sigma} / 10 /-$ each, post $7 / 6$.

APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v. D.C. 3 relays, 11 valves, price $\mathbb{\&} 3$ each, carr. $10 /$ -

CANADIAN C52 TRANS/REC.: Freq. $1.75-16 \mathrm{Mc} / \mathrm{s}$ on 3 bands. R.T., M.C.W. and C.W. Crystal calibrator etc., power input 12 V. D.C., new cond., complete set $£ 50$. Carr. £2/10/-. Power Unit for Rec., new $\mathbf{£ 3} / 5 /-$. Carr. $10 /-$.

DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \% £ 3$ each, $5 /$ - post. 90 ohms per step. 10 positions, total value 900 ohms. 3 Gang. Tolerance $\pm 1 \%$ £3/10/- each, $5 /$ - post.

TELESCOPIC ANTENNA: In 4 sections, adjustable to any height up to 20 ft . Closed measurcs 6 ft . Diameter 2 in . tapering to 1 in . c 5 each $+10 /-$ carr. Or £9 for two $+£ 1$ carr. (brand new condition).

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type " N " fermale connectors fitted to receive UG-21/U series plugs. New in ctns, \&6/10/- each, post 7/6. CO-AXIAL SWITCH-Mnfirs. Transco Products Inc., Type M1460-22, 2 pole, 2 throw. (New) \& $6 / 10 /$ eac
Type M1460-4. (New) $6 / 10 /$ each, $4 / 6$ post.

PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A, $0.250-1.0 \mathrm{KMC} / \mathrm{SEC}$. (New) $£ 75$ each, post 12/6. F1XED ATTENUATOR Type 130c, 2.0-10.0 KMC/SEC. (New) 85 each, post 4/\%. FIXED ATTENU. ATOR: Type $1157 \mathrm{~S}-1$, (new) 86 each, post $5 /-$.

FOR EXPORT ONLY BRITISH \& AMERICAN COMMUNICATION EQUIPMENT

Type B. $44 \mathrm{Tx} / \mathrm{Rx}$, Crystal controlled, $60-95 \mathrm{Mc} / \mathrm{s}, 12 \mathrm{~V}$. d.c. operation. W.S. Type 88, Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type HF-156, Mk. I1, Crystal controlled, 88, Cystal controlled, 40-48 Mc/s. W.S. $2.5 \mathrm{Mc} / \mathrm{s}$. Type 62 , tunable, $1.5-12 \mathrm{Mc} / \mathrm{s}$. C.44, Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}$, 50 watts, output, 230 V . \&.c. Input. G.E.C. Progress Line Tx Type DO36, $144-14 \mathrm{Mc} / \mathrm{s}$, 50 watt, narrow band width. A.C. input 115 V BC-640 Tx, $100-156 \mathrm{Mc} / \mathrm{s}, 50$ watt output, 110 V or 230 V input. STC Tx/Rz Type 9X, TR1985; RT1986; TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T. 14 and R.19, FM $60-90 \mathrm{Mc} / \mathrm{s}$. With associated equipment available Redifon GR410 Tx/Rx, SSB, $1.5-20 \mathrm{Mc} / \mathrm{s}$. Sun-Air Tx/Rx Type T-10-R Collins Tx/Rx/Type 18S4A. Collins Tx/Rx Type ARC-27, 200-400 Mc/s, 28 V d.c. With associated equipment available. ARC-5; ARC-3; and ARC-2 TX/Rx
 and FRD. 2 complete Sets avallable and spares. Telephone Instalation type XY of Manuals. Mobile Communications Installation mounted in a trailer with $4 \times$ pneumatic tyres. Consisting of $3 x A R C-27 \mathrm{Tx} / \mathrm{Rx}$ with all associated equipment (as new).

ALL GOODS OFFERED WHILST STOCKS LAST IN "AS IS" CONDITION UNLESS OTHERWISE STATED

PEAK SOUND PRODUCTS
Toll
range of Amplifiers, kitta, Bpeakera la mock Pull range of Ampluners, kita, Bpeakers in mLock TE22 SINE SQUARE WAV
AUDIO GENERATORS 8ine: AUDIO GENERATORS 20 eps to $30 \mathrm{kc} / \mathrm{c}$
 Output impedance 8.000 obms, $200 /$
250
r. A.C. opera tion, Supplied brand
new
 Llon manuad and
lendm, 816.10 .0.
Carr. 716.

MARCONI
TFB8S VIDEO OSCILLATORS LAFAYETTE TE-46 RESISTANCE

 limpedance turn
rato
tho
thation. 200/250 v. A.C.
Brand Now, $£ 17.10$ MARCONI TF.Id $\mathbf{2 E}$ DISTORTION Excellent condition. Fully terted ers TY75 AUDIO SIGNAL GENERATOR 8ine Wave $20 \mathrm{CPS}-200 \mathrm{Kc} / \mathrm{s}$.
8quare Wave 20 CPs- 30 Kc / s. High and low Impedance outpul. Output variable up
6 volta. $220 / 240$ volts A.C.
Brand new with instruetions. 218. Carr. 7/8. Alize $210 \times$

MARCONI TFI95M BEAT FREQUENCY OSCILLATORS $0-40 \mathrm{kc} / \mathrm{E}$. \&20. Cart. 30%.	
TE-20D RF SIGNAL GENERATOR	
	Accurate wide range sig. ual generator covering $120 \mathrm{Ke} / \mathrm{s}-500 \mathrm{Me} / \mathrm{m}$ on 6 handa. Directly calibrabed. Variable RE. sthenuator, audio out put. Xtal socket for calibratlon. 220/240V. A.C. Brand new with instruc* tions. el5. Carr. 7/6. Blze $140 \leq 215 \times 170 \mathrm{~mm}$.
ADVANCE TEST EQUIPMENT	
Brand new and boxed in original sealed cartona.	
15 e / a to $\mathrm{so} \mathrm{Ke/f}$. . Sine wave. Output 600 ohms or 5 ohtis. 230.0.0.	
VM79. UHF MILLIVOLT METER $100 \mathrm{Ec} / \mathrm{s}$ to $1.000 \mathrm{Mc} / \mathrm{m}$. A.C. 10 mV to 3 vF D.C. 10 mV , to 3 v . Current 0.01 uA to 0.3 mA . Reeist ance 1 ohm to 10 megohm. £125.0.0.	
TTIS. TRANSISTOR TESTER Fouls range of facilities for teating PNP or NPN transietorn in or out of circult. 237.10.0.	
Carriage 10/- per Item.	
MODEL ZQM	
TRANSISTOR	
CHECKER	
It han the fulieat capactty for checking on	
A, B and Ico.	
checiling diodes. eto.	
.0 mA	
Q +1 Meo. sappilied complete with inst	

GARRARD

Variable Voltage Thansfonment

Brand new, guaranteed and carrage paid. High quality construction. Input 230 v. $50-60$ cycles.
Output full variable from $0-260$ volts. Bulk quantities available $1 \mathrm{amp} .-£ 5 / 10 / \mathrm{F}$; $2.5 \mathrm{amp} .-28 / 15 / \mathrm{F} ; 5 \mathrm{amp} .-£ 9 / 15 /-$ 8 amp.- $814 / 10 /-; 10 \mathrm{amp} .-\$ 18 / 10 /-; 12 \mathrm{amp}$.- 21 ; 20 amp .- 83% MULTIWETERS for GUERY purpose?

MODEL TE-90 30,000 O.P. Mircor acnle overload protec-
ton. $0 / 3 / 12 / 60 / 200 / 80 / 2.200$
v. D. $0 / 6 / 30 / 120 / 300 / 1.200 . \mathrm{V}$ V. D. $0.0 / 0 / 30 / 120 / 300 / 12200 . \mathrm{F}$
$\mathrm{D} .0 .0 / 6 / 60 / 500 \mathrm{MA}$.
$18 \mathrm{~K} / 160 \mathrm{~K} / 1.6116 \mathrm{MPC}$ $0-+63 \mathrm{db}$. $\mathrm{P}^{27 / 10 / 0}$
 P. ${ }^{27 / 10 / 3 /-}$

MODEL TE-80. 20,000 O.P.V. $0 / 10 / 25 / 50 / 250 / 500 / 1,000$. D.C $0 / 60 \mu \mathrm{~K} / \mathrm{K} / 5 / 50 / 5$ ع4/17/6

TE-900 20,000 o/VOLT
OLAFT MOLTIMETER
Mirror moale And over-

MODEL

MODEL TE-12. 20,000 O.P.V. $0 / 0.6 / 6 / 30 / 120 / 600 / 1.200 /$

$3.000 / 6,000$ v. D. $0.0 / 6 / 30 / 120$ $600 / 1,200$ V. A.C. $0 / 60 / 1 \mathrm{~A} / 6$ | $60 / 60 \mathrm{~mA} .0 / 6 \mathrm{~K} / 60 \mathrm{KR} / 6 \mathrm{Meg}$ |
| :--- |
| $60 \mathrm{Meg} . \mathrm{D} .50 \mathrm{PF}$. |
| 1 MrD |

LAPAYETTE 57 Range Supe OK O/V. Muldimeter. rent $25 \mu \mathrm{u}-10 \mathrm{Amp}$. . Chrn
$0-10$ +81 db . Oreriond protection 812/10/-. P. \& P. $3 / 6$.

MODEL TE-70. 30,000 0 D. C . $0 / 6 / 3 / 30 / 120 / 600 / 1,200$

MODEL PT-34. 1,000 O.P.V. $0 / 10 / 50 / 220 /$
$800 / 1,000 \mathrm{~V} . \mathrm{zec}$ and d.c. $0 / 1 / 100 / 500 \mathrm{rad}$
d.c. $0 / 100 \mathrm{~K}$
0

Tor stereo amplifer

19 tranaigtore, 8 diodes. 1 HF mugic power 30 watta
at 8 ohins. Hes. $30200,000 \pm 2 \mathrm{~dB}$ at 1 w . Distor-
 Treble and barat controle. Stereo phone Jack

 M TUNER G TRANBIBTOR TUNER GUALITY ONLY 6 in. $x \operatorname{tin}$. x
24 in. 3 IF. biage 2tin. 3 I.F. blages.
Double turined din-
criminator, ample output to feed most ampliaers. Operated 9 volt batters. Coverage $88-108$ Mc/a. Ready, \& $6 / 8 / 8$. P. \& P. 2/6.
STEREO MULTIPLEX ADAPTORS, 89/6. SINCLAIR EQUIPMENT
Poject 60 rauge of acw models now in sto 230 Amplifier... Unit PZ ${ }^{2}$ Power Bupply
Q16 Power Supp
SPECLAL PACKAGE OPFER
$\times 220$ Ampllier, Stereo 60 and PZ Bupply. Ampuder, \times Q16 speakers Micromatic Radio Kit.
Micronatic Radlo Bullit. Kicronatic Radlo Bull
Sinclatr IC/10 In atock.

Power
838
4818

ECHO HS-606 STEREOHEADPHONES	
	Wonderiully comtortable. weight adjustable Finyl bead band, fift cable and stere juak plus, 25-17,000 сра., 80 Imp. 67/6. P. \& P. 2/6.

2-WAY STEREO HEADPHONES
 drinblerange 0-111 db. Convectlona,
Unialanee T and
Brdge T. Imped.
nene 600 ohma.
Kange $(0.11 \mathrm{db} \times$
$10+(11 \mathrm{db} \times 10)$
$+10+20+30+$

Do to $200 \mathrm{KHZ}(-3 \mathrm{db})$ Accuracy: 0.05 db. + Indication db $\times 0.01$. Buith in 600 lond resistance with internal/ CAR LIGHT FLASHERS Zeary duty lizht flasher employe oondenscr
 $\begin{array}{cc}\text { case. Flashing } \\ \text { betwen } & \begin{array}{c}\text { rate } \\ \text { bol }\end{array} \\ \text { per }\end{array}$
 operation. Maximum
load 6 amps, sizo
 brand gew At 6 raction,
of orginal cost $6 / 6$ cach,
P. \& P. $2 / 6$. (3 for 17/6.

TRANSISTORISED	
TELEPHONE	
INTERCOM	
Operative over amazingly long distancen. Beparate call and	
prese to talk buttons. $2-w$ connection. 1000 : ${ }^{\prime}$ of app	
catlons. Beautifully Anlobedin ebony. Bupplied complete	
whth batterien and wall bracketo.	
Ill decade resistance attenuato	
Varinble range 0-111	
Unisalanced T and	
Kange ($0.1 \mathrm{db} \times$	
$10^{\top}+20+30+$	
40 db . Prequency: ${ }^{\text {Accuracy: }} 0.05 \mathrm{db}$. + Indication $\mathrm{db} \times 0.01$.	
Maximum mont leas than 4 watio (50 volta). Buift in 600 a lond resistance with internal/	
external switch. Brand new £2\%/10/-. P. A P. S/--	
CAR LIGHT FLASHERS Reary duty lizht flasher employa a condenser	
diacharge principle operating on electro mechan!cal relay. (As loset.)	
Housed In atrong plastio	
ob	
brand new at a fraction of orginal cost. 6/6 each, 	
RECORDING HEADS Conmocord $\frac{1}{}$ track heade: Poatertra.	
Record/replay, High Imp.............. $65 /$ 60/-	
Erase. Low map .ad. . Poul axtri...... 20/-	
Record/Playbeck, bigh lmp. 65/-	
AMERICAN RECORDING TAPES	
3 ln . 22.55 R . L.P. Acetate $3 / 6$	
American 8 in .900 te . L. P. $2 c$	
Brand ne:andsin.gin. 200tt. L.	
mumranteed. Spla. 1,800 tr. D.P. Mylar 28/6	
Poutre \% 7. 7in. 1,800ft. L. P. aceta	
Poathge $2 / \%$ \% 7 lm , 1.800\%t. L.P. Mylar	

R.S.T. VALVE MAIL ORDER co.

BLACKWOOD HALL, 16A WELLFIELD ROAD STREATHAM, S.W. 16

\qquad

BETTEP มanams SERVICE FROM T.R.S.

Amplifier Kits

Styled and kitted by T.R.S., using quality components, including valves or
transistors and excellent instructions. Backed by T,R.S, service. MULLARD 5-10. Mono. Basic kie (requires pre-amp as below or passive controls 62
extra.)Input Sensitivity -40 mV :Resoonse $20 \mathrm{~Hz}-15 \mathrm{KHz}+$ IdB; Output 10 watts R.M.S.

\qquad

MULLARD IO-10 STEREO AMPLIFIER. Input sensitivity- 210 mV perch.; Response E18.10.0; BUILT $£ 22.10 .0$ (Carr. eicher, 1216.)
As above, less controls and panel. Kit $\in 17.0 .0$; Bult $\in 21.0 .0$ ($2+2$ pre-amp. essential) $2+2$ STEREO PRE-AMP similar 20 Mullard 2 -valve pre-amp, but doubled with gang
controls and balance. BUILT $\& 13.19 .6$ (Carr. $7 / 6$). T.R.S. $4+4$ STEREO AMP

IS ohms transistor amplifier based on Mullard modules. $4+4$ watts output. For 8 -
thers. Input swithing, ete. Bass and treble controls. Simple module assembly. Amp and preamp with front panel and knobs.
Kit $\mathbf{6 7 . 1 9 . 6}$ (Carr. $3 / 6$): Teak sided cabinet $\mathrm{f1.17.6}$ (Corr. 216); 24V. Power pack $\mathbf{E 2 . 5 . 0}$

THE NEW T.R.S.
P.W. 12-12
T.R.S. have produced their
own kit version of this outstandingly good combined sterco amp and pre-amp. It
conforms closely to Praccircuit bue is styled for flatter, more conventional cabinet which will be shortly available. Kit includes two tone front panel and control knobs.
Inputs-Mag. P.U.
2.5 mV into
68 (R.I.A.A.)
Kohms:
2.5 mV into 68 Kohms: 20 Hz to $30 \mathrm{KHz}+1 \mathrm{~dB}$. Out-put- 12 watts per ch. R.M.S. into 15 ohms.
 Power/Amp/Pre-amp Kies available separately.

VINAIR-Latest I.C.I. Cabinet and Speaker covering. Mottled Light-Grey, Off-White, Fawn. Black. erc., $2 / 6$ per sq. fe. Multiples of 6 in . cut. 27/6 per yd. Maximum width 48 in. Send II- for Somples--Refundable. BONDACOUST - Speaker Cabinet Acoustic Wadding (as used by leading Hi-Fi Speaker mirss.), 18 ins. Wide. Any length cut $2 / 6$ perfir; 7% per yard ENAMELLED COPPER WIRE New 2 oz. reel prices $14 \mathrm{~g}-20 \mathrm{~g}, 3 /=22 \mathrm{~g}-28 \mathrm{~g}, 3 / 6: 30 \mathrm{~g}-34 \mathrm{~g}$. 4/3; $36 \mathrm{~g}-38 \mathrm{~g}, 4 / 9 ; 39 \mathrm{~g}-40 \mathrm{~g}, 5 /-$. Other gaves quoted for. TINNED COPPER WIRE $16 \mathrm{~g}-22 \mathrm{~g}$ 位 EXCLUSIVET.R. TAPE BARGAIN Professional quality full frequency Mylar Tape by famous m/fr. Attractively presented in coloured simulated leather wallets with space for spare reel. $5 \mathrm{in} .900 \mathrm{ft}, 12 / 6 \quad 51 \mathrm{in} .1200 \mathrm{fr} .17 / 6$ Poss and packing $1 / 6$ per reel, plus $6 d$. each for extro reels. VEROBOARD-All standard sizes stocked. $21 \times 31,3 / 0 ; 21 \times 5, \quad 3 / 8 ; 31 \times 3 \% .3 / 9 ;$ Accessories-Term Pins, $1 /=$ doz., $1 /=$ pkis. Face Cutter, 7/3. Pin inserting tool $9 / 6$. "CiR-KIT"-Adhesive copper strip 5 ft by $1 / 16$ in. spool $2 /=$	PLUGS AND SOCKETS Phono plugs, $1 /-$ sockets, $1 /$, twin. $1 / 6$ DIN 5 -pin pluss, $3 / 0$; 5 -pin sockers, $1 / 6$: 3-pin plurs, $3 / 3$; 3 -pin sockets, $1 / 6$. VOLUME CONTROLS Id in, dia. Long 5 pindles. Famous make. All values 5000 ohms-2 Megohms. Guaranteed 12 months. Log or Linear tracks Less Sw. 3/6; DP Sw. 5/ditto Centre Tapped I Megohm Log. 1 Mezohm Twin Ganged Stereo controls If in. dia. Long Spindles. All values 5000 ohms to 2 Megohms. Less Sw. Each $8 / 6$ ditto 100 K to 2 Megohms With DP Sw. Each 1016 STEREO BALANCE CONTROLS Log/Anti-Log SK, 10K. I Mes.. I Meg.; RESISTORS Full Range 10 ohms-10 Megohms. (Midget cype, modern ratings.) 10% Iw. Iw. 4d.: $\{w, 6 d$. 20\% Iw, 8d.; $2 w, 1 \%$. talues. (cracked Carbon) all pref. 10% Iw, 5d.; iw, 6d. $1 \% \mathrm{Hi}$ stab $1 \mathrm{w} .2 /-(10$ ohms- 100 ohms, 2/3). SKELETON PRE-SETS for P/eircuit use. 100 ohms- 2.5 Meg., $2 /$.

GRAMO UNITS, PLINTHS, ETC.

GARRARD SP, 25 Mk. II 101 in . die-cast t/table, cueing device and counterbalance. Less cartridge. 	Garrard Clearview Cover SCP.I £3.10.0 (Carr. 4/6) Garrard Scandinavian type plith and cover C5.5.0 (Carr. 5/-)
GARRARD LM. 2025 With latest stereo cartridge and lift control \&10.19.6 (Carr. 7/6)	CARTRIDGES When boughs together with playing units. Decca Deram, E5.5.0; BSR TC8/H (Stereo compatible), 25/-;
PLINTHS Garrard WB.I 43.15 .0 (Corr. 5/-)	BSR Stereo TC.85, 28/6; Sonotone 9TA/HC, with diamond $60 /-$; Acos GP.93-1, 30\%.
SINCLAIR PRODUCTSA ADVERTISED	T.R.S. FOR TRANSFORMERS. Mains and output supplied to spec. for
Also T.R.S. G-yalve AM/FM Tuner Kit, $\{12.10 .0$ (Carr. 7/6.) T.R.S. FM Transistor Tuner, parts $\mathbf{~} 15.15 .0$ (Corr. 7/6.)	comprehensive service in replacement line O/P eransformers. Enquiries invited. S.A.E. from private individuals please.

BRAND NEW

GUARANTEED
SILICON RECTIFIERS
50

SILICON RECTIFIERS							
$\begin{aligned} & \text { PIV } \\ & \text { IA } \end{aligned}$		3	200	$400 \quad 600$			1200
$1 A$	219			316	$1 \cdot$		
6A	3,			${ }_{6} 616$			
10 A	81.	2/8	13/6	16/6 16/6	19/6		30/-
/6							
DIODES \& RECTIFIERS							
IN461		AAll9	21.	BAY	2/6		
1 N 91	1/6	AA129	$2 /-$	BY 100	4/6	OAlO	6
916	1/6	AAZI3	$2 /$.	BY103	416	oas	
		AAZ	$2 / 6$		716	OA47	1/6
ISO10	3.	AAZII	$2 / 6$	BY124	$3 /$.	oa70	16
15025	51	BA100	2/-	${ }^{\text {BYI }} 126$	4/0	OA73	
1544	1/6	8A102	66	BY127	4/6	OA79	19
15113		BA110		$8 \mathrm{BX10}$	5/6	OABI	$1 / 6$
15120	216	BAII 5	$1 / 6$	$8 \mathrm{BY} \times 10$	9/2	OAB5	$1 / 6$
5121	216	BA144	5/6	BYZ11	7/6	OA	$1 / 6$
S130	216	${ }^{\text {bax }}$ (3 ${ }^{\text {a }}$	216	BYz	6	OA	16
5131	31.	BAX16	236	${ }^{\text {BYI }}$	34		2\%
退 32	216 $1 / 6$	BAYTI	31/6	FST3/8	6/-	OA202	

MAINS TRANSFORMERS 1 amp. Sec, tapping from 6 to 50 2 amp. Sec,

PLESSEY
SLL 023 A
Data $\&$ Application Sheet
Data \& Application Sheor
$\begin{array}{lllll}\text { FAIRCHILD } & 11-6 & 6.11 & 12+ & \text { MOTOROLLA } \\ \text { L900 Buther } & 11 / 6 & 9 / 6 & 8 / 4 & \text { MCT24P Quad } 2 \text { Inpus }\end{array}$

TAA 243 Operational Amplifier
TAA 303 Linear A.F. Amplifier
$\begin{array}{lllllll}\text { TAA } 300 & \text { Liner. A.F. Amplifier } \\ \text { TAA }\end{array}$
GENERAL ELECTRIC
$\begin{array}{ll}\text { PA234 } & \text { W Watt audio Amplifier } \\ \text { PA237 } \\ \text { PA } \\ \text { PA2te Ad }\end{array}$

RESISTORS
Carbon Film

SPECMAL OFFER
To encourage personnel callers we are happy to offer a discount of 5% to all our customers on Salurdays only. We are happy to quote forquantity supplies to manufacturers etc. Post and P
(Air) $13 /=$.

Telex 21-492
Tel: Ol-452 OI6I/2/3

RIVDPTOELECTRONICS from PROOPS arrar
 New Science Projects combine fascination of Optics with Electronics.

INFRA-RED TRANSMITTERS \& RECEIVERS

INFRA-RED PHOTO RECEIVER - MSP3

Ulita sensitive detector/amplifier for infra-red (Gaillum Arsenide) or visible light optical links reception. Spectral response 9500 A. Robust, cylindrical package is coaxial with incident light to facilitate optical alignment and heat sinking.

85/-
postroe

MAX RATINGS
Total dissipation (in free air, $T_{\text {amb }}=25^{\circ} \mathrm{C}$.)....... 100 mW . Derating Factor......2mW/ ${ }^{\circ} \mathrm{C}$ Output Current Intensity 100 mA . Vohage25V. Operating Temperature...........from
$=30^{\circ} 10+125^{\circ} \mathrm{C}$. Supplied complete with suitable le
including Line of Sight Speech Link.

PHOTOCONDUCTIVE CELLS

CADMIUM SULPHIDE CELLS (Cds)

Inexpensive light sensitive resistors which require only simple circultry to work as light triggering units in a wide range of devicas, such as: flashing or breakdown consclous - use with A.C. or D.C. Spectral response covers whole visible light range

MKY101-C
Epoxy sealed in. diam. xiln. thick. Resistance at 100 Lux -500 to 2.000 ohms. Maximum voltage 150 A.C. or D.C. Maximum current 10/6 post free

MKY71
Glass sealed with M.E.S. base. Glass envelope $\frac{s}{10} \mathrm{in}$. diam., overall length 1 in . Reslstance at 100 Lux - 50 Kohms to 150 Kohms. Maximum voltage 150 A.C. or D.C. Maximum current 75 mW . $8 / 6$ post free

PHOTOGENERATIVE CELLS

Selenium cells in which light energy is converted into electricity directly measurable on microammeter or used with ampllfier as light trigger for alarm and counting devices, luminous fluxmeters, exposure meters, colorimeters, etc.. Spectral response covers vislble light range
Type $1-1 \frac{1}{1} \times 1 \frac{1}{18} \mathrm{in}$. Ourput 1 mA at 0.6 volts at 1.000

Type 3-100 50 mm Ouput 4 ma
2216 post free

REED SWITCH COILS \& CAPSULES

Compact assemblies of reed switches and operating coils that permit the design of an inflnite variety of multiple switch circuits in an extremely small space. They eliminate the bulk and open contact disadvantage of electro-mechanical relays; hermetically sealed contact isolation ensures longlife switching matrices, binary kits. control systems, etc. These were removed intact froards. Ideal for pensive computer mechanisms and are guaranteed to be in perfect working order Each capsule conslsts of a rare-metal screened, 24 volt DC operating coil on a nylon former with one detachable end for the removal and replacement of reed switches.
Types avallable
R/C2 Two reed swiches, contacts normally open. Size overall: $1 \| \times i \times$ in. $5 /-$ post free R/C4 Four reed switches contacts normally open. Stze overall: $1 \| x \neq 10$ in 10 - post free R/C6 Sixpeed switches, 4 contacts normally open, 2 normally closed. Size overall: $1 \frac{1}{\bar{m}} \times 1 \frac{1}{\mathrm{f}} \mathrm{x}$ in .

15/-post free
 15-post free

Unique devices in a brand new electronic field that can be explolted in a wide range of applications. Minlaturized construction and solid state circult design is combined with outstanding modulation and switehing capabilities to provide infinite possibil ties as short distance speech and data links, remote relay controls, safety devices,
burglar alarms, batch counters. level detectors, etc., etc.

GALLIUM ARSENIDE LIGHT SOURCE——MGA 100 Filamentless, infra-red emitter in a robust. sealed cyllinder coaxial with beam to faclitate optica allgnment and heat sinking

post free
MAX RATINGS
Forward current If max." D.C..... 400 mA . Forward peak current If max." (pk).......... 64 Power dissipation* $\quad . . .600 \mathrm{~mW}$. Derating factor for Tamb greater than $25^{\circ} \mathrm{C} . .$.

Supplied complete with suitable lenses, full Technical Data and Application Sheets including Line of Sight Speech Link.

FIBRE OPTICS

Highly flexible light guides that transmit light to inaccessible places as eashly as electricity is conducted by copper wires. Fibre optics make it possibie to control, miniaturize, split, reflect or transfer light from one source to many places at once sible. Proons offer both glass fibre optics or inuminate in ways never before possible. Proops offer both glass fibre optics or inexpensive Crofon plastic fibres for

KIT $1 \quad £ 16$ Postiree
Contains: $15 \mathrm{~mm} . \times 24 \mathrm{in} .3 \mathrm{~mm} . \times 18 \mathrm{in}$,, and $6 \mathrm{~mm} . \times 12 \mathrm{in}$. light guides, plus 24 in . long x 2 exit component for punched card or coding applications. Also battery operated light source, 2-way ' Y ' adaptor with non-random separation, and $3 \mathrm{~mm} . / 3 \mathrm{~mm}$. and 3 mm ./
m. 3 mm . and $3 \mathrm{~mm} . / 1.5 \mathrm{~mm}$. connectors.

- Special offer of IMAGE FIBRESCOPES £5 postriee -

Between 50,000 and 60,000 coherently arranged, 15 micron glass flbres that provide (with appropriate optics) perfect visual inspection into otherwise inaccessible areas. Originally made by Rank Taylor-Hobson for use in industrial and medical fibrescopes transparent. layeflat tubing instead of opaque, flexlble faults and are assembled in ground, polished and metal capped, af opaque, flexible conduit, as usual. Ends are ground, polished and metal capped. Absolutely ideal for demonstration in Schools and means of access to enctosed, difficult to get at places. Length overall: 3 ft. Cross sectional area : $3 \times 3 \mathrm{~mm}$. Resolution: $10 \mathrm{LP} / \mathrm{mm}$. to $20 \mathrm{LP} / \mathrm{mm}$.

LOW COST CROFON FLEXIBLE LIGHT GUIDES

Newly developed plastic light transmitting media by
Dupont. which can be used for both serious projects and Dupont. which can be used for both serious projects and
inexpensive prototype work. Ends can be ground llat. inexpensive prototype work. Ends can be ground llat,
dyed of capped with epoxy resin. Temperature range: dyed of capped with epoxy resin. Temperature range:
-40° to $+170^{\circ} \mathrm{F}$. No loss of light through bending. 12 page Data and Applications booklet supplied free with each order. Types available

Multi-strand- 64 special plastic flbres. tightly bundled together in a tough, flextble conduif. $8 / 6$ per foot, Minimum order iwo feet. 17/-p \& p 1/6

RCA TRIAC - CA40432 Suitable for light dimming and motor control circuits Gate-controfted, full-wave, A.C. silicon switch with integral trigger that blocks or conducts instantly by applying reverse polarity voltage. Suitable for A.C.
operation up to 250 volts; controls currents up to 1440 watts. Size only in. diam. $x \frac{3}{1}$ in. high. Complete with heat sink. data and applications

52 Tottenham Court Road, London WIP OBA Telephone: 01-580 0141

人

$6 K 25 G$
6156
6166 A
6 P25
68 A
6
68A7 71

P. C. RADIO LTD.

170 GOLDHAWK RD., W. 12
01.7434946

MARCONI TEST EQUIPMENT

SIGNAL GENERATOR TF $801 /$ A.

 $10-300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Internal at 400$\mathrm{c} / \mathrm{s} .1 \mathrm{kc} / \mathrm{s}$. External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. c/s. kc / s. External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$.
Output 0.100 db below 200 mV from 75 ohms source. $\& 85$. DITTO but output. E89. Both P. \& P. 20/- including necessary connectors, plugs, and instruction manual.

HEWLETT-PACKARD TEST EQUIPMENT

MODEL 524 B ELECTRONIC

 COUNTER WITH MODEL 525B measures frequencies from 10 Hz 20 10 MHz and time from 0 to 10 kHz . Automatic positioning of decimal point, eight place registration. Full selfcheck facility from built in frequency standards. Plug in unlt extends requency range of basic counter to 100 to 220 MHz . Full specification and price

SPECIAL OFFER O9J TUBE 3/-
PHASE MONITOR ME-63/U. Manufactured recently by Control Electronics Inc. Measures directly and displays on a two applied audio frequency signals within the range from $20-20,000$ c.p.s. to an accuracy of $\pm 1.0^{\circ}$. Input signals can be sinusoldal or non-sinusoidal between 2 and 30 v . peak. In excellene

DISTORTION FACTOR METER

 TYPE TF 142 E . Frequency range:$100-8,000 \mathrm{~Hz}$ in four ranges. Distortion range: 0.05 to 50%. Input Impedance 600 a , attenuation 0.60 db continuously variable. Sensitivity 1 mW . $\mathbf{6} \mathbf{4 2 . 1 0 . 0}$. Carriage 20-.
TF 899 VALVE VOLTMETER, 10 mV to $2 V$, $£ 17.10 .0$. Carriage $30 / 0$
F.M. DEVIATION METER TF 934, 657.10.0. Carriage 30/885 A/I, $£ 55$ and 685 TR TF 885A \& FM DEVIATION METER TYPE TF 791 B . Frequency range: $4-250 \mathrm{MHz}$ deviation $1-75 \mathrm{kHz}$. Specification and price on application

FOR EXPORT ONLY

53 TRANSMITTERS. All spares available. COLLINS TCS. Complete WIRELESS SETS. Complete in stallations and spare parts. P.S.U for C42 \& C4S $12 v$ and 24v R.C.A
TRANSMITTERS ET 4336. Com plete installations and all spares. plete installations and all spares
BC $610 E \& 1$ TRANSMITTERS Complete installations and all
spares. No, 19 WIRELESS SETS. H.P. SETS and all spares R. 210
RECEIVERS with all necessary RECEIVERS with all necessary PYE PTC 2002 N A.M. Ranger Mobile Radio Telephone, brand
new and complete, $\mathbf{4} 45$.

4, 5 and 8 bank 25 way uniselectors, £4.10.0; $\mathbb{K} .17 .6$ respecrively.
DAWE STORAGE OSCILLO. SCOPE complete wtih trace shifter complete as new, specification and

SPARES FOR AR.88D. RECEIVERS
SPARES FOR AR.88D. RECEIVERS.
Ask for your needs from our huge Ask for
selection.
HARNESS "A" \& "B" control units junction boxes, headphones. micro GAUMONT KALEE (RANK STUDIO) MODEL 1740 WOW \& FLUTTER ENGLISH ELECTRONIC INSULATION TESTERS O-IOKV wish buile in ionisacion amplifier, $\$ 35$.
AIRMEC INSULATION TESTER O-5KV built-in ionisation amplifier. $\mathbf{E 2 8}$. BOONTON SIGNAL GENERATOR TS $497 / B / U R R, 2-400 \mathrm{MHz} . \quad 195$. TS 418 B/U SIGNAL GENERATOR, $400-1000 \mathrm{MHz}$. 8105. Carr. 30/ TELEPHONE ENOUIRIES relating to TEST EQUIPMENT should
To view TEST EQUIPMENT please phone for appointment INTEGRATED CIRCUITS MANY OTHERS IN STOCK
RCA CA 3005 wide band RF Ampl 300 mW dis

CA 3020 Audio power ampl.
CA 3036 Audio pre-ampl
Unless offered a seen'" all equipment ordered from us is complete ly overhauled mechanic ally and electrically, equipment is in "connecs and use" condition. MIC $709-1 C$ Linear operational amp
MIC 90050 Highspeed flip-flop A.F. Amps with PRE-AMP 2.5W. ©2.2.6

TRANSISTORS, ZENER DIODES

LIMITED QUANTITY ONLY SIGNAL GENERATOR TYPE TF $37(C T ~ 218) . ~ F r e q u e n c y ~ r a n g e:-35 ~$ ${ }_{200} \mathbf{k H z - 3 0 \mathrm { mHz }} \mathrm{kHz}$ to 2 MHz . Frequency scale. 200 kHz to 2 MHz . Built-in Crystal
calibrator Sinewave A.M. V.F.M. Ous. calibrator sinewave A.M. V.F.M. Ous PULSE GENERATOR TYPE TF 675F. Reperition frequency: 50 Hz to O
50 kHz . Pulse duration: 0.15 to 100 Q sec; built in 0.1 and $0.5 \mu \mathrm{sec}$ delay lines. $£ 40.10 .0$. Carriage $20 / \%$ CIRCUIT MAGNIFICATION METER TYPE TF 329F. Frequency range: 50 kHz to 50 MHz . Magnification 10 to 500 Q . Tuning Capacitor: 40 to 450pF with $\pm 3 \mathrm{pF}$ vernier, Fully over-
hauled and calibrated, $£ 70$. Carriage $30 /$ -

SOLARTRON EQUIPMENT LAB. AMP AWS I5IA, frequency: 15 Hz to 350 kHz . Metered output,
isope viewing, ecc. $\mathbf{6 2 9} 10.0$. Carriage $20 /$
Regulated and stabilised P.S.U. SRS $151 \mathrm{~A}, 20$ to 500 V positive at 300 mA in two ranges. Variable and fixed 170 V negative output, 635. Carriage 20/CD 7IIS.2. Double beam. D 7 MHz 'scope, 885 . Carriage $30 /$ CD 643.2 . Single beam Laboratory Model, DC
QD 910. Storage Oscilloscope, as new.
Price on request Oscilloscope, as new.
29/41FT. AERIALS each consisting of ten 3ft. 货. dia. eubular screw-in
sections. Hif. (6-section) whip aerial with adaptor to fit the 7 in . rod, insulated base, stay plate and stay assemblies. pegs, reamer, hammer, etc. Absolutely brand new and complete ready to erect, in canvas bag. 63/9/6. P. \& P. $10 / 6$. FIELD TELEPHONE TYPE "F". Excellent for communication in and outdoors for up to 10 miles. Pair including batseries, fully tested. 66.10.0, or with 20 yds
END OF RANGE ITEMS in 'as seen'
condition: H.R.O.- 110 ; Coils at $15 /-$; TF $\begin{aligned} & \text { I } \\ & \text { Th Signal Generacor (Rack Models) }\end{aligned}$ 20. Furzhill VTVM 10 mV so 100 V - $\mathrm{fl5}$ PANEL METERS
Just a few from our huge stock:
$25 \mu A$ round pi M.C. 2 !
 200μ A round N.C. 21^{*} $500-0-500 \mu A$ round M.C. $2 j^{\prime \prime} . .$.
$500 \mu A$ round M.C. I" (calibrated $1 \mathrm{~mA})$
1 mA round M.C. $2 \frac{1}{2}$ clip fic.
 $\begin{array}{llll}10-0-10 \mathrm{~mA} \text { round M.C. } 21=\ldots . & 22 / 6\end{array}$ 20 mA round M.C. ${ }^{2} 1^{\text {² }}$ $25-0-25 \mathrm{~mA}$ round $M .{ }^{3} \mathrm{C}$. $2 \mathrm{~s}^{\prime \prime}$ 30 mA round M.C. 2% ". 100 mA round pi M.C. 2 200 mA square M.C ${ }_{2}$
$10-0-10 \mathrm{~mA}$ round M.C. $21^{\prime \prime}$ 400 mA round M.C. $21^{\prime \prime}$ 3 amp round R.F. 2 m
 25 amp round M.C. p1 3 3 " 8 V square M.C. $3^{\prime \prime}$

20V square M.C. ${ }^{2}$ clock scale.
50 V round M.C. $2{ }^{\prime \prime}$ black face.
100 V round M.C.
300 V round M.I. 21^{*}..................
 $59-63$ cycles 21 "freq. meser... $32 / 6$
and very many others. full lise of mecers upon request.

COLOMOR (ELECTRONICS) 170 Goldhawk Rd., London, W. 12
Tel. 01 - 7430899

Youre on the right trackwith Goldring 800 magnetic cartridges

> Goldring 800 magnetic cartridges track unerringly. Because that's the way we make them. They're designed to translate even the most delicate information stored in the groove back into an identical electrical signal. We call it the sound of true transduction.

> Hear it for yourself. You'll know you're on the right track.

Goldring 800/H...the $800 / \mathrm{H}$ is designed for inexpensive changers to track between $2 \frac{1}{2}-3 \frac{1}{2}$ grams and has a high output of at least 8 mV . £10.13.6 tax paid. Goldring 800 the 800 is designed for standard arms and changers where the requirements of high fidelity and robustness usually conflict. £13.0.0 tax paid.

Send for details and complete range of Goldring Hi-Fi equipment
Goldring Manufacturing Co. (Great Britain) Ltd.
486-488 High Road, Leytonstone, London, E.11. Tel: C1-539 8343.
wW- 108 FOR FURTHER DETAILS

SERVICE TRADING CO

LARGE DIGIT 12-18v.D.C MAGNETIC COUNTER

RING TRANSFORMER

Functional Versatile Educational

 wound current Transformer, Auto Transformer, A. ig the required number of curns through the centre opaning,

demons tration transformer (STENZYL TYPE)
 between field intensity and ampere turns, induction melting, are just a few of the possible experiments. New
modified model. 414/10/

L.T.T. TTRANS $\bar{F} \bar{O} \overline{R M E} \overline{R S}$

All primarles $\begin{gathered}220.240 \text { volt } \\ \text { Sec. Taps }\end{gathered}$
$30,32,34,36 \mathrm{v}$. at 5 amp
$30,40,50 \mathrm{v}$, at 5 amps .
$10,17,18 \mathrm{v}$ at 10 amps.
$10,17,18 \mathrm{v}$. at 10 amps
$6,12 \mathrm{v}$, at 20 amps.
$612,20 \quad$ at 20 amps
AUTO TRANSFORMERS. Step up, step down
$10-200-220-240 \mathrm{v}$. Fully shrouded. New. 300 watt ype $£ 3 / 10 /$ - each, P. \& P. $4 / 6,500$ watt type $14 / 12 / 6$ each
LATEST TYPE SOLDD STATE DEVICES R.C.A. plastic Triac 400 PIV 8 amp. Price 25/6. R.C.A. Diac for above, price 6/\%. Price includes data sheet and circuit.
R.C.A. 40432 Triac and Diac in TOS can 6 amp. 35/-.
G.E. P.U.T., D13, TI, 12/-. Texas F.E.T 2N38/9,7/6.
above prices plus $1 / 6 \mathrm{P} .4$
 IN8ULATED TERMINAL8 Available in black, red, white, yellow, blue
A.C. CONTACTOR

2 make and 2 break (or $2 \mathrm{c} / \mathrm{o}$) 15 amp contaces $230 / 240$ Y A.C. operation. Brand new. $22 / 6$ plus $1 /-P . \&$ \& . Kit of parts including ORP. 12 Cadmium Sulphide Photocell. Relay Transistor and High Speed Relay for 6 or 12 vole operations. Price $25 /$:, plus $2 / 6 \mathrm{P}$. \& P. ORP. 12 and Circuit $12 / 6$ post paid. 220/240 A.C. MAINS MODEL
 incorporates mains transformer rectifier and special circuic $47 / 6$, plus $2 / 6$ P. \& P. MOHT SOUTING
MOUNTIN Precision englneered light source with adjustable lens assembly and
ventilated lamp housing to take

E $=$

时 MBC bulb. Separate photo cellMBC bulb. Separate photo cell mounting assembly for are single hole fixing. Price per pair $\mathbf{E} 2 / 15 / 0$ plus $3 / 6$

CONDENSERS

New at a fraction of maker's price.

all mail orders. hiso chlers at:

(Ti) ROMER
 (NEW) Ceramic conseruetion, wind-

nemel heavy duty brush assembly designed for continuous duty. AVAILABLE FROM STOCK IN THE FOLLOWING II VALUES: 100 WATT 1 ohm 10a., 5 ohm 4.7a., 10 ohm 3a., $250 \mathrm{hm} 2 \mathrm{a} ., 50 \mathrm{ohm} 1.4 \mathrm{a} .100 \mathrm{ohm} 1 \mathrm{a} ., 250 \mathrm{ohm}$ 7 Fa ., $500 \mathrm{ohm} \cdot 45 \mathrm{a}$. 1 lk ohm 280 mA . 1.5 k ohm 230 mA . 2.5 k ohm 2 az ., 5 k ohm 140 mA ., Diameter 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K}$ 5K ohm. All at, 21/-P. P. \& P. 1/6.
25 WATT $10 / 25 / 50 / 100 / 250 / 500 / \mathrm{K} / 1.5 \mathrm{~K} / 2.5 \mathrm{~K}$ ohm. All at $14 / 6, P, \& P, 1 / 6$
Black Sliver Skirted knob calibrated in Nos, 1-9. I $\frac{1}{2}$ In. dia. brass bush. Ideal for above Rheostats, $3 / 6$ each.

MOTORISED SWITCHING UNIT (Ex-W.D.)

 Powerf

Ex. W.D. MINIATURE 18-24v. D.C. operation, overall lenge 33 in. Blower 2\% $\times 21 \mathrm{in} ., 20 / \mathrm{F}$
P .8 P . $2 / 6$.

BODINE TYPEN.C. 1

 GEARED MOTOR(Type I) 71 r.p.m. corque 10 lb . in
Reversible $1 / 70 \mathrm{ch} . \mathrm{h.p}$.50 cycle .38 mp (Type 2) 28 r.p.m. corque 20 lb . in reversible $1 / 80$ th h.p. 50 cycle 28 amp The above 'wo precision made U.S. A. motors are offered in 'as new' condition. Input voltage of motor
ilsv A.C. Supplied complete with transformer for $115 v$
$230 / 240 v$
A.C. S. input former $\mathbf{6} 2.2 .6$ plus 4/6. P. \& P
\qquad curtains, display stands, vending machines etc. etc. PARVALUX TYPE SDI9 230/250 VOLT AC REVERSIBLE GEARED MOTORS 30 r.p.m. 40 lb . ins. Posicion of drive spindle adjustable to 3 different angles. Mounted on substantial cast aluminium base. Ex-equipment. Tested and really powerful motor offered at a

DRY REED SWITCHES

2×1 amp Dry Reeds (make contacts) mounted in 870
ohm 9.18 v coil. Size 3 in. $\times 34$ in. \times in. New. Price ohm $9-18 v$ coil. Size 3 in
$8 / 6$ per pair. Pose Paid.
6 of the above mentioned units (12 Reeds, 6 coils) fitted in metal box. Size 4 in . $\times 3$ tin. x Itin. Mfg, by Elliott Bros.

Pontare and Cartaze ahown below are iniand only.
Overseas piease asis overseas pleake ask
guotetion.
We
do
do

nol | guotation. We do not |
| :--- |
| isue a catalokue or list. |

20rerMINIATURE UNISELECTOR 3 banks of 11 positions, plus $24.36 y$ bank. 40 ohm coil. removed from equipment and

UNISELECTOR SWITCHES NEW
4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v. D.C. operation
6 BANK 25 WAY FULL WIPER 25 ohm coll, 24 v. D.C. operation
E6.10.0, plus $2 / 6$ P. \& P. 8-BANK 25-WAY FULL WIPER
24 v. D.C. operation, $67 / 12 / 6$, plus $4 / 2$ P. \& P.

RELAYS

NEW SIEMENS PLESSEY, etc
MINIATURE RELAYS AT A
HIGHLY COMPETITIVE PRICE.

COIL	WORKING	प曲\Y P\%	
0	D.C. VOLT	CONTACTS	PRICE
170	$9-12$	4 c/o H.D.	14/6
170	$9-12$	$3 \mathrm{c} / \mathrm{O}+1 \mathrm{H} . \mathrm{D} . \mathrm{c} / \mathrm{o}$	12/6
230	6-12	$2 \mathrm{c} / \mathrm{o}$	12/6
280	6-12	$2 \mathrm{clo} \mathrm{incl}$.	14/6
700	$12-24$	$2 \mathrm{c} / 0$ incl. base	12/6
700	16-24	$4 \mathrm{c} / \mathrm{o}$ inel. base	15/6
700	$16-24$	4M 2B incl. base	12/6
2500	30-50	$2 \mathrm{c} / \mathrm{O}$ H.D. incl. base	12/6
9000	$\begin{aligned} & 40-70 \\ & \mathrm{H} . \mathrm{D} .=\mathrm{He} \end{aligned}$	$2 \mathrm{c} / \mathrm{o}$ incl. base vy Duty	ST PAID

MINIATURE RELAYS

- 12 volt D.C. operation. 2 c/o 500 M. A. contacts. Size only lin. $x \neq \frac{1}{2}$ in. Price $11 / 6$ Pose paid
$30-36$ v. D.C. operation. 2 c/o 500 M.A. contacts.
230 VOLT AC RELAY LONDEX four $6 / 0$ contaces. $18 / 6$, incl. base. Pose paid

SANWA
 MULTI RANGE

TESTERS

NEW MODEL U-50D MULTI
TESTER, 20,000 O.P.V. MIRROR
SCALED WITH OVERLOAD PRO.
TECTION. Ranges: D.C. voles: 100 mV .
0.5 v.. 5 v., 250 v., 1,000 v. A.C. volts
 Complete with batteries $\mathbf{\& 7 . 5 . 0}$
'AVO' MODEL 48A
Ex-Admiralty in good condition with instruc. tions, leads, plus D.C. Shunts for 120 Amp and 480 Amp. A.C. Transformer for 60 Amp. and outfit in ficted case. \&I5/0/0, P. \& P. $10 /-$
PANEL METERS AT BARGAIN PRICES A.C. AMMETERS $0-1,0-5,0-10,0-15,0-20$ amp. F.R. 21 in. dia. ALL AT $21 /-E A C H_{\text {. }}$
lush round ALL AT 211-EACH P. \& P Ex
 $230 \mathrm{v} \cdot$ A.C. SOLENOID. Heavy Juty eype. Approx. 230 v. A.C. SOLENOID. Heavy Juty type. Approx.
31b. pull. $17 / 6$ plus $2 / 6$ P. \& P. 12 v. D.C. SOLENOID. Approx. 11 b . pull. $10 / 6$, P. \& P. $1 / 6$
50 v . D.C. SOLENOID. Approx llb. pull. $10 / 6$ P. \& P. $1 / 6$ lb. pull. 12/6, P. \& P. $1 / 6$
NEW MODEL
HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR Adjustable cone control. Fitted with moving coll speaker, morse key. $45 / \mathrm{p}$ plus $3 / 6 \mathrm{~d}$. p. \& P. _

SEMI-AUTOMATIC "BUG" SUPER SPEED MORSE KEY 7 adjusements, precision cooled, speed adjustable 10 W.p.m. to as high as desired. Weighe 2\&lb. $64 / 12 / 6$ post paid.

NICKEL CADMIUM BATTERY
1.2 v. 35 AH. Size 81 high $\times 3 \times 1 \frac{1}{1} .30 /$ e each, plus $4 /$ Pintered Cadmium Type 1.2 v. 7 AH . Size: height $3 \frac{1}{\mathrm{in}}$. width 2 fin. $X 1 \frac{1}{1 / 2}$ in. Weighe: approx. 13 ozs. Ex-R.A.F. Tesced 12/6. P. \& P, 2/6.

34R SILICON SOLAR CELL
nected, output up to 2 V
30 cimes the efficiency of
30 cimes the efficiency of
selenium. 45/-.P. \& P. $1 / 6 \mathrm{~d}$.

TTC Model C-1051 роскет мultimeter

LASKY'S PRICE 75/- post $2 / 6$

TRIO COMMUNICATONS RECEVEERS

 9R-59 DE -8 valve plus 7 diode clrcult continuouscoverage from 550 kHz to 30 MHz with coverage from 550 kHz to 30 MHz with
Callbrated Bandspread on $10,15,20$,
40 and 80 metre bands Clear ${ }^{25}$. ${ }^{2}$ B 40 and 80 metre bande. Cliear SSB
receptlon Is acheved through the ule olgned control layout finlshed In lloht grey with dark grey case. Fully guaranSPECIFICATION: Frequency Ranges: $550-1600 \mathrm{kHz}$; $\quad 1.6-4.8 \mathrm{MHz}$: $\quad 4.8-14.5 \mathrm{MHz}$;
 10.5-30 MHz. Bandspread: (Direct Reading 14 MHz 20 m ; $21 \mathrm{MHz}_{2} 15 \mathrm{~m}$; $28 \mathrm{MHz}_{2} \quad 10 \mathrm{~m}$

 Output: 1 S watts. Power Requiremenis: AC $115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$. Recommended Speaker Typ. ${ }^{4}$ of 8 (AVC); Headohone Jack. Dimensions: 71n. H, 151 n .W 101 in . C .

LASKY'S PRICE £42.0.0

Carrlage tree

JR-500 SE

Thie is a hloh-pertormance Communicathont Recelver made apecially to cover the double super heterodyne clrcult and proThe JR500-SE cover: all amateur bands between 3.5 and 29.7 MHz and wlli also SPECIFICATIONS: Frequency Range: Band coverage 3.5-29.7MHz in 7 bande. $\pm 1.5 \mathrm{kHz}$ at $-6 \mathrm{~dB}, \pm 6 \mathrm{kHz}$ at -600 B .

 at (14 MHz). Image ratlo and if rejectlon: More than 40 dB at 14 MHz . Maximum Power Output 1 mall Yalves and Tranelstors used: 7 valves, 2 transintors, 5 dlodes. Power Consumpllon: 65 watios $51 z e$

LASKY'S PRICE £65.0.0

\qquad

TRIO PACKAGE DEAL

JR-500SEReceiver + TRIOSP-5D communications speaker + palr TRIO HS-A communications headphones. Total recom- PACKAGE PRICE E69.10.0 Carriage 10/-
mended retail price

AUDIO TRONICS 1970

AN ABSOLUTE MUST FOR EVERY-
ONE-THE AUDIOTRONICS
CATALOGUE IS EQUAL TO OVER
commúnication 100 PAGES OF OUR CURREN W.W. ADVERTISING I/!

The 1970 edition of Laskys famous Audiu-
Tronics catalogue is now available-FREE
on request. The tablold size pages-many on request. The tablold size pages-many
In full colour-ate packed with 1000 's of thems from the largest stocks in Great Bitain of everything for the Radio and
Hi-Fi onthusiast. Electronics Hobbyist Hi-Fi enthusiast. Electronics Hobbyist. Serviceman and Communications Ham.
Over hall the pages are devoted exclusively to every aspect of $\mathrm{HI}-\mathrm{FI}$ (including Lasky's budget Stereo Systems and Package deals),
Tape recording and audio accessories pLUS Lask's amazing money saving vouchers worth over $£ 25$. All goods are
available by Mall Order-bringing the benelits of shopping at Lasky's to you in the comiont of your home.
Send: Your name, address and 21 . for post onty and
incluslon of your nime on our regular malling list.

foster Criterion

MK BIGHFIDELITY $\begin{aligned} & \text { BOOKSHELF SPEAKER SYSTEM }\end{aligned}$
Another high qualliy book-ahell system from Foster. The "Criterion", Mk. If Is a sealed Infin te bafle type enciosure
using $3 j$ in. bassimidd-range wooter with rolled cloth edge and a $2 \neq 1 n$. Hf cone fype tweeter. The compact cabinet lis conatructed of IIn. Iaminate with handsome olled walnut veneer finlsh and black
acouth gaue lront panel whith satin chrome edge Insert. SPEC: acouattc gauze lront panel with satin chrome edge Insert. SPEC:
Frequency range $00-20,000 \mathrm{~Hz}$. Power handling po watts, Impedance 8 ohmi. HF crosaver. Screw tag connections at rear. Size 12 y y
$71 \times 6 \mathrm{din}$. The performance of the "Crllerlon" Is superior to many larger and more expenslve units
offers absolutely unbeatable value

${ }^{\text {Latankrs }}$ Cannard RECORD

AUTOCHANGERS
SL72B
AT 60 MK II
2028 TC com

2028 TC complete with

SL 688
1028 com
SL 98 B
SL 758
SINGLE PLAYERS
AP 75

BASES AND COVERS FOR GARRARD UNITS
TYpe WB1 and WBe for models AT60 Mk II, 2025TC, 3000, SL65B, SL55, 1025. SP25 Mk II. Prlce WB1 £3 16 6. WB8 fs 12 6. TYpe WB4 for models SL72B, SL75B, SL95B Price fB 12 6. Perspex covers: SPC1 for WB1 E3 141. SPC4 for WB4 and WB5 (allows unit

GARRARD PACKAGE DEALS

Post on Gerrard unlts: 6/- extra-except AP 75, SL 75B, SL 95B and 401 7/6 extra. Post Post on Garrard unita:

higimules

The U.K. Electronics and Industrial Operations of E.M.I. Ltd., is an international organisation making a wide range of complex electronic equipment for commercial and military use. Due to rapid expansion and the success of our new colour television camera we have a number of vacancies for young men with enthusiasm and real ability to work in the Commercial and Military Departments of our Quality Assurance Division.

There are openings for Test Engineers to test and fault diagnose prototype electronic equipments in accordance with draft specifications. This will involve work on a wide range of equipments including nucleonic instruments, automation equipment, television and radar systems.
Applicants aged 21-30 should be qualified to O.N.C. standard and have some years' experience in a similar position in the electronics industry.

These vacancies will be of particular interest to those who have served apprenticeships in radio or television. or to ex-service radar personnel.

The salary for these positions will depend on qualifications and experience but will be in the range of $£ 1100-£ 1500$. Assistance in finding accommodation will be given to single men.

If you are looking for excellent career prospects, security of employment and good working conditions please write or telephone for an application form 10 :-

EMI

 G.W. FOX P PERSONNEL DEPT - UK ELECTRONICS ANO INOUSTRIAL DPS E.M.E. LTD BLYTH RD HAYES MIDDX TEL: 01-573 3888 Exf. 411338

see you at

 s

Come and hear Hi-Fi of the Seventies. See what the new decade promises the Hi-Fi enthusiast and music lover.

SONEX is an important new series of annual $\mathrm{Hi}-\mathrm{Fi}$ exhibitions. The best in $\mathrm{Hi}-\mathrm{Fi}$, the newest equipment, future trends in sound, sound demonstrations, ideas for $\mathrm{Hi}-\mathrm{Fi}$ in the home. All this in rooms simulating home listening conditions at the Skyway Hotel. Be sure to get your free ticket from your Hi -Fi dealer.

April 24th-26th, 1970

 Fri\&Sat:11am-9pm. Sun: 11am-6pm.
Skyway Hotel

Bath Road, Hayes, Middx.
SONEX '70
Organised by
British Audio Promotions Lid for the Federation of British Audio

Work as a RADIO TECHNICIAN attached to Scotland Yard

You'd be based at one of the Metropolitan Police Wireless Stations. Your job would be to maintain the portable VHF 2-way radios, tape recorders, radio transmitters and other electronic equipment, which the Metropolitan Police must use to do their work efficiently.

We require a technical qualification such as the City \& Guilds Intermediate (telecommunications) or equivalent.

Salary scale: $£ 1,095$ (age 21), rising by increases to $£ 1,500$ plus a London Weighting Allowance. Promotion to Telecommunication Technical Officer will bring you more.

For full details of this worthwhile and unusual job, write to: Metropolitan Police, Room 733 (RT), New Scotland Yard, Broadway, London, S.W.1.

LEINE \& LINDE

 pRECISION ROTARY DIGITISERSThese incremental shaft-angle digitisers are used to determine accurately the angular position, velocity and acceleration of a shaft

BRITEC LIMITED

17 Charing Cross Road, London W.C. 2 Telephone: 01-930 3070

WW-111 FOR FURTHER DETAIIS

TRANSFORMERS

Coils
LARGE OR SMALL QUANTITIES chores

TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC.
VACUUM IMPREGNATION TO APPROVED STANDARDS
ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY
01-6532261

INTEGRATED CIRCUIT

AMPLIFIERS

CA 3005 RF Ampliffer with fonme/s bandwidth. Max. diberipation
 CA3012 Wide Band Amplifter (up to 20mec/0), witable as 1 F Amplaer for $\mathrm{VHF} / \mathrm{PM}$ recelvars. $28 /-$ CA 3020 General Purpose Audio Ampllater of 350 mW output. 30/cA3036 Bufter Amplituer conamintrig of two "muper.alpha" pair o Trannition sultable for stereop plek-up ayntelng
The above four LC'\& are In TOS encapaliation.
PA222 Audio Ampliter providing a max, output of 1.2 wathe. $6.5 /-$ PA234 Audio Ampllfer provilliag a naxx. output of I wate. 27/6
 The above
package.
melzo9Ca Gerieral Purpose operational amplifer in To-98
ane83 3 -stake direct coupled amplifer for une from dC to
 TAA293 3-stage ampllace with connection brought out to the
 Output lomW lato 150Ω lomi.
TAA320 MOBT Input stage
arge. 2xhaw liasipation. 13/-

 reaistors are Pellurred and output sume for whlch one of the above
 Data sheet avallable for sll the above IC
1/- per data sheet If ordered sejarately.
os otsoos
A.R.B. Approved for inspection and release of ele
klystrons, etc.
OUR NEW 1969/1970 CATALOGUE IS NOW READY
please send quarto s.a.e. for Your free copy

AUDIO AMPLIFIER
Dual. in. line 10 -lead fint package with heat sink otrip. Maximum a preamplifier followed by 7.5 a manden mpaliter. Cistortion 0.3% st 1 watt increaning to 0.5% st full output. Prequence responae cut-out. Price, complete with application sheet $49 / 8$

SILICON MATCHED DIODE PAIRS
1n4851 Two diode ln common TO92 opoxy case. Bepwatate anode leads and loint cethode. Diodee are atatically and
dynamically balanced. Max. reverac voltage 20 y . Mar. diso spation 200 mWW , Sultahle for TV horizonal phane discriminator for quantitiea.

MULTIMETERS TYPE 108-IT

4-range precision portable meter. ${ }_{2}^{5,000}$ o.p.v. D.C. Vole
2.S-10-50-250-600-2500V. A.C. Volta:
$10-50-100-250-500-2500$
V. D.C. ©urrent $0.8-5-50-500 \mathrm{~mA}$. Renatance: $2.000-20,000$ ohma-2

TYPE MFI6

D.C. Foltage range 0-0.0-10-50-250-500V A.C. Volcage range 0-10-50-250-5ب0V.
 capanity and output levol measurements. Bensitivity 2000 QV Aceuracy $\pm 2.5 \%$ for D.O. and $\pm 4 \%$ for A.C. mensuremente.

WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN ¢ FOR HANDLING AND POSTAGE.

NO C.O.D. ORDERS ACCEPTED
ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP.

Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2

Tel. PARK 5641 /2/3
Cables: ZAERO LONDON
Retail branch (personal callers only) 85 TOTTENHAM COURT RD., LONDONW.2. Tel:LANgham 8403

WE WANT TO BUY:

4C35-50/- paid subject to test. Please offer us your special valves and tubes surplus to requirements.

DISPLAYED SITUATIONS VACANT AND WANTED: 17 per single col. inch.
LINE advertisements (run-on): 8/- per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 /-$. SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

At IBM Greenock, you will be involved in the commissioning and testing of the latest IBM products which can include computers and sophisticated optical character recognition equipment. These products have to be tested thoroughly and all faults traced and rectified. Qualifications and Training
You will have a strong electronic background, with experience in the testing of electronic products, maintenance of radio, radar or TV, or similar work in the armed forces.
You will probably have, or be near to attaining a qualification such as ONC, first class PMG, final RTEB, or final City and Guilds (Course Nos. 47, 48, 49, 57, 300) although a first class practical knowledge of electronics can eliminate the need for formal qualifications A knowledge of transistor circuitry and the use of oscilloscopes will be a distinct advantage.
You will receive a mixture of formal and "on the job" instruction, and IBM will teach you all you need to know about their equipment.
Salary and Prospects
Starting salaries will be excellent. And the prospects are outstanding in this fast-growing company. Fringe benefits include a non-contributory pension scheme and free life assurance. IBM will also assist with removal expenses where applicable.

Write Today

Write with details of your age and experience to Mr. J G. B. McKenzie, Manager, Personnel Selection, IBM United Kingdom Limited, P.O. Box 30, Spango Valley, Greenock, Scotland. Please quote reference ET 2/WW/g0062.

ELECTRONLC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

YOUNG ELECTRONICS ENGINEER

required for development work on digital equipment for Psychological Research. This post provides an excellent opportunity for an ambitious Junior, or Intermediate Engineer to join a small team whose talents are directed towards applying electronics technology to the most modern and exciting disciplines of the most modern and exciting disciplines of
Science. Good salary and prospects are Sfience. by this rapidly expanding Company. Please write giving full details of qualifications and experience to:

Mr. K. J. Kapota, General Manager,
BEHAYIOURAL RESEARCH \& DEVELOPMENT LTD.
124 Colne Road, Twickenham, Middx.

DP AND COMMUNICATIONS SERVICE ENGINEERS

News travels fast at Reuters

We want you to keep it that way!

News is our business at Reuters - we gather it from all over the world, sift it, edit it, and then get it to our thousands of subscribers just as fast as we can, twenty-four hours a day, every day of the year. No rests, no breaks, never stopping. We couldn't begin to cope without sophisticated data handling systems and computers. We are dependent on our communications and need more data processing engineers to service our equipment comprising the following

- $A D X$ and electronic message switching systems,
- STOCKMASTER and electronic brokerage systems, including remote display terminals.
- Two IBM 1800 systems.
- Reuters' international communications systems.
- Peripheral and ancillary equipment.

Qualifications. Preferably HNC, or equivalent, in relevant subjects. Retiring Service personnel, with Service qualifications would be considered. Engineers without
formal qualifications but trained by a leading computer or communications company - would also be considered.
Experience. Ideally, two years in the maintenance of digital equipment - Processing. Retrieval or Communications. Preference will be given to applicants who have experience in all three areas of operation.
Salary and Conditions. Starting salary will depend on experience and ability but will in any case be better than the applicant's present earnings. Holidays and general conditions of employment are among the best in industry.

Most of the vacancies are in London but there are a few at Manchester, Birmingham and Edinburgh. We can promise you an interesting and busy life where your rewards will match your performance.
To start with, write to or telephone: Brian Heywood,
サயU世 Limited
85 Fleet Street, London, E.C. 4.
Telephone: 01-3536060

CONTINUOUS EXPANSION
 Standard Telephones \& Cables, Microare growing fast. In order to keep pace

with this consistent growth rate we require the following

Installation Engineers Technicians \& Testers

Ref. 25720
To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.

Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Applications should be addressed to
The Personnel Officer. STC Chester Hall Lane, Basildon, Essex.

Test Technicians

Ref. 27221
The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complex transmission systems.
Candidates should hold an ONC in electrical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit, pcm and microwave equip. ment.

BGG ENGINEER

EXTERNAL SERVICES SECTION OF TRANSMITTER PLANNING \& INSTALLATION DEPT.

The BBC have a vacancy for an Engineer in the External Services Section of Transmitter Planning and Installation Department. The department is responsible for the planning, installation and preparation of specifications for high power transmitters and for aerial and feeder systems at H.F. and M.F. transmitting stations in the United Kingdom and abroad.
Candidates should be qualified to degree or equivalent standard (Corporate membership of a relevant Chartered Institution would also be taken into consideration). In addition, applicants should have a general knowledge of modern transmitting stations and should have some experience of the installation and design of transmitters and aerial systems.
The post is based in London but candidates must be prepared to visit sites for short periods in the United Kingdom and abroad. A starting salary dependent on previous experience and qualifications of $£ 2,030$ to $£ 2,238$ p.a. would be paid rising to a maximum of $£ 2.550$ p.a.

connmiter chafincering

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of $£ 900 / £ 1,250$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holidav. pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road, London, NW2
quoting publication and month of issue. 279

Electronics Maintenance Engineers

There are excellent opportunities in the Installation and Maintenance Division of U.K Electronics and Industrial Operations of E.M.I Ltd.. at Hayes. Middlesex, for engineers to carry out maintenance work on a wide variety of electronic equipments including laboratory test gear and trans-ceivers.

Candidates should be between 21 and 45 years of age and have some experience in this type of work. Consideration will be given to experienced Radio and Television servicing technicians and to ex service personnel.

Commencing salaries of up to $£ 1.500$ per annum will be paid and staff conditions include contributory pension scheme and free life assurance

Please apply in writing giving brief personal and career details to
G. W. Fox, Personnel Department, U.K. Electronics \& Industrial Operations, E.M.I. Ltd., Blyth Road, Hayes, Middlesex.
Tel: 01-573 3888, Ext. 411.

and work at the nerve centres of civil aviation

The National Air Traffic Control Service of the Board of Trade needs Radio Technicians to install and maintain the very latest electronic aids at Civil Airports. Air Traffic Control Centres. Radar Stations and specialist establishments. Vacancies exist in various parts of the United Kingdom.
This is responsible demanding work (for which you will get familiarisation training) involving communications, computers, radar and data extraction, automatic landing systems. and closed-circuit television. It offers excellent prospects with ample opportunities to study for higher qualifications in this fast-expanding field.
If you are 19 or over, with at least one year's practical experience in telecommunications. fill in the coupon now. Preference will be given to those having ONC or qualifications-in Telecommunications.
Salary: $£ 985$ (at 99) to $£ 1.295$ (at 25 or over); scale maximum $£ 1.500$ (higher rates at Heathrow). Some posts attract shift-duty payments. The annual leave allowance is good and there is a non-contributory pension scheme for established staff.

Complete this coupon for full details and application form :
To: A.J. Edwards, C. Eng., M.I.E.E., M.I.E.R.E., Room 705, The Adelphi, John Adam Streat, London WC2, marking your envelope 'Recruitment'

Name
\qquad
WW/B4
Not applicable to residents outside the United Kingdom.

Senior Posts for
 DRAUGHTSMEN

AND ENGINEERS

LABGEAR LTD. of CAMBRIDGE have vacancies in their engineering division for the following Staff :

1. TWO SENIOR DESIGN DRAUGHTSMEN with experience in light engineering, sheet metal design and layout of printed circuits.
2. A SENIOR RADIO COMMUNICATIONS EQUIPMENT DEVELOPMENTENGINEER with experience in S.S.B. circuit techniques.
3. A DEVELOPMENT ENGINEER with experience in design of U.H.F. aerials and amplifiers.
4. AN ELECTRONIC INSTRUMENT DEVELOPMENT ENGINEER with broad general experience of both digital and linear techniques.

The above staff are urgently required to deal with a major expansion programme. Our own staff have been fully informed. Exceptionally good working conditions. first class pension and life assurance scheme.

Please apply to Personnel Manager,
LABGEAR LTD., CROMWELL ROAD, CAMBRIDGE Telephone 47301

2832

Senior Development Engineer Radio and Audio Products

Kolster-Brandes Limited wish to strengthen the radio and audio section of their Engineering Department by the appointment of a Senior Engineer. He ought to be qualified to HNC or degree level-but experience and ability will impress us equally. Above all, we will be looking for evidence of real achievement, primarily in radio circuit design, and possibly also in the wider field of audio equipment.
Starting salary is likely to be in the range $£ 1,600-£ 1,900$, and conditions of employment are consistent with our standing as a major international company. Generous assistance will be given with re-location expenses.
Concise details of your qualifications and experience should be sent to Miss C. M. Arnold, Kolster-Brandes Ltd., Footscray, Sidcup, Kent.

ITT KB

ELECTRONICS ENGINEERS

PYE TVT is a big company in broadcasting equipment and has large outstanding orders with both short- and long-term developments to complete. The continuing expansion has created a number of vacancies for the following competent Electronics Engineers to work on new projects in Cambridge : Development Engineers, minimum qualification H.N.C. or equivalent. with five years' electronics experience in digital circuitry.
FM/RF Test Engineer with previous experience in FM systems and RF equipment. Applicants with experience of testing communications equipment would be most suitable.

Systems Test Engineors with proven ability in television studio equipment systems, including colour work. Applicants must be familiar with detailed performance measurements using complex and modern test equipment. Minimum requirements are H.N.C. plus five years' experience. Test Engineers for sub unit testing. Applicants should have good general test experience of power supplies, video amplifiers, pulse circuits and semi-conductor circuits.
Salaries for these key positions in a fast-moving organisation will be above average, and other conditions of employment are excellent.

Apply:
Mr. A. Martin-Personnel Manager,

PYE TYT LIMITED
Coldhams Lane, Cambridge.
Telephone : Cambridge 45115

Government of UGANDA REQUIRES

BROADCASTING ENGINEERS

To serve on contract for one tour of 21-27 months in the first instance. Salary according to experience in scale Uganda Shg. 21,120-27,780 ($£$ Stg. 1,232-1,620) a year, plus an Inducement Allowance, normally tax free, of EStg. 778-886 a year, paid direct into a Uganda bank account nominated by the officer. Gratuity 25% of total emoluments drawn. Liberal paid leave. Accommodation provided at reasonable rental. Outfit and education allowances. Free passages. Contributory pension scheme available in certain circumstances.
Candidates must possess the City and Guilds Final Certificate in Telecommunications (with Radio) or an equivalent qualification and have wide practical experi-
ence of technical broadcasting equipment including high power M.F. transmitting and studio control equipment. The officer will be required to undertake senior operational duties including the maintenance of broadcasting equipment in transmitting stations and studios; outside broadcasts and recordings in remote districts; and to give assistance with the training of junior engineering staff.
Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.r., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference M2K/690995/WF.

Right. We have your atten- The people we are looking tion, so you can now forget for must have previous exabout the girl. perience either in industry We are looking for Elec- or the forces and will pretronic Testers to work on a ferably have passed City wide variety of radio prod- and Guilds in telecommuniucts rangingfromthe world's cations. The posts will be most advanced and compact based either at New Southmobile radio equipment to gate, or at Rickmansworth high-powered H.F. trans- from where, within the next mitters and complex navaids. twelve months, the company Duties will include testing, will be moving to a new site fault-finding and alignment, between Radlett and and in the case of senior St. Albans.
positions will include sys- Salaries and prospects are tems test and trouble-shoot- excellent.
ing work.
Write or telephone NOW to:
Tom Anderson, Radio Products Group, Standard Telephones and

STC
Oakleigh Road, New Southgate, N. 11

01-368 1234
Cables Ltd, ext. 2578

MINISTRY OF DEFENCE
 (ARMY DEPARTMENT)
 LECTURER GRADE II

Applications are invited for the post of Lecturer Grade II at the Army School of Signals, Blandford Camp. Dorset.
Candidates should have an honours degree in electrical engineering or physics with an interest in electronics. Candidates with a mathematical degree and interest in computers or the Cambridge Mechanical Sciences Tripos will also be considered. Experience in the use of modern military communications equipment and teaching experience are desirable but not essential.
Salary will be in accordance with the current scales of salary for Teachers in Establishments for Further Education. In addition to salary a special non-pensionable allowance of $£ 365$ per annum is payable for the slightly longer teaching year at the school. The appointment is pensionable under the Teachers' Superannuation Acts.
Requests for application form and further information should be made to:
Ministry of Defence (AD), CE3(b), Room 308, Northumberland House, Northumberland Avenue, London, W.C. 2
Closing date for receipt of applications-10 days from date of publication

RADIO OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators $\ln 1970$ and in subsequent years.

Specialist training courses lasting approximately nine months, according to the trainee's progress. are held at intervals. Applications are now invited for the course starting in September, 1970.

During training a salary will be paid on the following scale:

Age 21	£800 per annum
". 22	$£ 855$
". 23	$£ 890$
". 24	$£ 925$
". 25	".

Free accommodation will be provided at the Training School.

After successful completion of the course, operators will be paid on the Grade 1 scale :

Age 21	$£ 965$ per annum	
". 22	$£ 1025$	".
". 23	$£ 1085$	".
". 24	$\mathbf{£ 1 1 4 5}$	"
". 25 (highest		
age point)	$£ 1215$	".

then by six annual increases to a maximum of $\mathbf{\$ 1 6 5 0}$ per annum.

Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must normally be under 35 years of age at start of training course and must have at least two years operating experience. Preference given to those who also have GCE or PMG quallfications.

Interviews will be arranged throughout 1970.
Application forms and further particulars from:
Recruitment Officer, (R.O.3) Government Communications Headquarters, Oakley, Prior: Road, CHELTENHAM, Glos., GL52 5AJ
Telephone No. Cheltenham 21491. Ext. 2270

UNIVERSITY OF SURREY

Department of Biological Sciences

A SENIOR TECHNICIAN

is required in the HUMAN BIOLOGY section. The Department is about to move into a new building within the University campus at Guildford. This is a recently established section of the Department and offers good opportunities for a person with ability and enthusiasm, who is able to take responsibility in conjunction with the Chiel Technician, for the design and developmen! of new ELECTRONIC equipment for research and teaching, and the servicing and calibration of the Department's modern bio-medical electronics.
Staff are encouraged to engage in further studies relevant to the needs of the Department and day release is available for this.

Salary scale for Senior Technician: $£ 1,056$ £1.311.

Application forms are available from the Staff Officer. University of Surrey. Guildford Surrey.

Government of MALAWI requires
 TELECOMMUNICATIONS OFFICER ［CIVIL AVIATION］

to serve on contract for one tour of 24－36 months in the first instance．Salary in scale rising to $£ 1905$ a year（inclusive of Overseas Addition），point of entry according to experience．In addition，a supplement of $£ 196-224$ a year is payable by the British Govern－ ment direct into officer＇s bank in U．K．Gratuity 25% if officer completes 30 month tour．Generous paid leave．Furnished accommodation．Education and outfit allowances．Free passages．Contributory pension scheme available in certain circumstances．
Candidates， $\mathbf{2 5 - 4 5}^{-4}$ ，should possess City and Guilds Telecommunication Technician＇s Certificate（Inter－ mediate）plus at least two＂B＂year certificates and in
addition not less than four years＇experience in radio／ radar maintenance after serving a recognised appren－ ticeship or similar training．Applicants lacking formal educational qualifications but with extensive experi－ ence can be considered．
The officer will be responsible for the installation and maintenance of telecommunications and radio navi－ gational equipment at airports throughout Malawi．
Apply to CROWN AGENTS，＇M＇Division， 4 Millbank，London，S．W．i．，for application form and further particulars stating，name，age，brief• details of qualifications and experience and quoting reference number $\mathbf{M 2 K}_{2} / 68_{1 i n} / \mathrm{WF}$ ．

SOUTHEND－ON－SEA MUNICIPAL AIRPORT
 RADAR／RADIO ENGINEER

Applications are invited for the above super－ annuated post from Technicians with experience in the maintenance of $3 \mathrm{c} . \mathrm{m}$ ．and $10 \mathrm{c.m}$ ．Radar， VHF communications and recording equipment and navigational aids．Possession of appropriate and City and Guilds or Naio Salary according to Technical $4 / 5$ Scales，
£ $1.095-£ 1,540$（under review）． £1．095－£1．540（under review）
Applications，in writing，giving age，experience and qualfications，should be forwarded immedi－ ately to the Airport Commandant，Municipal Alrport，Southend－on－Sea，Essex． 334

UNIVERSITY OF BELFAST

 Department of Civil EngineeringEXPERIMENTAL OFFICER／ SENIOR EXPERIMENTAL OFFICER

Applications are invited for the post of Experimental Officer／Senior Experimental Officer．The Officer will be responsible for the electronic and electrical laboratory equipment in the Department of Clvil Engineering and the design and development of specialised electronic devices for research work． Applicants should hold a degree in engincering or qualification for corporate membership of a recog－ nised engineering institution．
Appointment will be on the grade appropriate to the applicant＇s age and qualifications；the respective salary scales（which carry superannuation within the F．S．S．U．$)$ are： Experimental Off

70（1）－ $\mathbf{~ 1 , 5 5 0 .}$
enior Experimental Officer－$£ 1,585 \times 80(9)-$
 28 （1，825）．
Applications，giving full particulars of career to date and the names of two referees，should be sent to： The Secretary to Academic Council，Queen＇s University，Belfast，BT7 IN N，by 14 March， 1970

Technicians and Engineers for St．Albans and Luton

qualified or not！

Vacancies in all grades

－VACANCIES exist for work on testing and calibrating valve and solid－state electronic measuring equipments embracing all frequencies up to u．h．f．in Production，Service and Calibration departments．
－APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ex－Armed Services technicians．
－SALARIES up to $£ 1,600$ negotiable and backed by valuable fringe benefits．
－RE－COCATION EXPENSES available in many instances
－CONDITIONS excellent；free life assurance，pension schemes，canteen，social club．
－37⿺⿱十又
－WRITE or＇phone Personnel Department stating age，details of previous employment，training，qualifications，approximate salary required．

Marconi Instruments Limited

colour $\boldsymbol{E Y}$ SERvice
Do you have one of the following qualifications in electronics: B.Sc. H.N.C. H.N.D. City \& Guilds Full Tech. (Telecomms)? If so you may be interested in the vacancies we have at our colour television studios at the Television Centre. We require qualified engineers to train in television techniques to work on our new colour studio equipment.
Applicants must have normal colour vision and be normally resident in this country.
Starting salaries in the range $£ 1.175$ to $£ 1.609$ depending upon experience on the basic grade of OP4. The salary scales are as follows:-

OP4 $£ 1,453$ to $£ 1,843$ by annual increments of $£ 78$ OP5 $£ 1,700$ to $£ 2,140$ by annual increments of $£ 88$ OP6 £1,921 to $£ 2,446$ by annual increments of $£ 105$
There are engineering grades above this commanding salaries of over $£ 4,000$ p.a. Those engineers who are required to work early morning or evening shifts and extra duty may earn from $£ 200$ to $£ 300$ above their basic salary. Promotion to grade OP5. OP6 and above is by internal competition on merit rather than seniority. There are therefore good opportunities for the progressive engineer to gain rapid promotion.

Write giving age and details of qualifications and experience to:-

The Engineering Recruitment Officer,
BBC Broadcasting House,
London W1 A 1 AA.
Quoting Reference : 70.E. 4004

ROYAL ARMAMENT RESEARCH AND DEVELOPMENT ESTABLISHMENT

MINISTRY OF DEFENCE, Fort Halstead, Near Sevenoaks

ELECTRONICS

Two ELECTRONIC ENGINEERS (graded Experimental Officer/Assistant Experimental Officer) are required for work on advanced applications of electronics in the artillery field.
Qualifications and Experience: Degree HNC or equivalent, in appropriate subjects. Several vears development experience is necessary in one or more of the following fields: VHF TV, Audio, Control and Digital Systems, including the use of I.C. techniques and other advanced methods. Age : AEO under 28, EO normally 26-30.
Prospects of permanent pensionable appointments. Promotion prospects.

APFLICATION FORMS from the Ministry of Defence (CE2(f)AD), Northumberland House, Northumberland Avenue, London, W.C.2. Please quote 48/69/G in all correspondence.

UNIVERSITY OF CAMBRIDGE Engineering Department

Electronics Technician

Applications are invited for vacancies in the Electronics Laboratory and Workshop of the Department, covering the manufacture and maintenance of a wide range of instrumentation and experimental equipment. Two posts are available, one on which experience in design and development is essential and the other requiring a skilled valve technician. The maximum salaries in the two posts are $£ 1.548$ per annum and $£ 1.266$ per annum respectively.

5 -day week with $5 \frac{1}{2}$ weeks' holiday per year.

Applicants should write in the first instance stating age and experience to the Superintendent of Workshops. Cambridge University Engineering Department, Trumpington Street, Cambridge. CB2 1 PZ.

277

MEDICAL RESEARCH COUNCIL TECHNICAL OFFICER (Physics)

A research unit studying the medical effects of environmental pollution reouires a technician to assist in the development of physical and electronic instrumentation and the commission ing and running of a real-time computer system, soon to be installed. The successful candidate will be expected to learn digital computer programming.
Applicants preferably should have experience in electronics and if aged 22 or over H.N.C. or suitable University degree. Minimal qualifications "A" level mathematics and physics.
Salary according to age, qualifications and experience (Technical Officer or Junior Technical Officer grade)
Further details from and applications to: Professor P. J. Lawther, M.A.C. Air Pollution Unit. St. Bartholomew's Hospital Medical College, Charterhouse Square, London, E.C.1.

282

UNIVERSITY OF ST. ANDREWS

Department of Chemistry

Applications are invited from candidates with an Ordinary Degree. H.N.C. or equivalent qualification in Electronics for a position in the Department of Chemistry. The successful applicant will be expected to assist in the servicing of spectrometers and in the development of electronic equipment. The new chemistry bullding is equipped with Mass Spectrometers (MS-902 and MS-10). N.M.R. Spectrometers (HA-100 and R-10) and a Decca E.S.R. Spectrometer in addition to I.R. and U.V. Spectrometers.
Salary in the range: $£ 1.090-£ 1.465$ (Technical Officer) : grant towards removal: pension scheme. Applications with the name of a referee should be sent before 15 th February. 1970, to the Deputy Secretary, University of St. Andrews, College Gate, St. Andrews, from whom further particulars may be obtained.

APPOINTMENTS

Government of MALAWI Posts \& Telecommunications Department

 requires SECTIONAL ENGINEERto serve on contract for one tour of 24-36 months in the first instance. Salary according to experience in scale rising to $£ 1905$ p.a. (inclusive of Overseas Addition) plus a Supplement rising to $£ 244$ p.a. paid by the British Government direct to officer's bank in the U.K. Gratuity 25% on completion of 30 month tour. Terminal payment in lieu of leave. Furnished accommodation. Free passages. Outfit and education allowances. Contributory pension scheme available in certain circumstances.
Candidates, between $25-45$ years, must have specialised training and experience on the maintenance of microwave
radio and associated equipment and hold passes in appropriate subjects in the Gity \& Guilds of London Institute examinations or the equivalent.
The officer selected will be responsible for the maintenance of microwave radio route, carrier equipment and V.H.F. radio.
Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.I, for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference number M2K/690806/WF.

UNIVERSITY COLLEGE CARDIFF COMMPUNICATIONS CENT Electronics/Television Engineer Applications are invited from suitably qualified and experienced persons for the above post. The successful applicant will be responsible for the maintenance of Television and other sound and electronic equipment in the mobile and C.C.T.V. units. He will also be assoclated with the planning within an expanding department, and with the science education courses. Quallifications should include H.N.C. or equivalent, in Electrical Engineering, and the applicant should have had not less than two years experience in sound and/or television engineering.
5alary in the Chief Techinician (1) Grade 61,385-
El,578 p.a. Applications should be sent to:
The Registrar. University College, P.O. Box 78, Cardiff, CFI IXL
by Ist March, 1970, quoting ADV $381 / \mathrm{WW}$

UNIVERSITY OF LIVERPOOL

Department of Psychology

Applications are invited for the post of LECTURER in Psychology.
Preference will be given 10 candidates who have specialised in some aspect of experimental psychology and who have a good knowledge of instrumentation. The department will shortly be moving into a new building, which will provide up-to-date laboratory facilities. The initial salary will be within the range f1 240-f1 355 per will be within the range

Applications, sta:ing age, qualifications and experience, together with the names of three referees, should be received not later than 2nd March. 1970. by the Registrar. The Unlversity, P.O. Box 147. Liverpool L69 3BX, from whom further particulars may be obtained.

Gif: Herem iletruins

ELECTRONIC TECHNICIANS

Marconi can offer you

Attractive salary. Annual salary reviews
Good working conditions. 37-hour working week Non-tied housing in a new town in certain circumstances

At Basildon we have a number of vacancies for technical staff to work on the design and manufacture of specialised electronic test equipment and also on the repair and maintenance of general electronic test apparatus. Applicants should have a good basic knowledge of electronics and have some previous industrial or retail trade experience.

Marconi 성토영

Please telephone or write for an application form to: Mr. R. McLachlan, Personnel Officer, The Personnel Dept, The Marconi Company Limited, Christopher Martin Road, Basildon, Essex. Phone: Basildon 22822.

A GEC-Marconi Electronics Company

Radio Operators

 Your chance of a shore job with good pay from the start!If you hold a 1st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General or the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic, the Post Office can now offer you a starting salary of $£ 965-£ 1,215$ (depending on your age). Annual rises will take you to $£ 1,650$ and there are good prospects of promotion to more responsible and better paid posts.
If you are over 21, write for more details to:
The Inspector of Wireless Telegraphy, External Telecommunications Services, Wireless Telegraph Section (WW), Union House, St. Martins-le-Grand, LONDON E.C.1.

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager,
Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades).

Phone: 0l-397 541I

TECHNICAL OFFICER
 HOME OFFICE POLICE SCIENTIFIC DEVELOPMENT GROUP

Unestablished vacancy for a TECHNICAL OFFICER GRADE III with knowledge and experience of workshop practice and electronic equipment. The successful candidate will work in the equipment section, which is concerned with assessment, trials and development of a wide range of equipment for police use, and will carry out construction, modification and test work in co-operation with police officers.
The post is based initially in Central London, but the section will move to Sandridge, near St. Albans, later in the year.
Qualifications: Ordinary National Certificate or evidence of an equivalent standard of technical education, together with a five year apprenticeship and at least three years' practical experience. Salary: f1355 (age 25)-f1485 (age 28 or over on appointment)- $£ 1675$.
Applications should be made to the Principal Establishment Officer(T.O.) Room 324, Home Office, Whitehall, London, S.W.I by 31st March, 1970

307

BOROUGH POLYTECHNIC BOROUGH ROAD, S.E. 1
Dedartment of Humanltles and Social Studies

TECHNICIAN

required as soon as passible for this expanding department which provides a wide range of courses at undergraduate and professional level.

Duties will include the supervision, maintenance and preparation for use of audio-visual equipment. Some knowledge of such equipment is expected and there are opportunities for further training.

Saiary scale: C745-£1, 125 per annum, plus $\{125$ per annum London Weighting. Minimum age 21, of age, qualifications and experience, and quoting the reference H / T.

Government of ZAMBIA

DEPARTMENT OF CIVIL AVIATION RADIO ENGINEERS

Salary in scale up to $£ 2590$.
Low Taxation.
Tour of 36 months offered.
Generous leave on full salary.
25% End-of-Tour gratuity.
Commencing salary according to experience in scale Kwacha 2736 ($£$ Stg.1596) rising to Kwacha 3216 (£Stg.1876) a year, plus an Inducement Allowance of $£$ Stg. 714 a year, payable direct to an officer's U.K. Bank account. Both gratuity and inducement allowance are normally TAX FREE. Free passages. Quarters at low rental. Children's education allowances. Generous leave on full salary or terminal payment in lieu. Pension scheme available under certain circumstances.
Candidates must be under 55 years of age and should possess 8 years' relevant experience following :-
(i) an apprenticeship of 5 years, or
(ii) possession of a Service Trade Certificate, or
(iii) possession of an I.C.A.O. certificate or (iv) equivalent.

In addition, candidates should have a sound experience of the theoretical principles of and experience in the maintenance of the first two and at least one other of the following groups of communications and navigational aid systems:

1. Medium powered H.F. Transmitters and associated Receivers : Frequency Shift Keying ; S.S.B. and D.S.B. Equipment; Mediun Frequency Non-Directional Radio Beacons.
2. Low and High Powered V.H.F., A.M. Equipment.
3. V.H.F. Omni range ; Automatic V.H.F. Direction Finders.

Distance Measuring Equipment.
4. Instrument landing System.
5. Radar X Bank Terminal and P.P.1. Talk Down Equipment.
6. Audio and Remote Control Equipment; Public Address Equipment; Airport Magnetic Tape Recorders; Inter Office Communication; Underground Control Cables; Impulse and D.C. Switching System.
7. Teleprinter Telegraphy (torn tape) and associated Page Printers; Tape Recorders (autoheads); Semi-Automatic Message Switching System.
Duties include the maintenance, overhaul and installation of ground terminal radio communication equipment and navigational aids at Airports and Flight Information Centre.
Possession of a valid driving licence will be an advantage.
Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1, for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number $\mathbf{M} 2 \mathrm{Z} / 690315 / \mathrm{WF}$.

AUDIO DESIGN ENGINEER

An outstanding opportunity with an attractive salary and the satisfaction of seeing complete equipments through design and production. Candidates should have H.N.C. or equivalent with several years
experience in the audio industry. experience in the audio industry.
Electrosonic Limited-Greenwich. 01-858 4784
333

INDEPENDENT TELEVISION NEWS LIMITED intends to appoint
 TRAINEE TELEVISION ENGINEERS

Vacancies exist in the Vision and Sound Enginearing Departments for Trainee Television Engineers. Applicants should have a keen interest in the technical problems of Television and have had some practical experience of electronics. They should possess either recognlsed Engineering Qualifications or " A " levels in science subjects. Training will be provided in the various engineering sections of ITN covering the field of television sections of ITN covering the field of television broadcasting. Where necessary
evening classes will be arranged.
evening classes will be arranged.
Trainees, who successfully complete their period Trainees, who successfully complete their period
of training, will be appointed to the permanent staff where benefits include a Pension Fund and Free Life Insurance. Opportunities for promotion to more senior grades will exist.
Salary during the nine months training period will be not less than $£ 782$ per annum whilst under supervision, rising substantially on appointment to permanent staff.
Candidates aged 18-25 should telephone or write for application forms:
The Personnel Manager, Independent Tele-
vision News Limited, ITN House, 48 Wells Street, London, W. 1
Telephone: 01637 2424, Ext. 392

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

This private College provides efficient theoretical and practical training in the above subiects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721 .

OXLEY
 ${ }^{\circ}$ ©

MIDLANDS/NORTHERN AREA TECHNICAL SALES REPRESENTATIVE

Company expansion has created a vacancy for a technical representative in the Midlands and part of the northern area of the United Kingdom. The successful applicant will be a person of proven ability with a wide degree of knowledge in the telecommunications and electronics field. Engineering qualifications to H.N.C. standard. Salary will be negotiated according to qualifications and experience. Company car provided: pension fund and life assurance scheme in operation.
Applications, giving details of education, experience, qualifications and salary, together with copies of two references or names and addresses of referees, to be forwarded to:

The Personnel Manager,

> OXLEY DEVELOPMENTS COMPANY LIMITED, PRIORY PARK, ULVERSTON, NORTH LANCASHIRE

hi-fi design and development

Rank Wharfedale and H. J. Leak. currently implementing plans which will double the present seven figure turnover within three years, are to expand the Acoustics Section of their Engineering Development Department, which also includes Research. Electronic and Mechanical Engineering Sections, a model shop and drawing office. Creative engineers are required to design and develop for manufacture new high quality loudspeakers and dependent systems, and work on improving the quality of moving coil designs such as the Wharfedale "Denton". "Dovedale III" and Leak "Sandwich" loudspeakers. Recent investigations have covered topics such as the increase of specific output, low colouration diaphragms and loudspeaker suspension terminations. Candidates should be qualified to HND standard with relevant experience in the electro-acoustic field. A sound education and training in engineering, with a deep interest in hi-fi, is essential.
Salaries will be up to $£ 3,000$ per annum; contributory pension. free life assurance. Location - Idle, nr. Bradford. Assistance with removal expenses will be given where appropriate.
Please write, giving brief details and quoting Ref. MA.7519D. to:-

Deputy Executive Appointments Adviser,
The Rank Organisation Limited,
Millbank Tower, Millbank, London, S.W.1.

ELECTRONC TEST ENGINEERS

Salary up to $£ 1,650$ per annum

Test Engineers required for Production Testing of Numerically Controlled Machine Tools. Knowledge or experience of Logic Gating Systems or alternatively, Analogue Circuits and Systems desirable.

Minimum Age 24 years

AUTOLOGIC LTD.

James Estate • Western Road . Mitcham 648-0121

Write, telephone or call Mr. G. A. Boyd

CLECTRONICS TECHNICIAN required for new fac Why at Malvern, Worcs., to asstst in the development and construction of electronic Instruments and
apparatus. Applicants should possess H.N.C. or equivalent and be able to design and construct equip. ment without supervision. Please apply stating age, full experience ond
WIreless World.
R adio test engineers. Production testing and FM tault finding on transistorised Audlo Ampliffers \& FM Receivers. 5-day week. Apply, Chiet Engineer,
Rogers Developments (Electronics) Lid., $4-14$ Barmeston Rogers (oft Bromley Road), Catford, S.E.6. Tel: 01-698 $7424 / 4340$.
UNIVERSITY OF SHEFFIELD. Chief Technician required in Department of Chemistry to take charge and construction of new electronic equipment for research and teaching, and maintenance and repair of wide range of electronic equipment. Experlence and qualificatlons. Salary $£ 1,385-£ 1,578$ per annum.
Write, stating names and addresses of two referees, to the Bursar (Ref. B.467), The University, Shefleld. S10 2TN.
Frorix ARTICLESFOR SALE
BRAND NEW ELECTROLYTICB, $15 / 16$ volt, $0.5,1$, Bitm 2, $5,810,20,30,40,50,100,200 \mathrm{mtds}$. Bd. Carbon Film Resistors id watt 5% E12 Series 10 ohms to 1 Megohm $1 / 6$ dozen, minimum order $7 / 6$, postage $1 /-$.
The C. R. Supply Co., 127 Chesterfield Rd., Sheffield $\mathrm{S.8}$. . ${ }_{[299}$.
$8^{\text {UILD }}$ IT in a DEWBOX quality plastics cabinet. 2 in. $\times{ }^{21} \ln$. X any length. D.E.W, Ltd. (W),
Ringwood Rd, FERNDOWN, Dorset. S.A.E, for leaflet Write now-Right now.
How to Dse Ex-Govt. Lenses and prisms. Booklets. ENGLISH, 469 RAYLEIGH RD., HUTTON, BRENT. ENGLISH, 469 RAYLEISH RD., HUTHON, BREN.
[87 MARCONI Distortion Analyser Type 142E, complete Price \& ith handbook. Tested and in working condition. Price \& 30 complete. Contact P. Brooke. Eicom (Northampton. Tel.: 51873 .
[278
NEW BRANDED FULL SPECIFICATION DEVICES. Integrated Circuits complete with data: GE PA230
Audio Pre-amplifier $18 / 6 \mathrm{~d}$. GE PA234 1 W Audio Audio Pre-amplifier 18/6d. 2 WE Audio Amplifier Audio $32 / 6 \mathrm{~d}$. Plessey SL402A Preamp \& 2 W Amp $42 /$. MEL 11 Photo Darlington Amp 9/6d. Connectors suitable for GE Integrated Circuits 7/- High Quality low cost transistors: GE 2N5172 NPN 200 mW $1 / 9 \mathrm{~d} . \mathrm{ME}^{2}$ O412 PNP
200 mW 3/9d. TI 2N4059 PNP $250 \mathrm{~mW} 3 / 6 \mathrm{~d}$. MUL BFX86 NPN 800 mW 6/ MUL BD124 NPN 15 W 12/-, S 2N3055 NPN 115 W 14/6d. Trises for full wave power control: RCA 40669 BA 400 V 24/-, RCA 40583 Trigger Diode $5 / 3$. Flastic rectifiers for power supplies:
iN 48201.5 A 400 V Si Rectifer $2 / 6 \mathrm{~d}$. WOO5 1 A 50 V IN 4820 1.5A 400 V Si Rectiffer ${ }^{2 / 6 \mathrm{~d}}$. WOO5 1 A 50V
full wave bridge Si 7/6d. PD 40 2A 400 V full wave bridge Si $15 /-$ C.W.O. P. \& P. $1 /-$ per order. JEF ELECTRONICS, York House, 12 York Drive, Grappenhall, Warrington, Lancs. Madl Order Only. [325 OFFERS: Wireless Worlds, 138 coples, 1950-1963; Rolls, 23 Brandreth Avenue, Dunstable, Beds.
UHF, COLOUR and TV SERVICE SPARES. Leading Uritish makers' surplus Colour Frame and Line time base units incl, EHT transformer. \& 5 , carriage 10/-. Integrated UHF/VHF 6 position push button
tuner, 4 transistors, knobs. circult data. Easily adjusted for use as 6 position UHF tuner, $£ 4 / 10 /=, \mathbf{P} / \mathbf{P} 4 / 6$. UHF 3 transistor tuner Incl. clrcuit, £ $2 / 10 / \because$, $P / P 4 / 6$. UFF/VHF transistorised IF panel, \& $3 / 10 /-$, P/P $4 / 6$. MURPHY $600 / 700$ series complete UHF conversion kits incl. tuner, drive assy, 625 IF amplifier, 7 valves, accessories, housed in special cabinet pinth assembyy
$£ 8 / 10 /-$ or less tuner $£ 2 / 18 / 6, \mathrm{P} / \mathrm{P}$ 10/. SOBELL/GEC $405 / 628$ switchable IF amplifier and output chassis, $32 / 6, \mathbf{P} / \mathbf{P}$ 4/6. UHF tuners Incl. valves, slow motion drive assy, knobs, aerial panel, £ $5 / 10 /-$, $P / P 4 / 6$. UHF list avallable on request. New or manufacturer tested
VHF tuners. AT7650 Philips 19 TG 170 , Sobell 1010 , KB VHF tuners, AT7650 Philips 19TG170, Sobell 1010, KB
Featherlight $36 /=$ AT7639 Peto Scott, Decca, Ekco, Featherlight 38/-. AT7639 Peto Scott, Decca, Ekco,
Ferrantl, Cossor $50 /-$, Cyldon C $20 /-$ AB miniature Ferrant, Cossor sith UHF Injection incl. valves 78/6, Ekco 283/330, Ferrant1 1001/6 25/-. New Breball tuners, Ferguson, HMV, Marconi type 37/6, Plessey 4 position push button tuners with UHF injection, incl. valves, 58/6. Many others available. $\mathbf{P / P}$ all tuners $4 / 6$. Large selection channel coils. Surplus Pye, Ultra, Murphy, 110° scan
colls $30 /-$, Sobell 110° Frame O/P transformers $17 / 6$, P/P 4/6. "Perdio "Portorama", LOPT assy incl. DYB6, suitable for transistorised TV, 40/-, P/P $4 / 6$. LOPTs, Scan Colls. FOFTs avallable for most popular makes. PYE/LABGEAR transistorised booster units B1/B3 or post free. COD despatch available. MANOR SUPPLIES; 64 GOLDERS MANOR DRIVE, LONDON, N.W. 11 . CALLERS 589B HIOH ROAD, N. FINCHLEY, N. 12 (near GRANVILLE ROAD). Tel. OI-445 9118. ${ }^{[60}$

MURPHY FM VHF RADIO TELEPHONES

Two 10 w Mobiles and 15 w Base station, new and unused. Slightly marked cases, complete withaerials, mounting brackets and handbooks.

£220 the lot

GREENHAM MARINE LIMITED
Enefco House, The Quay, Poole, Dorset Telephone: 6363

Electronic Video Recording

We now wish to engage further staff for our new EVR project at Basildon. We will be in production this year. Applications are invited from staff who have experience in television or sound studio recording and outside broadcasting work or who have worked in the testing of this kind of equipment. The work to be done will fill any one or more of the following categories:-

PRE-MASTERING

Video Tape Recorders, 4 head highest quality; Telecine Channels, Flying Spot or Vidicon Multiplexed Systems; Video switching, Vision and Sound Mixers, Central Apparatus equipment synchronising generators, Test Waveform origination Pulse and Video distribution, Signal-Processing amplifiers; Sound Dubbing and Transfer Suite Video and Sound Test Equipment, Picture and Waveform monitors; Voltage Stabilisation equipment; Use of test equipment for accurate measurements.

MASTERING

Maintaining and operating sophisticated electronic apparatus. A knowledge of high vacuum technology is essential.

The appointments range from junior to senior level with starting salaries in the $£ 1500$ to $£ 2500$ range, depending upon the duties. There are promotion prospects. Shift work will be necessary in some cases. All the posts are pensionable with free life insurance. We will assist with relocation expenses. Rented accommodation is available under Basildon New Town Scheme. There are excellent local schools.

Interviews will be held in central London.
Applications giving brief details of age and experience should be sent, quoting reference ZH. 193 to: W. W. Ellis, Personnel Manager, Ilford Limited, Christopher Martin Road, BASILDON, Essex.

ILFORD

TRANSFORMER DESIGNER

Required by a leading company in the Transformer Industry. This is a challenging post working on the design of transformers up to 100 kVA and offer excellent prospects and a good salary for the righ person. Applications in writing to:
Personnel Officer, Reading Windings Ltd
169 Basingstoke Road, Reading, Berks
330
THE UNIVERSITY OF ASTON IN BIRMINGHAM
Electrical Engineering Department m.Sc. COURSE IN ELECTRICAL ENGINEERING (Ref. M.Sc.7) OCTOBER 1970
(a) FULL TIME
(c) BLOCK RELEASE
(d) PART-TIME DAY

The above course feads to a Master's Degree in Electrical Engineering. One-third of the lecture work will cover mathematics and electrical engineering materials. The remaining time will be devoted
to one speciatist option selected from the following:

1. Communication Systems
2. Conerol Systems
. Electrical Machines
Measurement and Instrumentation
3. The Design of
. The Design of Pulse and Digital Circuits and Systems.
Corsience Research Council has actepted the Course as suitable for senure of its Advansed Course Scudentships.
The Course is open to applicants who have graduated in science or enginecring or who hold equivalent professional qualifications. Suitably qualified perons who wish to attend for part of the course Appliction forms and further parsiculars (auorin Application forms and further particulars (quotin THE HEAD OF THE DEPART

ELECTRICAL ENGINEERING,
THE UNIVERSITY OF ASTON IN BIRMINGHAM THE SUMPNER BUILDING,
19 COLESHILL STREET.
BIRMINGHAM 4

ELECTROSONIC LIMITED

Require further Installation Assistant in their Hire Departmenc. Duties will Include secting-up and operating Audio-Visual Display equipment at customers premises and exhibitions, etc. Some knowedge of electronics would be an advantage though not essential. Pay and conditions are attractive. Apply to:
Personnel Director-Electrosonic Limited Greenwich 8584784

TAPE RECORDING YEARBOOK

Completely new ninth edition with comprehensive catalogue section and articles by experts.

Price 10s. 6d. from

7 Alverstone Avenue, East Barnet, Herts.

Department of Electrical Engineering

H.N.D. Course in
 Electrical and Electronic Engineering

The Department of Electrical Engineering of the Norwich City College offers students who have studied Physics and Mathematics at Advanced level in the GCE and passed in one subject (or have obtained a good ONC or OND in Engineering) a modern sandwich course for the Higher National Diploma in Electrical and Electronic Engineering. Subjects studied include Computation. Statistics. Economics and Law. Electronics. Control. Telecommunications. Power and Machines. Well balanced and interesting industrial training with pay will be arranged as required. The course is approved for major grant awards by Local Authorities.
Accommodation will be arranged by the College if desired
Enquiries about the course starting in September 1970 should be made to.
E. Jones, B.Sc., Ph.D., C.Eng., M.I.E.E.,

Head of Department of Electrical Engineering,
Norwich City College,
Ipswich Road, Norwich, Norfolk, NOR 67 D.

末omanonan munususon
 Electronic Engineers for Operational Television

We have a number of vacancies at the TV Centre in Manchester for men with a good knowledge of television engineering to work in all aspects of Granada's production and transmission operations.
These cover studio vision, videotape, telecine, transmission switching and maintenance of equipment.
Entry points and salaries depend on experience and qualifications and the grades open are Assistant Engineer at $£ 1,729$ pa and Engineer at $£ 2,049$ pa.
We will also consider as Technical Assistants young men with the right qualifications and the ability to learn. This is a training grade with a salary of $£ 1,415 \mathrm{pa}$.
Housing prospects in the Manchester area are excellent and we will give assistance with housing and removal expenses. Generous Granada Group Pension \& Life Assurance Scheme.
Write full details age, experience and qualifications to Kevin Crumplin, Granada Television, Manchester 3.
Please quote Reference E / WW in your reply.

WIRELESS TECHNICIANS

There are vacancies at the Home Office Wireless Depots throughout England and Wales for Wireless Technicians to assist with the installation and maintenance of VHF and UHF Systems.
PAY- $£ 1.095$ (at age 21) rising to $£ 1.500$ p.a. 5 -day, 40 -hour week with overtime payable and 3 weeks paid holiday a year. Good promotion prospects. QUALIFICATIONS-City and Guilds Intermediate Telecommunications Certificate or equivalent or good experience in Telecommunications.
For further details write to
Directorate of Telecommunications,
Home Office,
Ruskin Avenue,
Kew, Richmond, Surrey.
Design/Development Engineers with

DIGITAL VOLTMETER EXPERIENCE

 or COMMUNICATIONS EXPERIENCEto earn not less than
$E 3,400$ p.a.
and working on advanced projects in WEST BERLIN and SOUTHERN GERMANY

Write to:

International Scientific Consultants Ltd.
P.O. Box 75, Normandy House, St. Helier, Jersey, C.I. Quote Ref, EG 12

FOLLOWING used Tellotype Equipment for sale on F as is. where is basis, Six Model i5 Printers, seven Model 14 Repertorators and twelve metal Ex, R.T. tables for same.-Apply, Mr. McGill, Canada House, Trafalgar Square, London

TESTEEUIPMENT - SURPLUS

ANDSECONDHAND
CIGNAL generators, oscllloscopes, output meters, wave voltmeters, frequency meters, multi-range meters, ville Old Hall, Ashville Rd., London, E.11. Ley, 4986.

THREE Roband RDV3 Digital Voltmeters complete Poulson at High Wycombe 24242 during normal office pours. at High Wycombe 24242 during normal amice
[310
RRECEIVERS AND AMPLIFIERSH
SURPLUS ANDSECONDHAND
H RO Rx5s, etc., AR88, CR100, BRT400, G209, S640,
etc., etc., th stock.-R. T. \& I. Electronics, Ltd., Ashville Old Hall. Ashville Rd., London, E.11. Ley.
4986 4986

NEW GRAM ANO SOUND

EqUIPMENT

Consult first our 76 -page illustrated equipment terms to members. Membershlp 7/6 p.a.-Audio Supply Association. 18 Blenhelm Road, London, W.4. 01-995 1661 .
GLASGOW.-Recorders bought, sold, exchanged; Cameras etc., exchanged for recorders or vice-versa.-Vlctor Morris, 343 Argyle St., Glasgow, C.2.

TAPE RECORDINQ ETC

Firanallty, durablity matter, consult Britaln's oldest transfer service. Quality records from your suitable
tapes: (Excellent tax-free fund ralsers for schools, churches.) Modern studlo facllities with Steinway Grand.-Sound News, 18 Blenhelm Road, London, W. 4 01-995 1661.
TAPE RECORDER, Silicon Transistor with Brenell I Deck. W.W. Design. A little work required. £35 o.n.o. Executors sale. Also Low w er wirell lator pre-anollfer car World

Valve cartons by return at keen prices; send $\begin{aligned} & \text { tor all samples and } 11 \text { st.- } \\ & \text { God. \& A. Boxmakers, } \\ & \text { 75a } \\ & \text { [10 }\end{aligned}$
WANTED
W anted. all types of communications receivers Electronles, Led.. Ashville Old Hall, Ashville Rd., London. E.11. Ley. 4986.
WANTED, televisions, tape recorders, radiograms,
 Wanted, Tannoy 15° Dual Concentric 15 imp Epping. Phone 2370.
Wanted. PYE Link TX 450L. Eddystone EA12 Cash ALLSETS \& Co. Ltd.. 15 Burscough Street Ormskirk. Tel.: 73005.
Wanted. Disc Recording Equipment. Send details W Packs Infotel Lid,. London Road, Sunningdale. Ascot 21666 ,
Wanted, New or second-hand. Wharfedale super W ANTED, New or second-hand. Whariedale supe speakers. Goodier, 12 Seymour Road, Liverpool, $\left.\begin{array}{l}\text { L14 } \\ \text { 3LH. }\end{array}\right]$

VALVES WANTED

 We buy new valves, transistors and clean new com-ponents, large or small, quantitles, all detalls. quotation by return. Walton's Wireless Stores, 85
Worcester St., Wolverhampton.
[62

CAPACITYAVALLABLE

A IRTRONICS, Lid. for coll winding, assembly and A wiring of electronic equipment, hransistorsed sub unlt sheet metal work.-3a Walerand Rd., London
8.13 . Tel. 01-852 1706 .
ELECTRONIC and Electrical Manufacture and
161 East Midlands Prototypes and short production runs. East Midlands Instrument
Lane, Co. Linsborough. Lincs. Tel.
3260. Sumergangs
[88 METALWORK, all types cabinets, chassls, racks, for smail miling and capstan work up to lin bar. for small milling and capstan work up to lin bar.
PHILPOTT'S METALWORES. Ltd.. Chapman St. Loughborough.
TECHNICALTRAUNING
BECOME "Technically Quallited" in your spare time $\mathbf{B}_{\text {guaranteed diploma and exam. home-study courses }}$ In radio. TV, servicing and maintenance. R.T.E.B. City \& Guilds, etc., highly informative, 120-page House, 29-31 Wrights Lane, Kensington, London, W.8. [16 CITY \& GUILDS (Electrical, etc.), on "Satisfaction For detalls of modern courses in all branches of electrical englneering, electronics, radto, T.V.. automation, etc.; send for 132 -page handbook-free.-B.I.E.T (Dept. 153 K). Aldermaston Court. Aldermaston. Berks.
[13
$\mathbf{R}_{\text {abro oncers see the world. Sea-going and shore }}^{\text {appolntments. Trainee vacancies during } 1970 \text {. }}$ Grants avallable, Day and boarding students. Stamp
for prospectus. Wireless College. Colwyn Bay. TECHNICAL Training in Radio, TV and Electronics 1 through world-famous ICS. For detalls of proven home-study courses wrte: ICS, Dept. 443. Intertext
House, Stewarts Road, London. S.W.8.

APPOINTMENT

WEST SUSSEX COUNTY COUNCIL ENGINEERING INDUSTRY TRAINING CENTRE, CRAWLEY

TRAINING INSTRUCTOR

required as soon as possible for first year off-the-job training. Applicants should have suitable qualifications in Electronics and good experience in Mechanical Engineering, including Hydraulics and Pneumatics. Salary within the scale $£ 1,242$ to $\{1,9\} 2$ per annum.
Further particulars and application form obtainable from the Head of Centre, College of Further Education, College Road, Crawley.

Tender No.W3/MW/2 of 1969

The Director of Railway Board. Minisiry of Railways. New Delhi (INDIA), invites tenders for the supply of:
Narrow Band Long Haul Microwave line of Sight Radio Relay System of South Central, Central and North Eastern Railways
Tender documents are obtainable from Administration Branch, India Supply Mission, Government Building, Bromyard Avenue, Acton, London W.3. on application with a remittance for $£ 2.15 .8 \mathrm{~d}$. by Postal Order or Cheque made payable to the High Commissioner for India in U.K. and crossed.
It may please be noted that offers should reach Director, Signal and Telecom, Railway Board, Rail Bhavan, Raisina Road, New Delhi, Indla, not later than 3 p.m. on 16 th March 1970. The offers received will be opened on the same day at 3.30 p.m.

Opportunity for a hi-fi service engineer

We want a keen high-fidelity service engineer famlliar with today's best techniques and standards. The right man will also assist in the Company's design and development work. This could easily become the major part of this job which
offers exceptionally attractive prospects. Peak Sound productions include the Wireless World 'Baxandall' speaker, P.W.12+12, the Englefield systems, modules and 'Cir-Kit'.

Write or phone:

peak sound

PEAK SOUND (HARROW) LTD., 32 St. Jude's Road, Englefield Green, Egham, Surrey Phone Egham 5316

AIR FORCE DEPARTMENT RADIO TECHNICIANS

Starting pay according to age, up to $f 1,189$ p.a. (at age 25) rising to $\{1,500$ p.a. with prospects of promotion.

> Vacancies at RAF Sealand, Near Chester and RAF Henlow, Bedtordshire

Interesting and vital work on RAF radar and radio equipment.
Minimum qualification, 3 years' training and practical experience in electronics.
5-day week-good holidays-help with further studies-opportunities for pensionable employment.
Write for further details to:
Ministry of Defence, CE3h (Air),
Sentinel House,
Southampton Row,
London, W.C.I.
Applicants must be UK residents.

TECHNICAL SIGNALS OFFICER

Government Communications Headquarters

Service or ex-Service personnel who have specialised in electronics or engineering are invited to apply for a post at the Government Communications Headquarters, Cheltenham, as a Technical Signals Officer. There are no age limits.
DUTIES demand capacity for individual work of a research nature and for the direction of teams engaged on such work.
QUALIFICATIONS: Candidates will be expected to have a degree in science or engineering or equivalent qualification. Experience in transmission of data by radio telemetry essential. A knowledge of communications satellites and the problems of exchanging data with vehicles in near-earth and space trajectories will be an advantage.
SALARY: $£ 2,021$ to $£ 3,081$. Starting salary may be above minimum. Non-contributory pension.
WRITE to Civil Service Commission, 23 Savile Row, London W1X 2AA, or TELEPHONE 01-734 6010 ext. 229 (after 5.30 p.m. $01-7346464$ "Ansafone" service), for application form, quoting S/7382/70. Closing date 9 March 1970.

296

WW. 21.
SENIOR DEVELOPMENT ENGINEER.
f1900.
Our clients seek electronics engineer of at least H.N.C. standard with additional qualifications in control or digital techniques preferably around 30 years and living, or prepared to work, in the Hertfordshire area. The applicants should have shown some administrative ability in project coordination. possibly in avionics. military control systems. or high speed digital control circuits. Please apply in writing and in strict confidence, quoting the above reference to:
ELECTRONICS APPOINTMENTS LTD.
NORMAN HOUSE • 105/109 STRAND • LONDON • W.C. 2 TEL•01-836 5557

ELECTRONIC CRAFTSMEN ROYAL AIRCRAFT ESTABLISHMENT BEDFORD

Electronic Craftsmen are required to work in a wide range of new and interesting fields in electronic engineering. covering instrumentation associated with model aircraft. digital data measurements and recording, digital computer techniques, radio telemetry systems coupled to research flying, aircraft simulation involving servo systems and arialogue computing. closed circuit television systems, aircraft radio/radar systems with paricular reference to automatic blind landing of aircraft and also ground radio/radar systems associated with Alr Traffic Control. In all these flelds Craftsmen work very closely with research scientists and engineers, and are given every opportunity to expand their experience. Craftsmen are mainly employed in the construction, testing and maintenance of equipments. Encouragement is given to craftsmen to further their technical education. Men who have had an approved apprenticeship or training in electronics, telecommunications, light current electrical engineering or H.M. Forces training in radio, radar and wishing to further their experience should apply. R.A.E. can offer excellent working conditions with good prospects for promotion. Ministry housing scheme available for married candidates from outside the area.

Basic Rate of Pay $£ 21.10 .0$ per 40 hour week.
Application should be made to:-
The Labour Manager,
Royal Aircraft Establishment,
Bedford.
Tel. No. BEDFORD 55241 Extn. 7. 463.

TV and radio A.M.I.E.R.E., CIty \& Gullds, R.T.E.B. certs.0 etc., on satisfaction or refund of fee terms; thousands of passes, for full detalls of exams and home
training courses (including practical equipment) in all training courses (Including practical equipment for $132-$ page handbook-free; please state subject.-Eritish institute of Englneering Technology (Dept. 150K), Aldermaston

TUITION

ENGINEERS.-A Technical Certincate or qualificaEtion will bring you securlty and much better pay, Elem. and adv. private postal courses for C.Eng.; A.M.I.E.R.E A.M.S.E. (Mech. \& Elec., C.E. Exams. Diploma courses in all branches of EngineeringMech.i Elec. Auto, Electronics, Radio, Computers, Draughts, Building, etc.-For full detalls write for Ing Technology (Dept. 151K), Aldermaston Court. Ang Technology (D
KINGSTON-UPON-HULL Education Committee C College of Technology. Principal: E. Jones. M.Sc., F.R.I.C. Radar Maintenance certificate.-Information from College of Technology, Queen's Gardens, Kingston-uporHull.
MERCHANT NAVY: Residential Radio Officer M Training-R.M.S. Wray Castle, Ambleside, Westmorland.
M ANUALS, circuits of all Britlsh ex-w.D. 1939-48 Wireless equipment and instruments from original R.E.M.E. Instructions; s.a.e. Por list, over 70 types.Surrey, CR4-8Pz.

SCOTTISH HOME AND HEALTH DEPARTMENT

Wireless Technician

Applications are invited from men, aged 21 or over, for one post of Wireless Technician. The circumstances of the successful candidate will be taken into account in deciding the location of the post which will be either in East Kilbride or Inverness.
QUALIFICATIONS: Sound theoretical and practical knowledge of wireless engineering and wireless communications equipment, including V.H.F. and V.H.F. equipment. Possession of a H.N. or C. \& G. certificate an advantage, but provision may be made for those who wish to continue their studies for one of these qualifications. The work for one of these qualifications. The work
involves installation and maintenance of involves installation and maintenance of
equipment located a considerable distance equipment located a considerable distance
from headquarters. Candidates must be able to drive private and commercial vehicles and have a clean driving licence.
SALARY: 61,095 (age 21) to $£ 1,295$ (age 25 or over): scale maximum $(1,500$.
Initially the post will be unestablished (nonpensionable) but after one year of continuous satisfactory service the successful candidate may have an opportunity of becoming established
WRITE: Establishment Officer, Room 365A, St. Andrew's House, Edinburgh. I for application form. Closing date March 20th, 1970.

THE UNIVERSITY OF WARWICK

SENIOR TECHNICIAN

The School of Molecular and Biological Sciences has a vacancy for a Senior Technician to assist in maintaining and servicing the electronic and electrical equipment that is in use in the School. There will be minimal supervision of day to day work and the post will give opportunities for the exerclse of initiative, not only in the area of mainexercise of initiative, not only in the area of maintenance, but also in the creation of new one-olf. The School occupies well-equipped, new The School occupies well-equipped, new
laboratories set in pleasant rural surroundings laboratories set in pleasant fural surroundings
between Coventry and Kenilworth, both of which are within easy commuting distance. Salary is on an incremental scale of $£ 1,056-£ 1,311$ p.a. The starting point will depend on age, experience and qualifications. Three weeks' annual holiday with generous holiday entitlement for Christmas and Easter

Applications should be sent to the Registrar, University of Warwick, Coventry CV4 7AL, Warwickshire, as soon as possible, quoting reference number 15/70.

- PRINTEI CIRCUITS PROTOTYPE AND BATCH PRODUCTIONS Instrument panels and dials In Metal and Perspex \star SCREEN PROCESS PRINTERS * Brooklands Plating Co. Ltd. Sples's Yard, south End, Croyden CRO IBF 01-688-2128

AMERICAN

test and communications equipment * General catalogue an/104 1/6 * manuals offered for most U.S. equipments SUTTON EEECTRONHCS Salthouse, Nr. Holt, Norfolk. Cley 289

WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS, RESISTORS. CAPACITORS. POTENTIOMETERS, RELAYS TRANSFORMERS. ETC. ELECTRONIC BROKERS LTD. 49 Pancras Road, London. N.W.1. 01-837 7781

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C' \& "E' cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large selection of stranded single p.v.c. covered Wire $7 / 0048,7 / 0076,14 / 0076$ etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

J. Black

OFFICE: 44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01.2033033 STORES: 30 BARRETTS GROVE, N. 16

Tel: 01-254 1991

VACUUM

OVENS, PUMPS, PLANT, GAUGES, FURNACES, ETC., GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVENS, r. f. heaters. free catalogue.
V. N. BARRETT \& CO. LTD.

I MAYO ROAD, CROYDON. CRO 2QP. OI-684 9917-B-9

THERE ARE GEMS IN IRELAND

THIS is another

IF YOU WANT A REAL GEM CONTACT

AFTER ALL, WE'RE IN THE EMERALD ISLE

LAWSON IBINND NEW TELEVISIDN TUBES

12" Types $£ 4.10 .0$ $14^{\prime \prime}$ Types $£ 4.19 .0$ 17^{*} Types 65.19 .0 19* Types $£ 6.19 .0$ $21^{\prime \prime}$ Types 87.15 .0 23° Types $£ 9.10 .0$ 19° Panorama $\pm 8.10 .0$ 23* Panorama Ell. 10.0 19" Twin Panel E9.17.6 23" Twin Panel $£ 12.10 .0$

Carriage and insurance $12^{\prime \prime}-19^{\prime \prime}-1216$ 21 "-23"-1510

The continually increasing demand for tubes of the very
highest performance and reliability is nors being met by highest performance and reliability is nots being met by
the new Lawson "Century 99 " range of CR the nerv Lawson "Century 99 " range of C.R.T.s. "Century 99 ", are absolutely brand nero tubes throughout manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition. Screens of the very latest type giving maximum Contrast and Light output; together with high reliability and very long life.
"Century 99 " are a complere range of zubes in all sizes for all British sets manufactured 1947-1969. Complete fitting instructions are supplied with 2 YEARS FULL REPLACEMENT GUARANTEE WW-114 FOR FURTHER DETAILS

LAWSON tubes

18 CHURCHDOWN ROAD MALVERN, WORCS. Tel. MAL 2100

R \& R RADIO

51 Burnley Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152

VALVES BOXED, TESTED \& GUARANTEED

EBF80	3/-	EBC41	4/6	PY8I	316
EBF89	3/6	PCC84	3/-	PY800	3/6
ECC82	3/-	PCF80	3/-	PY82	3/-
ECL80	3/-	PCF82	3/6	U191	$4 / 6$
EF80	1/6	PCL82	4/-	6 F23	5/-
EF85	3/-	PCL83	4/-	3075	$2 / 6$
EFI83	3/6	PCL84	5/-	30L15	5/2
EFIP4	3/6	PL36	5/-	30 PI 12	$4 / 6$
EY86	4/-	PL81	4/-	30 Cl 15	5/-
EL41	5/-	PL83	4/-	30 PL 13	$5 / 6$
EZ40	4/6	PY33	5/-		
POSt, ONE VALVE 9d. TWO TO SIX 6 d. over six post paid.					

GEARED MOTORS

Microswitches, Timers, Meters, Potentiometers, Capacitors, all new 6d. stamp for catalogue.
F. HOLFORD \& CO.

6 IMPERIAL SQUARE, CHELTENHAM

WANTED
 ELECTRICAL AND ELECTRONIC SURPLUS EQUIPMENT BEST PRICES PAID FIELD ELECTRIC LTD

 3 SHENLEY ROAD, BOREHAMWOODTelephone ELSTREE 6009

COLOUR TELEVISION VoI. 2
 PAL SECAM
 and other systems

by P. S. Carnt and G. B. Townsend 75/-

Postage 1/6
HI FI YEAR BOOK, 1970. 20\% Postage 2/-.
1970 WORLD RADIO-TV HAND. BOOK. 42/-. Postage $2 /$ -
DIGITAL COMPUTER BASICS. Bureau of Naval Personnel. 19/-. Postage 1/6.
COLOUR TELEVISION PAL SYSTEM by G. N. Patchett. $40 /-$. Postage 1/-.
Q \& A COLOUR TELEVISION by J. A. Reddihough. 10/-. Postage 9d.

REFERENCE DATA FOR RADIO ENGINEERS. 190\%. Postage free.
THE INTEGRATED CIRCUIT DATA BOOK. Motorola. 50/-. Postage 3/6.
SCR MANUAL. General Electric Company. 25/-. Postage 1/6.
TRANSISTOR THYRISTOR \& DIODE MANUAL. Radio Corporation America. 20/-. Postage 2/-.

THE MODERN BOOK CO.

britain's Largest stockist of British and American Technical Books 19-2I PRAED STREET, LONDON, W. 2
Phone PADdington 4185
Closed Sot. I D.m.

Thanksto a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER and mylar recording tapes
Manufactured by the world-tamous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are imported, used or sub-standard tapes. 24-hour imported, used
despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.

 Postage on all orders $1 / 6$
COMPACT TAPE CASETTES AT HALF PRICE
60,90 , and 120 minutes playing time, in original Plastic library boxes. $12 / 6$ each. MC $12018 / 3$ each.

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD, MIDDX. Ashford 53020
WW-115 FOR FURTHER DETAILS

[^8]
GONOON CENTRAB RaDIO STORES

ELECTRICITY SLOT METER ($1 /$ - in alot) tor A.O. malne. Pised

 WIRELERS BET No. 88 A.P.V. Prea, range 7.3 to 9.0 Mc/g. Work.
 Includes power mupply 81 b .- and apare valves and vibrat
tank aerial with baee. 28 per pair or $£ 4$ single. P.P. 25/-,
 MODERN DESE PRONES, red, green, blue or topay
grey or black, wilh internal bell and handset with o-l dis. grey
E4/ $10 /=$ black, P.P. $7 / 6$.
10
10-WAY PRESS-BUTTON INTER-COM TELEPRONES in Bakelite case mith junction box handset. Thoroughly overhauled. Gu-wAY PRESS-BUTTON INTER-COM TELEPHONES in Bake-It-wAY PREss-Bction box. Thoroughly overhuuled. Quaranteed. $\mathrm{E}^{7 / 15} /$ /- per unit.
TELEPHONE COLLED HAMD SET LEADS, 3 core, 5/6. P.P, 1/-. QUAETERLY ELECTRIO CHECK METERS. Recondilioned ss new. $200 / 200$ v. 10 A. $4816 ; 15$ A. $58 / 6 ; 20$ A. 57/6. Other g-BANE UIISELECTOR SWITCHES.
wiplag e2/15/-; 8 bank hali wipe $\mathrm{e} 8 / 15 /-; 6$ bank hall wipe, 25 contects 47/8. P.P. $3 / 6$.
FMAL ERD SELECTORS. Relagy, varioun callers. aiso 19
Recelvera in atock. All for callers ouly,
23 LISLE ST. (GER 2969) LONDON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

BAILEY 30 WATT AMPLIFIER

$$
\begin{aligned}
& 10 \text { Tr's as spec'd and Fibreglass Pcb } \\
& 20 \text { Tr's as spec'd and } 2 \text { Fibreglass Pcb's }
\end{aligned}
$$

$$
\begin{array}{r}
\epsilon 6.7 .6 \\
\epsilon 2.10 .0
\end{array}
$$ $\begin{array}{llll}20 & 40362 & 15 / 6 \\ \text { BCI } 25 / 126 / 40361 & 11 / 6 & \text { MPFI038/6 } & \text { MJ491 } \\ \text { MJ481 } & 25 / 6 & \text { 28/- }\end{array}$ $\begin{array}{llll}\text { MJ481 } 25 / 6 \quad \text { MPFI03 } & 8 / 6 & \text { MJ49I 28/- } \\ \text { RI-R27 (5\% low noise) \& P. IO/6 } & \text { CI-C6 (Mullard) } 7 / 6\end{array}$ Mullard C431 $2500 \mathrm{mFd} / 64 \mathrm{rw}$ with clip All H/Sink (Drilled $2 \times$ TO3) $4 \times 4 \frac{1}{2}$ in

LINSLEY HOOD CLASS A AMP

Set 10 C.F. R's 5/-
Set 5 Capacitors 22
MJ480 (Matched for <0.1\% T.H.D.) per pair $42 / 6$ MJ481 (Matched for <0.1\% T.H.D.) per pair 52/6 $\begin{array}{lll}2 N 3906 / 2 N 4058 / 2 N 697 / 2 N 16136 / 6 \\ \text { Pair of H/Sinks as spec'd for Mono } 5 \times 4 \text { in. } & 21 / 6 \\ 2 / 6\end{array}$ Pair of H/Sinks as spec d for Mono 5×4 in. 2,0
 $1250 \mathrm{mFd} / 40 \mathrm{vw} 9 /-250 \mathrm{mFd} / 50 \mathrm{vw} 3 /-500 \mathrm{mFd} / 50 \mathrm{vw} 5 / 9$ A.I FACTORS. 72 BLAKE ROAD, STAPLEFORD.NOTTS.

WE BUX

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals,
21 Lodge Lane, London, N. 12
RING 4452713
4450749
9587624

"SPECIAL OFFER'
 Ex LCC Ultra radios requiring attention to clear from fa-0-0, each, caliers only, 10 watts ou fput, provision formicrophone. Suit small factory, hall, public address. Standard play Professlonal Scotch Boy i" Polyester and Acetate recording tape. (Low nolse). Used once only. Approx., 2,500 ff. 19/6. List Price 54-0-0. HARRINGAY PHOTOGRAPHIC LTD. 435 Green Lanes, London, N. 4 - 01-340 5241

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.), Electronic Components (Transistors, Diodes, etc. Good prices paid J. BLACK

44 Green Lanc, Hendon, N.W. 4 Tel. 01-203 1855 and 3033 10 amp . contacta. Once on /or ${ }^{2}$ every 24 hours. 45 miv. minimum time lapse. Io tron clad case with lid. Bize $\left.5^{\circ} \times 4\right\}^{\circ} \times 44^{\circ}$ Woight 6 lb . Can also be pupplied with solsr dial it required. ON duk, OFF at any manually pre-set time. 49/6
HORSTMANN CLOCEWORK TIME SWITCRES
15-day Jewelled Movement. Once ON/OFF every 24 hours at any manually premet timen. One hour mitr. time lapse. Key and mounting brackot. Used but perfect, $39 / 6$ Poat Guarzatced 5 amp.
VENHER SWITCHES
200/250v. Beconditioned, Geared motor. I R.P.M. Removable $200 / 250 \mathrm{v}$. Recondilioned. 15 seared.
cam. ON 15 ses. OFF 15 sec.
10 amp. contacts. In metal case. $45 /=\quad \begin{gathered}\text { Pout } \\ 4 / 6\end{gathered}$
Box 365 KINGSWOOD SUPPLIES (W.W.22) 4 Sele Place, London, W,2. Tel.: 01-723 8188

$\square \sqrt{8}{ }^{0} 1$
 PRINTED CIRCUITS

electronic equipment manufacturers Large and small quantities. Full design and Prototype Service. Assemblies at Reasonable Prices. G.P.O. Approved Let us solve your problems
K. J. BENTLEY \& PARTNERS 18 GREENACRES ROAD. OLDHAM Tel: 061-624 0939

TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?

Courses include:

- RADIO/TV ENG. \& SERVICING
- AUDIO FREQUENCY
- closed circuit tV
- ELECTRONICS - many new courses
- ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND CONTROL SYSTEMS
- NUMERICAL CONTROL ELECTRONICS
- COMPUTERS
- PRACTICAL RADIO (with kits)

Guaranteed Coaching for.

- C. \& G. Telecom. Techns' Certs.
- C. \& G. Electronic Servicing
- R.t.E.B. Radio/TV Servicing Cert - Radio Amateur's Examination - P.M.G. Certs. in Radiotelegraphy - General Certificate of Education

High grade of stability of electric parameters Resistance and durability Long operational life

Polish

electronic tubes for radio receiver sets electronic tubes for TV receiver sets and electronic components

are offered by

Foreign Trade Enterprise
Warszawa, Al. Jerozolimskie 44, Poland P.O. Box Warszawa 1 No. 370. Telex No. 81437

To persons interested we forward detailed information, catalogues and tenders.

WW-116 FOR FURTHER DETALLS

OVER 2 MILLION SILICON ALLOY \& GERM. TRANSISTORS AVAILABLE FOR IMMEDIATE DELIVERY.MANUFACTURERS END OF PRODUCTION SURPLUS,			(emiconductors					
Transistoas								
Germ: A.f. PNP								
(e)								
1/- TESTED TRANSISTORS 1/-								
	plana							
	OFULYY TESTED DEVICES AND							
towards same CASH WITH ORDER PLEASE,OUANTUTM OUOTATONS FOR ANY DEVICE LISTED bit return.		ents toantwhere in the worlo at cost						

SURPLUS HANDBOOKS

19 set Clrcult and Notea

M. $1 \mathrm{L.O}$ Trectunical Inatruction

38 aet Tectankal Intructionn
40 set Vorkhin Intructions
48 get York Lug Inatruet teis
88 set Techinical Inatruction
Wavemetrer Clase in Tect
is vet Cirrull and Noten
BC. $1000(31$ net) Circull and Noted
12.107 Clircuit and Noted

AlR.8BD Intruction Mania
82 net Clrewit and Notes

 32 aet Bender and Recolver cirrulte $7 / 6$ poit Iree. 8.A.E. Withe ail enquirlen please.
Butage rates apply to U.K. ooly. HAL AL order onis to:
INSTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LeEDS 8

guart

 ECONOMICAL

 accurate RELIABLEWW- $\mathbf{1 1 7}$ FOR FURTHER DETAILS

P. F. RALFE 10 Chapel St London N.W.I

LEDEX ROTARY SOLENOID SWITCHES suitable for all eypes of remote circuit selection and a variety of switching operations-brand new ssocks-no waiting-off the shelf deliveries of the following types.

TUBE BASES EIMAC SK 200A for 4×250 transmitting values. New. Boxed. With fixing clips. Price $42 / 6$ ea.

STC ENCAPSULATED SILICON
RECTIFIERS. 4 rectifiers in singleRECTIFIERS. 4 rectifiers in singlephase bridge circuit. I? square x is in.
deep. Rating 400 P.I.V. 2 amps. Only 7/6 each. Post/packing 6d.

MINIATURE SEALED RELAYS
4184GE. 2 change over. Medium dury. 48 v. 2500Ω.
4184 GD, 2 change over. Medium duty. 24 v. 700 ת.
4l84GB. 2 shange over. Medium duty. $6 \mathrm{v} .45 \Omega$.

MAGNETIC DEVICES LTD. Mini relay 12 v. $590 \Omega .2$ pole change overs plus 2 makes and 2 breaks. Medium duty $8 / 6$ each. Post/packing 6d.

LARGE QUANTITY OF 600 TYPE
RELAYS removed from equipment. RELAYS removed
Coil resistance 50Ω. 2 break contacts. $30 /$ - per doz. Special price to clear the lot.

HIGH SPEED RELAYS. "Suitable for transistor circuits.
Plessey. Type mini sealed. I C/O contacts. 12 v. 3100Ω. Brand new. 15/- ea.
Siemens High Speed. Type H96E. Twin 1700Ω coils. 48 v. 15%.
Siemens High Speed. Trpe H96D. Twin
$\$ 000$ coils. 12 v . $15 /$. . SOOR coils. 12 v. $15 / \mathrm{F}$.

PAXOLIN PC BOARD conrains 63 500 mA . New and unused. With long leads. Board size 8×4 ins. 30% ea.

LUCAS CAR RELAYS. 12 v . Heavy dury make. Suitable for spotlighes,
horns, overdrives, etc. Brand new. Only 7/6. Special price for quantities.

STETHOSCOPE MEAD SETS. High quality Type. Terminated to colax socket. 215Ω earpieces. With suitable uniss. Heavily chrome plated. New, Boxed. Only 20/-inc.

"PERISTALTIC PUMPS" HR FLOW INDUCER TYPE MHRE $72 L$ WATSON MARLOW LTD.

These very versacile pumps have facilities for two feed lines. The pumps are standard type but less variable speed control. Ideally suitable for highly corrosive
liquids. Offered as new for A.C. malns liquids. Offered as new for A.C. malns operation, at the greatiy red
of $£ 24.10$. Post/packing $10 /-$.

PORTABLE

WHEATSTONE BRIDGE

Specification:

Trpe: Moving Coil Galvanometer. Ranges: 10.05 to 5 ohms 20.5 to 50 ohms 35 to
500 ohms 450 to 5,000 ohms 5500 to 500 ohms 450 to 5,000 ohms 5500 to 50,000 ohms. Scales: swirched. Slidewire:
0.5 to 50 . Galvanometer Scale: $10-0-10$. 0.5 to 50 . Galvanometer Sale: Case: Moulded plastic. ivaternal dry battery. Operating temperature: 4 V .iory to $+35^{\circ} \mathrm{C}$. Operating Humidity: Up to 80% R.H. Dimensions: 200×110 $\times 65 \mathrm{~mm}$. Weight: 0.9 kg . List price 625 . OUR PRICE E9.19.6.

BURNDEPT RF PLUGS

These difficult to obtain plugs suitable for the Londex aerial c/o relay and many other types of equipment are offered. New, ex. equipment at $4 / 6$ each. P.P. 6d.

DIRECT CURRENT AMPLIFIER
Contains "Brown Convertor", for continuous balance system and associated circuit. Complete less valves (5) Brand new. 50/- P.P. 4/6
(4) Standard type with $13{ }_{3} \mathrm{in}$. wafers, 2 pole 12 position 6 banks plus 2 pole 12 position 2 bank in ceramic insulation.. 50/-
(5) Standard eype - 1 pole 2 pasitions with long shaft to enable user to build up wafers to suit requirements. Voltage 48 Voles D.C................................ . 40/0
(6) 5 tandard type walers- 1 pole 12 position 3 banks for

MARCONI STANDARD SIGNAL GENERATORS TF 867
Frequency range 15 KHz to 30 MHz . Eleven bands. Output 0.4 microvoles to 4 volts. 75 ohms impedance. A high quality generator at a reasonable price. First-class condition. Recalibrated up to specification. $\mathbf{E 2 0 0}$.

SPECIAL OFFER

"INNSULATION TESTERS" TYPE NO. II METROHM by famous British manufacturer. All solid state. No handles to crank. Runs off 9 vole eransistor battery. Simply press button for function. Range 0.1 to 25 M ohms for insulation testing. Also 0.1 to 100 ohms for resistance and continuity checking. Clear, conclse scale. Small size modern instrument, complete with carrying strap and protecting cover. Offered in good used condition with battery ready to work. For 250 volt pressure only. List Price $\mathbf{£ 1 9 . 1 0 . 0}$.

BUILD YOUR OWN LOW VOLTAGE PSU We have a limited number of transformer and rectifier unis consisting of good quality sransformer with built-in mains selector plug from 110 to 250 v . inpus. Output 0-17-24-31-38 twice at $2.4 \mathrm{amp}+$ associated control voltages. Complete with full wave bridge rectifiers ($B Y Z \mid 3$) one set for each wircuit and two TCC 5000 Mid electrolytic condensers as 70 v . D.C. The components are mounted on two angle formed 70 v . D.C. The components are mounted on two angle formed
brackets ready drilled for easy fixing. Offered brand new as brackets ready drilled for easy fixing. Offered brand new at
only $\mathbf{f 4}$. Post/packing $10 / 6$. Also transformers only $45 /$. Post/packing $7 / 6$.

MINIATURE SIGNAL GENERATORS-A.T.E. MANUFACTURE

- Consains RF Artenuator Gold Plated Components Specially designed for operators of VHF mobile equipment, these units are of very small size and are completely portable, the interior circuit and associated parts are gold plated and build to a very high standard. There are two models with attenuated output, CW and Modulation. Type MIP Range 215-270 Mc/s; Type MIG Range $45-92 \mathrm{Mc} / \mathrm{s}$; both models are powered by U2 dry cell, directly callbrated and built into grey hammer sone alloy case, brand new. Our price is only $\mathbf{6 9 . 1 9 . 6 ,}$ plus $5 / 6$ post/packing for both models.

HIGH VOLTAGE EHT INSULATION TESTERS. TELEMAX TYPE 115. Variable EHT ourput from 1 to 15 Kv . Leakage current 0 to 100 microamps. For A.C. operation. 110 to 250 volts. Cost over 670 . Our price, in good used condition, 635.

RHODE \& SCHWARZ

OHMITE RHEOSTATS

40 ohms, SOO watts. Torodial wound on ceramic formers. BRAND NEW high quality units. Size 5 in . dia. Price $35 /$ each.
P. \& P. 5/-.
A.E.I. MINIATURE UNISELECTOR SWITCHES
No waiting, straight off the shelf and into your equipment the Catalogue Nos. are 2202A. 4/33A63/1; coil resistance is 250 ohms. Complete with base, and the price is $£ 4.19 .6$. Limited quantity only available.

RF WATTMETERS U.S.A. PATTERN ME-II/U
Power range $0-60$ watts in 2 ranges. Impedance 50 ohms. Frequency range so 500 MHz . Type of reception AM-CW-FM. Supplied with small transit case in first class condition.

WE HAVE FULL RANGE OF HIGH QUALITY OSCILLOSCOPES
Offered in FIRST CLASS condition
Price
Solartron CD7115/2
$€ 75$
Solartron CD513
Solartron CD614
Solartron CDIO15.2 $£ 85$
E47

Solartron CDI012 £ 125
Solartron QDglo Storage Scope P.U.R. Cossor 1049
P.U.R.
$£ 35$

Remscope Storage Scope Cossor 1076 with four plug ins. Waserman USM-24
Also Scopes by EMI, Marconi, Furzhill, Naggard, Telequipment. All instruments have been carefully overhauled, precalibrated and are offered guaranteed condition.

MINIATURE LOW VOLTAGE P.S.U. Variable between 6-14 V. D.C. These PS.U. are transistorised and stabilised fused and protected ourpur is at 400 mA ., 240 v . A.C. Input size $4 \times 3 \times 2 \frac{1}{2}$ in. Ideal unit for building into equipment. Price 75/-. P. \& P. 2/6.

LANGBOURNE DYNAMICS TYPE 4B TYPE 4B

Low Voltage/Highly Stabilised
POWER SUPPLY UNIT
V ariable between $3-30$ V. D.C. at I A. Fully transistorised and current limiting inclusive of P. \& P.

AUDIO OSCILLATORS
 AMERICAN TS-382/U

Covers $20 \mathrm{c} / \mathrm{s}-200 \mathrm{Kc} / \mathrm{s}$ in four ranges. Output voltage I micro volt to 10 v . in seven ranges. Built in calibrator. Sine wave O.P. is excellent over complete and circuits and transformer for 240 A.C. AS NEW. $\mathbf{3} 30$. P. \& P. 20\%.

SPECIAL EQUIPMENTS
SPECIAL EQUIPMENT
UHF Receiver USVD BNI523. Range $280-4600 \mathrm{MHz}$.
R. \& S. Signal Generator. Frequency range $1000-1900 \mathrm{MHz}$, type BN41026.
R. \& S. ZDD Dlagraph BN 3562.
R. 8 S. Signal Generator and Klystron P.S.U. Type SMPC. Range $1 \cdot 7-5000 \mathrm{MHz}$.
R. \& S. Signal Generator, range $300-1000$ MHz .

Schomandle Frequency Meter. Type FDI with FDMI adaptor. Frequency range $30-900 \mathrm{Mc} / \mathrm{s}$. Recalibrated to makers specification.

Digital volemeters. Digital Frequency Meters to 220 MHz . Digital Wheatscone Bridges. A.C. Calibrators. Precision Crystal Calibrators.

Solartron 2 phase and 4 phase oscillators and assoclased equipment.

ELLIOTT TAPE READER

Type $\mathbf{T 1 0 - 2 0 0}$ at $\mathbf{£} 650 \mathrm{~s} .0 \mathrm{~d}$. plus $\mathbf{£ 2}$ carrlage. one only. Used. As new condition.

ELLIOTT TAPE HANDLER
Type D4-650 one only.
£28 0s. Od. plus E 1 carriage
Used. As new condition
CLAUDE LYONS VOLTAGE STABILIZER
Type TS-2-5440 Input 198-258v 47-65
Output $240 \pm 0.25 \% \vee 12 \mathrm{Amp} .2 .88 \mathrm{KVA}$
Ex-equipment. Brand new condition.
E35 0s. Od. plus $\mathbf{\Sigma 2}$ carriage.

ANALEX POWER SUPPLIES

Size $7^{\prime \prime} \times 19^{\prime \prime} \times 13^{\prime \prime}$. 230v AC Input
Output $6 v 5 \mathrm{Amp} \times 2 ; 18 \mathrm{v} 7.5 \mathrm{Amp}$. Du
Fully Transistorised
Marginal adjustment on output
$\mathbf{£} 550$ s. Od plus $£ 3$ carrlage.
ANALEX POWER SUPPLY
Size $13^{\prime \prime} \times 19^{\prime \prime} \times 54^{\prime \prime} .230$ vAC Input.
36v $14 A$ Output. Stabilized.
Ex. Equip. Fully Tested. New condition.
£270s. Od. plus £210s. carriage.
AUTOTRANSFORMER: MAJESTIC
WINDINGS-3 ONLY
Input 240v 50 cycle. Output 115 v 4.2 KVA
In metal case size $10^{\prime \prime} \times 8 \frac{1^{\prime \prime}}{}{ }^{\prime} \times 11^{\prime \prime}$
$\mathbf{£ 1 7 1 0 s . 0 d}$. plus $\mathbf{£ 2}$ carriage.

TRANSFORMERS

Input 230 V
Outpul: $6.3 \mathrm{v} 8 \mathrm{Amp} \times 2 ; 6.3 \mathrm{v} 4 \mathrm{Amp} \times 3$.
Size $43^{\prime \prime} \times 4 \frac{3}{4} \times 6^{\prime \prime}$ approx
New condition tested.
£2 5s. Od. pp. 12/6d.
Input 230v. Output: 6.6v 122Amp
Size $6 \frac{1^{\prime \prime}}{} \times 7 \frac{1}{2}^{\prime \prime} \times 9^{\prime \prime}$ including terminals
Brand new. $\mathbf{f 1 5 0 s}$. Od plus $\mathbf{£ 2}$ carriage.
DAVIS DIMMER TRANSFORMERS
Manufactured by Ariel Davis Mfg., U.S.A.
Input: $230 v$ AC 60 cycle
Maximum overall rating amps-26
Variable outputs Type 1
$6.5 v \times 3$; $13 v \times 1 ; 26 v \times 2$
Type 2 as above but outputs
$19.5 \mathrm{v} \times 3 ; 13 \mathrm{v} \times 1$. Only 2 of each type All outputs and inputs have resetable
circuit breakers. Ex-equipment but fully tested.
£17 10 s .0 d . each $£ 210 \mathrm{~s} .0 \mathrm{~d}$. carriage
mainland only.
Slze $21^{*} \times 10 \frac{1}{2}^{\prime \prime} \times 8^{*}$

GARRARD 2 TRACK TAPE DECKS

MAG TYPE

Solenoid operated 230v 50v Solenoid
Ideal for contin. tape players etc
E710s. Od. each. Brand new in manufacturers cartons. pp 22/6d.

STC SEALED RELAYS
Double pole change over
$48 \vee 2500$ n ex-equipmen
2/6d. each pp. 1/6d.
OMRON MIDGET POWER RELAY
Type MK1 230v AC New 10/6d. each pp. 1/6d.
TELESCOPIC AERIALS CHROMED
$7^{\prime \prime}$ closed $28^{\prime \prime}$ extended. 6 section
Ball jointed base $4 / 6 \mathrm{~d}$. each pp. $1 / 6 \mathrm{~d}$. New
4 MULLARD DM160 INDICATORS
Slze approx. $1 \frac{3}{4}{ }^{\prime \prime} \times 1 \frac{1}{4}$ " $\times \frac{1}{2}$ " in plastic holder: green plastic cover ex-equipment
$7 / 6 \mathrm{~d}$. complete pp. $1 / 6 \mathrm{~d}$.
VIBRASHOCK EQUIPMENT MOUNTS
Made by delaney gallay
Type 7002-R2 45-75lbs

POWER SUPPLIES MANUFACTURED BY POWER ELECTRON\&CS LTD
20v 4.5 amp
$10 \mathrm{v} 3 \mathrm{~A}: 10 \mathrm{v} 300 \mathrm{ma}$
£15 0. 0. pp. $30 /$.

FELDEEECTRCLIT.
 3 SHENLEY ROAO, BOREHAMWOOD, HERTS. Telephone Elstree 6009 adjacent elstree mainline station CALLERS WELCOMED

AMATRONIX LTD (WW)					
TRANSISTORS-MINT, NO SECONDS, RE-MARKS. GUARANTEED TO SPEC.					
AD181/162	12/-	BFY51	4/6	2N3704	3/6
A F239	10/-	1544	1/4	2N3707	3/6
B-5000a	11/3	18557	3/-	2N3794	3/-
BD121	18/-	MC140	4/-	2N3983	6/6
BC1078	3/-	SF115	3/-	2N4058	4/-
BCr688	2/3	T1407	6/6	2N4285	3/-
BC169	2/6	TIS60M	4/8	2N4289	3/-
BF167	5/3	TIS61M	4/11	2N4291	3/-
BF178	9/-	2N706	2/7	2N4292	3/-
BF224	5/-	2N2926G	2/6	$28 \mathrm{B187}$	2/-
BF225	$5 /-$	2N3702	3/-	40468A	7/6

CERAMIC I.F. RESONATORS. Tailormake 455 kHz l.f. selectivity to your own requirements. New Brush Clevite Identical capacitors of standard values to create superb fllters with a wide range of bandwidth options. Makers' data gives capacitor values for filters with 2-8 resonators. Example: 4-resonator filter, -6dB @ 1.9 kHz off tune; \quad f0dB @
10 kHz . Resonators Type TF04-442, $10 /-$ 10kHz. Resonators Type TFO
each, 4 for $30 /-$. With brief data.

INTEGRATED CIRCUITS-PA234, new dual-in-line IW andio amp, with data, 24/-: CA3020, TO-5 push-pull amp., usable to 6MHz, 28/-

AMPLIFIER PACKAQES-Component kits for efficient transformerless class \mathbf{B} power amps. Low standby current, simple circultry, no adjustments. AX2 $9 \mathrm{~V}, 300 \mathrm{~mW}$ in $10-20$ ohms, other loads usabie, 12/6; $A \times 39 \mathrm{~V}, 800 \mathrm{~mW}$ in 8 ohms, 20 mV in 20 K imput, 22/6; AX4 $24 \mathrm{~V}, 5 \mathrm{~W}$ in 8 ohms, 4 W in 15 ohms, input 100 mV in 40 K . Operable 18 V with 12ntA standby current and 2-3W output. Uses Still only $30 /=$. A $\times 5,12 \mathrm{~V}, 3 \mathrm{~W}$ in 3 ohms, $35 /-$.
MINI MAINS TRANSFORMERB- $1^{\prime \prime} \times 1^{\prime \prime} \times 11^{\prime \prime}$ MT9, $9-0-9 \mathrm{~V}$ 80mA, $12 / 6$. MT6, $6-0-6 \mathrm{~V}, 100 \mathrm{~mA}$ 13/6; MT12, $12-0-12 \mathrm{~V}, \quad 50 \mathrm{~mA}, 13 / 6$.

Mail order only. Cash with order. Llst 6 d. , free with orders. U.K. post free on orders over 10/396 Selsdon Road, South Croydon, Surrey, CR2 ODE

WW-118 FOR FURTHER DETAILS

OSMABET LTD.

WE MAKE TRANSPORMERS AMONGST OTHER THINGS AUTO TRANEFORMERS, $0.110-200-220-240$ v a.c. up or down, fully shrouded titted terminal blocks. $50 \mathrm{w} 31 /-\mathrm{i} 75 \mathrm{w} 37 / \circ$

 : 1 ratio, 50 w $80 /-; 100$ w $80 /-; 200$ w 150/-; 500 w $300 /=$ MAINS TRANSFORMERS, Prim 200-240 vi.c. TX1. 426.0-425 V

 INSTRUMENT TRANSFORMERS. PrIm 200/250 v a OMTA 1 tapped nec., $5 \cdot-20-30-40-60$ v. सiving $5=10-15-20-25-30-35-40$. $55-60,10-0010,20-0-20,30-0-30$ v a.c. 1 amp $40 /-$ ditto tran
 $20-0.20,30-0-30,40-0-40,5000-60$ а.c. 1 мии. $60 /-$
HEATER TRANSFORMERS. PPim $200 / 250$ © A.c. 6.3 - 1.5 a

MIDGET MANS TEANSYORMERS. FW rectifcations, slze
 OUTPUT TRANSFORMERS. Mullard $5 / 10$ UL 67/6; 7 watt Multl tatio $7 / 10$ watt $30 /-80$ watt (K T66 etc.) 3 . 15 ohm $75 /$ ${ }^{50}$ watt (KT88 etc.) $135 /-; 100$ watt 225 J -: auto matcling hranuformer 10 watt, 3-7.5-15 ohm, up or down 11/6. CEOZES. Inductance 10 H. $65 \mathrm{Ma} 12 /-$; $85 \mathrm{Ma} \mathrm{15/-;} 150 \mathrm{Mb}$
W.W. COLOUR TELEVISION RECEIVER

Thole hl 60\%. Tranulormer al $57 / 8$.

Carringe exra on all Iransformera $4 / 6$ minimam.
BULX TAPE ERASERS. 200/250 $\begin{gathered}\text { a.e., immedialo and complote } \\ \text { Brasure of }\end{gathered}$ erasure of any size apool of ragnetic tape, also sultable fol
 $95 / \mathrm{F}$. Tranalstor bailast 12% for single 40 wati or twin 20 watt stubes, $150 / \mathrm{e}$; aingle $20 \mathrm{watt} .100 / \mathrm{m}$.
LOUDAPEAKERS. Complete range, tamous make, 25 watt $107 / e ; 35$ watt $130 /-; 50$ watt $320 /-$ etc., etc
while stook lasts, Hustrated lists. P. \& P. $6 /-$. LOUDSPEAEERS. Ex-equipment, perfect. 3 ohms. Elac, Good пияn, etc.; 8 Ins. $15 /-; 6$ ina. $10 / ;$; 5 ins. 7/6. P. \& P. $3 / 6 \mathrm{~min}$.

S.A.E. ALL ENQUIRIES PLEASE

 MAIL ORDER ONLY46 KENILWORTH ROAD, EDGWARE, MIDDX. HA8 $8 Y G$.

Tel: 01-958 9314

EXCLUSIVE OFFERS LATEST TYPE HIGHEST QUALITY CABINETS FOR STANDARD 19 " RaCK Panels totally enclosed
 TYPE A: R4- higb
 Double sided These rack panel lake rack panelid
both nidce, that ic
back and

 fully dalu untable
race mound are vertically and horizontally adjust
able-Lhese allot the papeli to be
receased when they
sre Itted with pre Joeting componente
and it is desized to
enclose
*Other featupen laclude - all coraers and edges rounded. Interiop Atting tropicalised. Removable built in eable Insect proofed tops. Detmehable side panels. Full lengit nstantly detachable doors fitted expanding bolt: Government $£ 107$ before devaluntion. Pininhed in grey primer andilin new condition.

Price e2k.10.0 each (Carriare extra)
boorn are not needed if pasuelw ure mounted hack and front and tbey are not required to be encloned. Ide. American Aradard Firat Grade totaily enclosed ventlated $19^{\circ} \mathrm{mac}$ panel mounting cabineta. made by Du Kane, U.B.A.
Open front fitted rack mounta drilled and Kapped atl the way down every 1°. Fuli lengeth rear door with intch Minhed in grey the ee cabinetas have bren used but are in recominended they are ro-sprayed batore une.
TYPE D: 76° high $\times 18^{\circ}$ deep $\times 22^{\circ}$ wids. These are imilar in construction and condition to Type \mathbf{C} above. Mede by R.C.A. of U.S.A.
PYPF E: BRICE AR 12.10.0 each (Carriage extra) entllated rack mountigg cahitnets made by Motorola U.B.A. These units have front and rear doore and rauk mounts internally recessed within the cablinet. The rack mounts are standard 19°.Ide. The actual tront phiol ablo glared pancl. PRICE E9.10.0 esch (Carriaze extre)
TRANSPORT: We have made spectal tranport arrange and to avoid expenalve crating:
40-pare litat of over 1.000 diferent items in atock

40-pare lith of over 1.000 diferent thems in atock a railable-keed one by jou.	
*E.M.I. (D.S.A.) Higheat Grade Computer taper suitable video work. 2400 ft . apooled in plastic case.	
*84 Empty \boldsymbol{y}° Tape Spooin and looking platio	
cases. new -Collins R-380 Commnnications Receivers	E1
0.5/30.0 m/es	2365
Hottman CV-157 iss	
Mackay 128 AY L.F. Receivern 15/800 Mc	
E.M.I. Tape Recordera BTR-1.	175
E.E. 8 Telephones	10
*Redifon RA-10 138 Adaptort	
TT-4 Ijightweight Teleprinters	
TT-83 Teiekraph Repeaters	
*Cendleatiok microphones with puan to telk switch	
*R.C.A. SR20 Image Orthicons	
\star Lattioe Hishtweikht ateel triangular Aorial Masts 12 to 16 jach sides up to 200 ft . bisb	According to heikht
WANTED VIDEO TAPE Good price paid	
\% 54 inch. dis. Meteorolorical Balloons	
*Micrometer Wavemeteri Goneral Electrie 900/1530 and $1530 / 4000 \mathrm{~mm} / \mathrm{cs}$. esah	£22 0
- New Marnetic Recordiag Tape made by E.M.I. (USA) 3600 ft on N.A.B. Spools	
1^{\prime} Urod ditto "Sooteh" Brand 4800 ft	
t 8 jebert Mezarina Mioroscopes . 001 Im	
mitters Autotune 2 to $18 \mathrm{~m} / \mathrm{cs} 230 \mathrm{v}$. inpat new	
* 8 Track Dasa Eirh Speed Tape Reader	
Mason Illuminated Drawing Tablea $50^{*} \times 36$	21710
\& Stelma Telesraph Distortion Monitors	
\star Teietypo Model 14 Tape Puacbe	£28 10
Ps-497/URE Signal Generitors $2 / 400 \mathrm{~m} / \mathrm{cs}$	
*Sarab Tranm/Receivers and Aerials	
Freiz Airport "Weather Man" Mant	
5 foot high Lattice Triangular Wind	
Masts	2850
* Uniselectori 10 bank 25 wity full wipe ex.	
- Precisfon Mains Filter Units dew	
Avo Geiger Counters new. .	710
Carriage extra at cont on all ebove. All goods are ex-Government atored.	
We beve a large quantity of "bits and pieces" we cannot list-pleate send us your regairemente wo can probably help-all enguiries answered,	
P. HA M ' S	
BHI6 6ER WESTBOURNE 85051	

NEW PRICES ON NEW COMPONENTS

RESISTORS
HIgh stablity, carbon fin, low noise. Capless construction, molecular termination
bonding
Dimensions (mm.) : Body : tW: 8×2.8 Lesds: IW
10\% ranges: 10 Ohms to 10 Mesohns (L12 Renard Series). 5% ranges; $4 \cdot 7$ Ohms to 1 Megohm (E24 Renard Seriea). Prices-per Ohmic value.

SKELETON PRE-SET POTENTIOMETERS (Carbon)
High quality pre-seta suitable for printed circuit boards of $0 \cdot 1 \mathrm{ln}$. P.C.M. 100 ohms to
 S Megohms (Linear only). Mininture:
Horizontal ($0.7 \mathrm{in}+0.4 \mathrm{in}$. P.C.M.) or Vertical ($0 \cdot 4 \mathrm{in} . \times 0 \cdot 2 \mathrm{in}$. P.C.M.). Subminiature: 0.1 W st $70^{\circ} \mathrm{C}$. $\pm 20 \%$ below' 2.5 M , $\pm 30 \%$ above.

POLYESTER CAPACITORS (Mullard)
Tubular $10 \% .160 \mathrm{~V}: 0.01,0.01 \mathrm{~B}, 0.022 \mu \mathrm{~F} .7 \mathrm{~d}, 0.093,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.068,0 \cdot 1 \mu \mathrm{~F} .9 \mathrm{~d}$ $0.15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 / 1-0.33 \mu \mathrm{~F}, 1 / 3,0.47 \mu \mathrm{~F}, 1 / 6,0 \cdot 68 \mu \mathrm{~F}, 2 / 3,1 \mu \mathrm{~F}, 2 / 8,7$ $0.038 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 \cdot 068,0.1 \mu \mathrm{~F}$, IId, $0.15 \mu \mathrm{~F}, 1 / 2.0 \cdot 22 \mu \mathrm{~F}, 1 / 6.0 \cdot 33 \mu \mathrm{~F}$,
$2 / 3,047$
SEMICOND $2 /=$. OC70. OC72, 2/3, AC107, OC75. OC170, OC171, 2/6. AF115, AF116, AF117. ACY19. ACY $21,3 / 3$, OC140, 4/3. OC200, 5/-. OC139, 5/3. OC25, 7/-. OC35, $8 /-$. OC23, OC28, 8/3
SILICON RECTIFIERS (0.5A): 170 P.I.V., 2/9, 400 P.I.V.., 3/-. 800 P.I.V.. $3 / 3$. 1.250 P.I.V., 3/9, 1,500 P.I.V.. 4/-. (6A): 200 P.I.V.. 3/-., 400 P.I.V., 4/-. 800 P.I.V.. PRINTED CIRCUIT BOARD (Vero).

SEND S.A.E. FOR 1969 CATALOGUE

DUXFORD ELECTRONICS
 97/97A MILL ROAD, CAMBRIDGE

Telephone: CAMBRIDGE (0223) 63687
(Visit us at our new Mail Order, Wholesale and Retail Premises) MINIMUM ORDER VALUE 5/- C.W.O. Post and Packing 1/6

WW-120 FOR FURTHER DETAILS

A WIDE SELECTION OF SERVOMOTORS NOW AVAILABLE INCLUDES THE FOLLOWING TYPES:

Mil size $11-400 \mathrm{~Hz}$ versions for 26 and 115 v . operation with Mil sice 08 Mil sixe $08,10,11$, 15 and 18 motor generators for 400 Hz Mil sire $08.10,15$ and 18 two phase servometers also avall able with 400 Hz windings and a limited range in 50 Hz eypes. Mil Permanent Magnet Field Servometers Slxe
15 and 18 with supply voltages irom 6 to 50 D D.C.
Mil Tachogenerators SIze 08 and 10 for 400 Hz supply. Mil Size 11 Servomotor gearheads available in various ratios from $10: 1$ eo $1000: 1$.
All items ayailable ex stock and at extremely comperitive All item
Erices. gener totors-we hold stocks of this well known manufacturer's items amounting to about 100 different types-an enquiry stating your broad design considerations will bring a reply by return indicating ex stock avai
Write for our Data Sheets A 131 onwards for details of available Servomotors.
MIL SYNCHROS ayailable ox stock in sizes $08,11,15$,
16,18 and 23 for 50,60 and 400 Hz operation. 16, 18 and 23 for 50,60 and 400 Hz operation
Synchro Control Tranimitter
Synchro Control Differential Transmitters Synchro Torque Transmitters and Receiver Equivalent MAGSLIP ELEMENT educational usealso in stock.
Write for our Data Sheets A 001 onwards for Synchro
400 Hz . MOTOR ALTERNATOR SETS Input $400 / 440 \mathrm{v}$. 50 Hz 3 ph. output 115 sw .400 Hz 150 VA . (coml. rating) for Reconditionad AVOMETERS for ex stock delivery. All instruments supplied with detailed test certificate for all
ranges. In carrying case. Model $40 \mathrm{ESO}_{12} 10 \mathrm{~s}$. Model 7 E 1310 s .
 Avo Multi Aange Electronic Test Meter Type CT 38
a few avaliable in brand new condition a\& $\& 45$ complese with a few avaliable
all accessories.
Marconi Slanal Generators Type TFI44G in as new
condition complete with all spares in carrying case $\mathbf{C 3 0}$

TANTALUM CAPACITORS

Send for Stock list withlowest prices!	We hold large stocks by S.T.C. DUBILIER KEMET PLESSEY GENERAL ELECTRIC	Immediate delivery!

G.E.C. SEALED RELAYS

A very wide range of these difficuleto-obtain items in stock. List available.

PRECISION POTENTIOMETERS

Numerous instrument types, continuous rota cion potentiometers for control application and HELIPOTS in stock. List on application

PLUGS. SOCKETS AND CONNECTORS
Large stocks of PLESSEY Mk. IV or VI, 104; PAINTON ELECTROMETHODS; CANNON; BELLING LEE; AMPHENOL; TRANSRADIO items

Enquiries to Orpington or Lydd.

TRANSFER FUNCTION ANALYSER

Solartron. Cat. No. OS $103 / \mathrm{YP253} 2.1$ provides over the lrequency range 0.1 Hz to 1 KHz the Cartesian Co-ordinates
for the Nyquist diagram of a network. It may thus be used for servomechanism and regulator testing and for the analysis of L.F. networks. Orislnal M
Our Price 4400 for the two units.

Solartron Carrier Converter JX641A extends the use of the above to the examination of Carrier Systems from
50 Hz to 400 Hz . Orisinally $\{365$. Now offered at El 100 .

Solerscope CD $513.2-1$ recommended for use with the above. Orizinally $\mathbf{2 2 0}$. Our Price 660 .
Gartsch COMPLEX RATIO BRIDGE Model CRB2B. cost on all items. Carriage entra at cost on all items.

Servo and Electronic Sales Ltd.

Electrical and Servo Control Engineers - Electrical Suppliers - Engineering Stockists - Aeronautical Suppliers 43 HIGH STREET, ORPINGTON, KENT. Phone: Orpington 31066/33976 19 MILL ROAD, LYDD, KENT (Works). Phone: Lydd 252
67 LONDON RÓAD, CROYDON, SURREY (Retail Branch and Instrument Repairs).
Phene: 01-688-1512 (Croydon)

PRESENTING
THE AUDIO $C_{\text {xecutive SIXTY }}$ A high output all-silicon AMPLIFIER of advanced design We have incorporated into an amplifier all the desirable reatures that we would alws have amedifiers-we now have
several years experience of selling ampliter a design Incorporating the lazest solid staze all-silicon circuizry and the result AUDIO EXECUTIVE SIXTY: This creation, while being reasonably priced, provides the 1. A true 60 Wate R.M.S. Continuous rating into 8 ohms. True High Fidellty Performance.
Built-in filters to protect speakers
Three independently mixed Inputs which can be high or low Impedance microphone, crystal ceramic or magnetic cartridge from dise, or from tape, tuner or other The amplifise is buile into a luxurious, supple black remiquiled plastic covered timber cabinet: the chassis, backed by a massive heat sink carrying the outpur transistors, input jacks. output fuses, carries the driver transistors mounted on their own substantial heat sink, the input and output controls and the on/off switch. The power supply components are mounted direct on the sturdy chromatised cadmium plated chassis.

Systems.
High Power Hifi Systems.

Price 558.15 .0
Guaranteed for slx months
Individuallypacked in carSPECIFICATION
Power Output: 60 wates continuous sine wave Into 8 ohms
(reslstive). 40 watts continuous sine wave into is ohms (resistive). SA fuse incorporated in out put circuit. Damping Factor: 30 (source impedance 0.5 ohm approx.).
Dissortion: Total Harmonic Dlstortion at 1 KHz at 60 watt into 8 ohms less than 1%, at 40 wates into is ohms less than 0.3\%.
Frequ

Sensitlvity: Input 1a $15 \mathrm{mV} Z=50 \mathrm{~K}$ ohms flat.
It $1.5 \mathrm{mv} Z=5 \mathrm{~K}$ ohms flat.
Indut $2 \mathrm{a} 4.5 \mathrm{~m} V Z=50 \mathrm{~K}$ ohms RIAA compensated
InDut $2 \mathrm{a} 4.5 \mathrm{mV} Z=50 \mathrm{~K}$ ohms $R 1 \mathrm{C}$
$26200 \mathrm{mV} Z=100 \mathrm{~K}$ ohm, flą.
Inpur $3200 \mathrm{mV} Z=100 \mathrm{~K}$ ohm. flat.
Inpurs 1 and 2 and 3 operate simultaneously offering full mixing facilities: cholce of either a or b inputs, auzomatically
disconnects the other. Alteration in level from any two disconnects the other. Alzeration in level from any ewo
Overload Capacity: Input 126 db . Input 226 db . Input 3
Overload Capacity: Input 126 db . Input 26 db .
Infinity.
Power Bandwidzh: -3 db. (8 ohms) $50 \mathrm{~Hz}-18 \mathrm{KHz}$.
Power Bandwidth:
Tone Control: Bass +13 db d $80-16 \mathrm{db}$ az 50 Hz .
Filters: 1 db poines as 40 Hz and 15 KHz .
Mains 5upply: $110,120,220,240 \mathrm{~V} 40-60 \mathrm{~Hz}$.
Mains Supply: $\begin{aligned} & 110,120,220,240 \\ & \text { Input fused az } 2 \mathrm{~A}\end{aligned}$

BAKER HI-FI MAJOR £8

30-14,500 c.p.s., 12 in . double cone. woofer and tweeter cone together wssembly having a flux density of 14,000 gauss and a cotal flux of 155,000 Maxwells. Bass resonance 45 c.p.s. Rated 20 watts. Voice colls available 3 or 8 or 15 ohms. Price $£ 8$, or Module kit, $30-17,000$ C.p.s. Size $19 \times 12 \frac{1}{i n}$. with tweeter, crossover, baffle and instructions.

Post Free $\mathbb{E} \mathbb{0} \mathbf{1} 9.6$
LOUDSPEAKER CABINET WADDING 18 in . wlde, $2 / 6$ per ft. run. Post /6 per order.

ELECTRIC MOTORS

(120v. or 240 V . A.C.)

Clock wise I,200 R.P.M. off load Heary duty 4 pole 50 mA . Heary duty
Spindle
$\times 3$.
$\times 20$ in. diameter. size $24 \times 2 t \times 1$ it in. $\begin{array}{lll}\substack{\text { gargaln } \\ \text { PRICE }} & 17 / 6 & \begin{array}{c}\text { Post } \\ 2 / 6\end{array}\end{array}$ TRANSISTOR AMPLIFIER WITH LOUDSPEAKER Aini folf-containod portable mini_p.ay Yyatom, Many intercom, Jele obhon Alarm, Rntorcom player Amporin or.

 ${ }^{\text {with }}$ peake pown four tranisitor Une watit powar ranilifor. Usew PP9 betror. Brard

THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER
$\begin{array}{lll}\text { 200/250 A.C. } & \text { 42/6 } & \text { Post } \\ \text { Leaflet S.A.E. } & & \end{array}$
EXTENSION SPEAKER
Smart plastic cabinet speaker with 20 ft . lead for transistor radio, intercom, mains radlo, tape recorder, etc. $30 /-$ Post Size: 7 in. $x 5 \mathrm{tin}$. x 3 in . $30 / 2 / 6$
RETURN OF POST DESPATCH - CALLERS WELCOME
 HI-FI STOCKISTS - SALES - SERVICE-SPARES RADIO COMPONENT SPECIALISTS 337 Whitehorse road. croydon. Tel: 01-684-1665

BAILE.Y PRE-AMPLIFIER

High quality pre-amplifier circuit described by Dr. A. R. Bailey in the December, 1966, "Wireless World". This is a low distortion circuit of elest versatility with a maximum output of 2 volts making it suitable for driving Bailey 20W and 30W Amplifiers, Linsley Hood Class A Amplifier and many others. All normal pre-amplifier facilities and controls are incorporated. A new Printed Circuit Board containing latest modifications 7 in . by 3 in. features edge connector mounting, roller tinned finish and silk screened component locations. This board is available in S.R.B.P. mit contains gain rraded BC 109 transistors, polyenter capacitors and metal oxide resistors where specified.

BAILEY 3OW AMPLIFIER

All parts are now available for the 60 -vole single supply rail version of this uniz. We have also designed a new printed circuit intended or edge connector and is roller tinned for ease of assembly, Size is also smaller at 4 tin by 2 in . Price in SRBP material $11 / 8 \mathrm{~d}$ in Fibreglass 14/bd.

BAILEY 2OW AMPLIFIER
All parts in stock for this Amplifier including specially designed Printed Circuit Boards for pre-amp and power amp. Mains Transformer for mono or stereo prlmary for use with CZ6 Thermistor, $35 / 6 \mathrm{~d}$, POSt $5 /$.
Trifilar wound Driver Transformer, 22/8dm post I/Power Amp., 12/6d., post 9d.
Reprint of "Wireless World " articles, $5 / 6 \mathrm{~d}$. post free.
DINSDALE IOW AMPLIFIER
All parts still avaitable for this design.
Reprint of articles $5 / 6 \mathrm{~d}$, post free.
LINSLEY HOOD CLASS A AMPLIFIER
Parts now available for this unit including special mate black anodised Metalwork and all power supply components.

HART ELECTRONICS,

32I Great Western St., Manchester 14
The firm for quality.
Personal callers welcome, but please note we are closed all day Saturday.

Inexpensive IC's ... fast !

Simpson Taylor can now guarantee immediate delivery of 930 series DTL in quantities of 1 to 100 off.

930 Series DTL:-	10 ff	100 Off	
ST 930	Dual 4-input gate	$9 / 6$	$8 / 6$
ST 936	Hex inverter	$9 / 6$	$8 / 6$
ST 945	Clocked R-S/J-K flip-flop	$12 /-$	$10 / 8$
ST 946	Quad 2-input gate	$8 / 6$	$7 / 8$
ST 951	Gated monostable	$13 /-$	$11 / 5$
ST 962	Triple 3-input gate	$9 / 6$	$8 / 6$

These IC's are completely compatible with other manufacturers DTL and TTL, and meet the full electronic spec for 930 series devices.
e.g.
gates:- 25 ns propagation delay typ
flip flops:- 4.5 MHz toggle rate typ
Power Dissipation:- 40 mW per package typ
Temperature Range:- 0 to $+75^{\circ} \mathrm{C}$
Fan Out:- 8
min

* Dual in line Packages.
*Data Sheets for S.A.E
* Quotations for larger quantities available on request.

4.STATION INTERGOM

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factury, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. $7 / 6$ in U.K.

Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. 4/6.

7-STATION INTERCOM

(I MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. ${ }^{3}$ in. Speakers. Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory. Price 27 gns. P. \& P. 14/6 in U.K.

Transar TELEPHONEAMPLIFIER
59/6

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Pcrtable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v . battery which lasts for months. Ready to operate. P. \& P. 3/6 in U.K. Add 2/6 for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.),
169 Kensington High Street, London, W. 8

INIDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 106-122

	Page		Page		Pagb
A1 Fa	124	General Eng. Co. Ltd.	28	Quartz Crystal Co. Ltd.	125
Acoustical Mfg. Co. Ltd.	15	Goldring Manufacturing Co. Ltd	123	Radio \& TV Components Ltd..	87
Adcola Products Lid.	ver iii	Grampian Reproducers Lid		Radio Components Specialists.	129
Adier, B., \& Sons (Radio) Lid.	18	Greenwood, W., (London)		Radio Exchange Co.	123
AEI Semiconductors Lid.	20	Hall Electric Ltd.	7	Radiospares Lid..	74
Ahuja Radios.	48	Harmsworth Townley \& Co.	22	Ralfe, P. F.	126
A.K.G. Equipment Led.	49	Harringay Photographic Ltd.	124	Rank Audio Visual Led.	74
Amplivox Ltd.	50	Harris Electronics (London) Led.	73	Redifon Led..	21
Amtronix	127	Harris, P.	127	Rendar Instruments	70
Ancom Lid.	46	Hart Electronics	129	Reslo Mikes.	66
Anders Electronics Lid	9, 71	Hatfield Instruments I	72	R.R. Radio.	123
Astronic Lid.	71	Hayden Laboratories..	11	R.S.C. Hi-Fi Centres Lid	89
Ates Electronics Li	78	Hellermann Electric	8	R.S.T. Valves.	96
Audix Sound Syst	40	Henry's Radio Lid.	.82,83	Salford Electrical Inst. Ltd. 69	
		Henson	124	Samsons (Electronics) Lid.	69 92
Bantex Lid....... Barnet Factors Ltd	23	Holford, F., Co. Lid.	123	S.D.S.A. (Public Service).	49
Barnet Factors Ltd	123	I.C.S. Ltd.	3, 124	S.E. Laboratories (Eng.) Lid.	61
Batey, W., \& Co	30	I.M.O. (Electronics) Ltd	35	Service Trading Co...	
Bauch, F. W. O., Ltd.	36	Impectron Lid.	32	Servo \& Electronic Sales Lid.	128
Bentley Acoustical Corporation	80	Instructional Handbook Supplie	125	Seymour, Peger, Lid.	72
Bentley, K. J.	124			Simpson Taylor \& Co. Led	129
B.I.E.T.	13	Keytronics Kingswood Supplies	124	Sinclair Radionics Lid.	
Bi-Pak Semiconducto	80	Kinver Electronics	76	S.M.E. Ltd.............	
Bi-Pre-Pak Lid.	79	Kinver Electronics		Smith, G. W., (Radio) Lt	
Black, J.	3, 124	Lasky's Radio Ltd.	103	Smith, H. L., Co. Ltd.	30
Bradley, G. \& E., Led	42, 43	Lawson Tubes.	123	Smith, J., Lid.............	
Brenell Eng. Co. Ltd.	18	Ledon Instruments Ltd	32	S.N.S. Communications Lrd	
Britec Ltd.	104	Level Electronics Led.	2	Solartron Electronic Group	
Brooklands Plating Co. Ltd.	123	Light Soldering Developments	26	Sound 70......	
Brown, N. C., Ltd.	30	Livingston Hire Led. .	78	Special Products Led.	73 46
British Audio Promotions Ltd	104	Lyons, Claude, Ltd.	36	Specialist Switches Lid	46
Butterworth \& Co. (Pub.)	147	Lloyd, J. J., Instruments Lid.	46	Starman Tapes.	124
	75	London Central Radio Stores.	124	Sugden, A. R., \& Co. (Engineers) Lt	74
	123	L.S.T. Components	81	Sugden, J. E.	40
Chiltmead Ltd.	77	Marconi Instruments.	67		
Colomor (Electronics) Led	98	Marshall, A., \& Son (London)	97	Teclare Lid....	123
Computer Training Products	72	Mechanical Handling.	68	Tektronix Lid., Bot	r, 45
Consumer Microcircuirs Lid.	66	Mills, W.	92, 93	Telequipment Ltd.	52
	19	Milward, G. F.	88	Teleradio, The, Co. (Edmonton)	123
		Modern Book Co.	124	Telcon Metals Lt	
Davis, Jack, (Relays) Lrd.		Morganite Resistors L	27	Teonex Ltd.	
Daystrom Ltd.	37	M.R. Supplies Ltd. .	26	Thompson, A. J...	125
Diotran Ltd.	125	Mullard Led.	38,39	Thorn Radio Valves \& Tube	
Drake Transformers L	33	Multel....	78	Tinsley, H.	24
Dynamio Ltd......	+24	Multicore Solders Lid.................... . . . Cover iv		Trio Corporation	12
				Trio Instruments Ltd.	26
		Nombrex Lid..	40	T.R.S. Radio Components Specialists	
E.B. Instruments	129 44	Omron Precision Controls	35	Universal	125
Electronic Brokers	91, 123	Osmabet Lrd.	127		
Electronics (Croydon) Ltd	85	Oxley Developments Co. Ltd.	75	Valradio Ltd...	
Electrovalue	86		84	Vortexion Ltd..	
Electro-Tech Sales.	102	Patrick \& Kinnic.	99		
Electro-Winds Lid.	104	P.C. Radio Lid	47	Watts, Cecil E., Ltd. .	70
E.M.I. Electron Tube-Vidicons	41	Peak Sound (Harrow)	76	Wayne Kerr, The, Co. Ltd.	62
English Electric Valve Co. Ltd.	1,3,5	Pembridge College, The.	25	Webber, R. A., Lrd.	40
Erie Electronics Lid............................ 10		Plessey Electronics Lid..	51	Welbrook Eng. \& Electronics I	
			31	West Hyde Developments Lid	124
Ferrograph, The, Co. Ltd.. 55 Field Electric Ltd.		Practical Electronics.	48	West London Direct Supplies	80
		Proops Bros, Ltd.. Quality Electronics Lid.	98	Wilkinsons, La, (Croydon) Led	
Futuristic Aids Ltd.	74		74	Z. \& I. Aero Services Led. 105	
Fylde Electronic Laboratories					

General Eng. Co. Ltd. 28
100
Goldring Me Col 123
Greenwood, W., (London) Led.7
Harmsworth Townley \& Co. 22
Harris Electronics (London) Led. 73
Hart Electro 129
Hatfield Instruments Lid.11
Henry's Radio Lid. 8
Holford, F., Co. Lid.,
I.M.O. (Electronics) Lid. 35
Instructiona! Handbook Supplies. 125
Keytronis124
Kinver Electronics Led.
Lawson Tubes. 123
edon Instruments Lid. 2
Light Soldering Developments Lid. 78yons, Claude, Lt
loyd J. J., histument Lid. 46
ST Compal Radio Stores. 8168
Mills, W.93
88
Moderd 88
124
Morganite Resistors Led. 26
Mullard Lid. 78
Multicore Solders Lid40
Omron Precision Controls 17
Oxley Developments Co. Ltd 75
Patrick \& Kinnic. 84
Peak Sound (Harrow) Ltd47
embridge College, The.25
Plessey Electronics Lid. 31
Practical Electronic
25Radio \& TV Components Ltd.
Radio Components Specialists. 129
Radiospares Lid.. 74
126Rank Audio Visual Lid.
Redifon Lid. 21
Reslo Mikes 66
R.S.C. Hi-Fi Centres Lid. 89
Salford Electrical Inst. Ltd 69
S.D.S.A. (Public Service). 49
Service Trading Co. 101
Seymour, Peter, Lid. 72
Sinclair Radionics Ltd. 65
14Smith, G. W., (Radio) Ltd. .
Smith, H., Co. Lid. 30
S.N.Communication Lid. 70
4Sound 7056
72
Specialist Switches Lid. 46
Sugden, A. R., \& Co. (Engineers) Lid. . . .74
Sutton Electronic 123
Tektronix Ltd. , 45
Teleradio, The, Co. (Edmonton) Ltd. 123
Teonex Ltd. 20
Thorn Radio Valves \& Tubes Lid. 125
Tinsley, H.12
Trio Instruments Lid.
T.R.S. Radio Components Specialists. 96
Valradio Ltd. 2, 71
Vortex Bulb29
Wayne Kerr, The, Co. Ltd. 62
Welbrook Eng. \& Electronics Lid. 40
6
West Hyde Developments Lid.130
Z. \& I. Aero Services Ltd.

For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment-and we provide:
\star THREE DAY REPAIR SERVICE \star INTERCHANGEABLE BITS-STOCKITEMS \star SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.
ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.

No. 107. GENERAL ASSEMBLY TYPE
Fill in the coupon to get your copy of our latest brochure:

ADCOLA PRODUCTS LTD
Adcola House • Gauden Road • London • SW4 TeI. 01-622 0291/3 Grams: Soljoint. London SW4

Please rush me a copy of your latest brochure:
\qquad
COMPANY
ADDRESS

TO MANUFACTURERS OF SOLDERED JOINTS

$+$

Contains 5 cores of non-corros ve high speed Ersin flux. Removes surface oxides and prevents their formation during soldering. Complies with B.S. 219, 441, DTD 599A. B.S.3252, U.S. Spec. QQ-S-571d.

Savbit alloy contains a small percentage of copper and thus prolongs the li:e of copper soldering iron bits 10 times. Liquidus melting temperature is $215^{\circ} \mathrm{C}-419^{\circ} \mathrm{F}$ Ministry approved under ref. DTD/900/4535

Solder Tape, Rings, Preforms and Washers, Cored or Solid, are available in a wide range of specifications.

STANDARD GAUGESIN WHICH MOSTALLOYS ARE MADE AND LENGTHS PER LB. IN FEET.

				FT. PER LB.	
S.W.G.	INS.	M.M.	$60 / 40$	SAVBIT	
10	.128	3.251	25.6	24	
12	.104	2.642	38.8	36	
14	.080	2.032	65.7	60.8	
16	.064	1.626	102	96.2	
18	.048	1.219	182	170	
19	.040	1.016	262	244	
20	.036	.914	324	307	
22	.028	.711	536	508	
24	.022	.558	865	856	
26	.018	.46	1292	1279	
28	.014	.375	1911	1892	
30	.012	.314	2730	2695	
32	.010	.274	3585	3552	
34	.009	.233	4950	4895	

STANDARD ALLOYS INCLUDE
LIQUIDUS

	LIQUIDUS		
TIN/LEAD	B.S. GRADE	MELTING TEMP C.	
$60 / 40$	K	188	370
Savbit No 1	-	215	419
$50 / 50$	F	212	414
$45 / 55$	R	224	435
$40 / 60$	G	234	453
$30 / 70$	J	255	491
$20 / 80$	V	275	527

HIGH AND LOW MELTING POINT ALLOYS

ALLOY	DESCRIPTION	MELTING TEMP. ${ }^{\circ} \mathrm{C}$.	
T.L.C.	Tin/Lead/Cadmium with very low melting point	145	293
P.M.P.	Contains 2% Silver for soldering silver coated surfaces Made from Pure Tin for use when a lead free solder is essential High melting point	179	232
H.M.P	$296-$	550	
solder to B.S. Grade 5S	301	574	

FXTRUSOI

EXTRUSOL is a new concept in solder for solder machines, baths and pots used in the electronics industry.
EXTRUSOL is a very high purity solder which is also substantially free of oxides, sulphides and other undesirable elements.

The percentages of impurities in EXTRUSOL are considerably lover than those quoted in national or company specifications, thus providing a solder more suitable for use in the electronics industry.

EXTRUSOL can be

released under AID authority and conforms with USA QQ-S-571d

ADVANTAGES OF EXTRUSOL

1. Less dross on initial melting
2. More soldered joints per pound of solder purchased
3. Less reject joints
4. Improved wetting of electronic components and printed circuit boards
5. More uniform results

> ALL EXTRUSOL IS COMPLETELY PROTECTED BY PLASTIC FILM FROM THE MOMENT OF MaNuFACTURE UNTIL IT IS USED

A section of a typical cast solder bar. Note the surface dross and general contamination.

A section of an EXTRUSOL
bar with the plastic coating removed show. ing no dross or contamination.

EXTRUSOL is supplied in $1-\mathrm{lb}$. and 2-Ib. Trapezium Bars and Pellets in different alloys with strictly controlled tin contents to suit the appropriate soldering machines, baths and pots. Bars are available for automatic solder feed.

Ask for full details on solders, fluxes, soldering chemicals, on your companys notepaper.

[^0]: Free demonstration kit
 Please send me your free Mnemopolymerics Demonstration Kit - plus full details of the complete Helashrink range

    ```
    Name
    ```

 Name
 Company
 Company
 Address.

    ```
    Address.
    ```

 WORLD LEADERS IN CABLE ACCESSORIES 튼ㅌMANN ELECTRIC A division of Bowthorpe-Hellermann Lid

 Gatwick Road, Crawley, Sussex. Tel : Crawley 28888 A member of the Bowthorpe Holdings Group of Companies

[^1]: * Lids of transparent, shock resistant plastic, have been removed for

[^2]: Tel.: 01-692 2689

[^3]: To Peak Sound, 32 St. Jude's Rd., Engletield Green, Egham, Surrey.
 Details of Englefield systems. please and

 Name
 Address

[^4]: PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; 12 15s 0d. Overseas; 1 year $[215 \mathrm{~s}$ 0d. (Canada and U.S.A.; $\$ 6.75$). 3 years $\AA 7$ 0s 0d. (Canada and U.S.A.; \$17.50). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifion, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Strefford, M32 OEP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42r.d Street, New York 10017. Telephone: (212) 689-3250.

[^5]: * Birmingham University

[^6]: * Royal Radar Establishment

[^7]: All over the 5 continents and the 7 seas Bantex aerials are helping to maintain reliable communications. Day in and day out.

 Bantex aerials are selected because of their established reputation for reliability. A reputation eamed over many years.

 Bantex manufacture all types of marine aerials and for land use they have a range of mobile and base station aerials which operate through all bands and are used by the armed forces. police, taxi networks and industry.

 Bantex are best known for glass fibre aerials made by a unique process giving high strength. Other designs utilise metallic and othermaterials.

 The photograph shows iwo boats of the Ford team in the 1969 Round Britain Power Boat Race. Both used Bantex aerials.

[^8]: NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logic modules. CONTIL and BRIGHTLIFE products are all ex-stock. For details see January, February, April, 1970 issues, advertisements. For further details use reader
 service card. New prices on new leaflet. All customers on mailing list will receive these automatically. on mailing west HYDE DEYELOPMENTS LMITED 30 HIGH STREET, NORTHWOOD, MIDDX. Telephone: Northwood 24941

